RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
Mathematisches Institut

Vorlesung Differentialgeometrie II
Heidelberg, 13.12.2018

Übungsblatt 9

Symmetric spaces

Exercise 1. Let Q denote the algebra of quaternions:

$$
Q=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\}
$$

with the non-commutative product defined by the relations

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

The conjugate of a quaternion is defined as

$$
\overline{a+b i+c j+d k}=a-b i-c j-d k
$$

and the norm is defined by

$$
|q|^{2}=q \bar{q}
$$

The norm is multiplicative, and it helps finding the multiplicative inverses:

$$
|p q|=|p||q|, \quad \quad q^{-1}=\frac{\bar{q}}{q^{2}}
$$

Define the set of pure quaternions as

$$
P=\{b i+c j+d k \mid b, c, d \in \mathbb{R}\} .
$$

Let $S O(3)$ denote the connected component of the group of all \mathbb{R}-linear maps from P to itself that preserve the norm $|\cdot|$. Similarly, let $S O(4)$ denote the connected component of the group of all \mathbb{R}-linear maps from Q to itself that preserve the norm $|\cdot|$. Define the sphere group as

$$
\mathbb{S}=\{q \in Q| | q \mid=1\}
$$

This is a multiplicative subgroup of Q. For every $x, y \in \mathbb{S}$, consider the linear map

$$
T_{x, y}: Q \ni q \rightarrow x q y^{-1} \in Q
$$

(a) Prove that for every $x \in \mathbb{S}, T_{x, x}$ preserves P.
(b) Show that this gives a surjective homomorphism $\mathbb{S} \rightarrow S O(3)$, find the kernel and describe the topology of $S O(3)$.
(c) Show that this gives a surjective homomorphism of $\mathbb{S} \times \mathbb{S} \rightarrow S O(4)$, and find the kernel.
(d) Show that $P O(4)$ is isomorphic to $S O(3) \times S O(3)$.

Exercise 2. Orthogonal complex structures. Consider $\mathbb{R}^{2 n}$ with the standard scalar product. A complex structure on $\mathbb{R}^{2 n}$ is a multiplication by i, i.e. a linear map J such that $J^{2}=-1$. A complex structure J is orthogonal if J is an orthogonal linear map.

1. Prove that the set S of orthogonal complex structures coincides with the set of all matrices that are orthogonal and antisymmetric.
2. Prove that the group $O(2 n)$ acts by conjugation on S, that the action is transitive and that the stabilizer of any point is isomorphic to the unitary group $U(n)$.
3. Put a structure of symmetric space on S.
4. Determine the non-compact dual of this symmetric space.

Exercise 3. (Restriction of the Killing form) Give an example of a simple Lie algebra \mathfrak{g} with a subalgebra \mathfrak{t} such that $\left.B_{\mathfrak{g}}\right|_{\mathfrak{t}}$ is not a scalar multiple of $B_{\mathfrak{t}}$. (Hint: find a non-semisimple Lie algebra that is subalgebra of a compact one.)

