

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 24.01.2019

Übungsblatt 13

Symmetric spaces

Exercise 1. For the following groups and rays, compute the stabilizers G_{ξ} and the homogeneous space G/G_{ξ} :

- (a) $G = SL_n(\mathbb{R}), \xi = \Phi_x(\operatorname{diag}(n-1, -1, \dots, -1)).$
- (b) $G = SL_n(\mathbb{R}), \xi = \Phi_x(\operatorname{diag}(n-k,\ldots,n-k,-k,\ldots,-k))$ (here n-k has multiplicity k).
- (c) $G = SL_n(\mathbb{R}), \xi = \Phi_x(\text{diag}(n-1, n-3, \dots, 1-n)).$
- (d) $G = SO_0(p,q), \xi = \Phi_x(X)$ where $X_{i,j} = 1$ if and only if $(i,j) \in \{(1, p+1), (p+1,1)\}$ and is zero otherwise.
- (e) $G = SO_0(p,q), \xi = \Phi_x(X)$ where $X_{i,j} = 1$ if and only if $(i,j) \in \{(k, p+k), (k+1,k) | k \in \{1, \dots, p\}\}$ and is zero otherwise.

Here $x \in G/K$ is the basepoint whose induced Cartan decomposition is standard.

Exercise 2. Let M be a Riemannian symmetric space of non compact type, $p \in M$ a basepoint, ξ be a point in $\partial_{\infty}(M)$ and let $\gamma(t) : \mathbb{R}^+ \to M$ be a geodesic ray in ξ with $\gamma(0) = p$. Recall that the Buseman function β_{ξ} is defined by

$$\beta_{\xi}(q) = \lim_{t \to \infty} d(q, \gamma(t)) - t.$$

(a) Show that

$$\beta_{\xi}^{-1}((-\infty,0])) = \bigcup B(\gamma(t),t).$$

These sets are called *horoballs*.

- (b) What is $\partial_{\infty} \mathbb{R}^n$? What are horoballs in \mathbb{R}^n ?
- (c) Show that the horoballs in M are contained in the image, under the exponential map, of the corresponding horoballs in T_pM .

Exercise 3. (Iwasawa decomposition)

- (a) Determine the factors K, A, N of the Iwasawa decomposition relative to a regular point ξ for the following Lie groups: $SL_n(\mathbb{R}), Sp(2n, \mathbb{R})$.
- (b) Given a unimodular basis of \mathbb{R}^n , let M be the matrix of change of basis, and let M' be the matrix of change of basis of the orthogonal basis obtained from the Gram-Schmidt process. Verify that M' is the K-factor of the Iwasawa decomposition of M.
- (c) If we start with a symplectic basis of \mathbb{R}^{2n} , does the orthogonal basis obtained from the Gram-Schmidt process assume a special form?