

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 10.01.2019

Übungsblatt 11

Symmetric spaces

Exercise 1. (Totally geodesic subspaces) Consider $O(p,q) < SL(n,\mathbb{R})$.

- (a) Choose a point $x \in SL(n, \mathbb{R})/O(n)$ such that the O(p, q)-orbit of x is a copy of the positive Grassmannian embedded as a totally geodesic subspace of $SL(n, \mathbb{R})/O(n)$.
- (b) Compute the associated Lie triple system.

Exercise 2. (Totally geodesic submanifold)

- (a) Show that if the symmetric space \mathcal{X} splits as the Riemannian product $\mathcal{X}_1 \times \mathcal{X}_2$, for every Cartan decomposition $\mathfrak{g} = \mathfrak{t} + \mathfrak{p}$ of $\mathfrak{g} = \text{Lie}(\text{Isom}^0(\mathcal{X}))$ associated to a point $x \in \mathcal{X}$, then there are Lie triple systems $\mathfrak{n}_1, \mathfrak{n}_2 < \mathfrak{p}$ such that $\mathfrak{p} = \mathfrak{n}_1 \oplus \mathfrak{n}_2$.
- (b) In $\mathfrak{sp}(2n,\mathbb{R})$ denote by \mathfrak{n}_1 (resp \mathfrak{n}_2) the Lie triple system

$$\mathfrak{n}_1 = \left\{ \begin{pmatrix} A & 0\\ 0 & -A \end{pmatrix} \mid A \text{ symmetric } \right\}$$
$$\mathfrak{n}_2 = \left\{ \begin{pmatrix} 0 & A\\ A & 0 \end{pmatrix} \mid A \text{ symmetric } \right\}$$

Show that there is a Cartan decomposition such that $\mathfrak{p} = \mathfrak{n}_1 \oplus \mathfrak{n}_2$.

(c) Is the symmetric space associated to $\mathfrak{sp}(2n,\mathbb{R})$ irreducible?

Exercise 3. (Flat strip theorem) Show that the hypothesis that the geodesics are biinfinite is crucial in the flat strip theorem by exhibiting two geodesic rays in a Hadamard manifold that stay at bounded distance but do not bound a flat strip.