

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 6.12.2018

Übungsblatt 8

Symmetric spaces

Exercise 1. Consider the symmetric space

$$S_n = \{ M \in \mathcal{P} \mid \det(M) = 1 \}$$

from Sheet 6, Exercise 2. Note that $S_n = SL(n, R)/SO(n)$.

(a) Compute the Cartan decomposition associated to the point

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in S_n,$$

where $\lambda_1 > \ldots > \lambda_n$ and $\lambda_1 \cdots \lambda_n = 1$.

(b) Denote by Θ^{Λ} (resp. Θ^{Id}) the associated Cartan involutions, and by \mathfrak{p}^{Λ} (resp. \mathfrak{p}^{Id} the eigenspaces for -1. What is $\mathfrak{p}^{Id} \cap \mathfrak{p}^{\Theta}$?

Exercise 2. (Orthogonal symmetric Lie algebras)

- (a) Show that, if the OSLA (\mathfrak{g}, σ) is of compact type, and comes from the symmetric space \mathcal{X} , then \mathcal{X} is compact.
- (b) Show that the symmetric space $SL(n, \mathbb{R})/SO(n)$ is non-compact. Does the associated orthogonal symmetric Lie algebra have a well defined type?
- (c) Consider the symmetric space \mathbb{R}^n , with $G = O(n) \ltimes \mathbb{R}^n$. Show that \mathfrak{g} is of Euclidean type.

Exercise 3. (Exponential maps) Let M = G/K be a globally symmetric space and $p \in M$. Denote by $s_p : M \to M$ the geodesic symmetry about $p \in M$. Recall that $\sigma : G \ni g \to s_p g s_p \in G$, and $\pi : G \ni g \to g p \in M$. Denote by $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$ the associated decomposition. Denote by $\exp : \mathfrak{g} \to G$ the exponential map in the sense of Lie groups and by $\operatorname{Exp}_p : T_p M \to M$ the exponential map in the sense of Lie groups and by $\operatorname{Exp}_p : T_p M \to M$ the exponential map in the sense of Riemannian manifolds. Recall from class that the following diagram commutes:

$$\begin{array}{cccc} \mathfrak{p} & \stackrel{D_e\pi|\mathfrak{p}}{\longrightarrow} & T_pM \\ \downarrow & & \downarrow \\ G & \stackrel{\pi}{\longrightarrow} & M \end{array}$$

where the arrow $\mathfrak{p} \to G$ is given by $\exp|_{\mathfrak{p}}$ and the arrow $T_p M \to M$ is given by \exp_p .

Make this explicit for $M = \mathbb{R}^2, \mathbb{S}^2, \mathbb{H}^2$.