RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
Mathematisches Institut

Vorlesung Differentialgeometrie II
Heidelberg, 22.11.2018

Übungsblatt 6

Examples of symmetric spaces

Exercise 1. Compute the killing form for $S L(n, \mathbb{R})$ and prove that $S L(n, \mathbb{R})$ is semisimple.

Exercise 2. Let $\operatorname{Sym}(n, \mathbb{R})$ denote the vector space of symmetric $n \times n$ matrices. Consider the open subset of positive definite matrices:

$$
\mathcal{P}=\{M \in \operatorname{Sym}(n, \mathbb{R}) \mid M>0\}
$$

As usual for open subsets of vector spaces, we will identify the tangent space at every point with $\operatorname{Sym}(n, \mathbb{R})$ itself:

$$
\forall M \in \mathcal{P}, \quad T_{M} \mathcal{P}=\operatorname{Sym}(n, \mathbb{R})
$$

We will denote by $\operatorname{Id} \in \mathcal{P}$ the identity matrix.
(a) Prove that the formula

$$
g_{M}(S, T)=\operatorname{tr}\left(M^{-1} S M^{-1} T\right)
$$

intended as a bilinear form on the vector space $T_{M} \mathcal{P}$, for a $M \in \mathcal{P}$, defines a Riemannian metric on \mathcal{P}.
(b) Prove that the formula

$$
G L(n, \mathbb{R}) \times \mathcal{P} \ni(A, M) \longrightarrow A^{T} M A \in \mathcal{P}
$$

defines an action of $G L(n, \mathbb{R})$ on \mathcal{P}, given by base change of scalar products.
(c) Prove that the given action of $G L(n, \mathbb{R})$ is transitive.
(d) Prove that the given action of $G L(n, \mathbb{R})$ is by isometries for the Riemannian metric g.
(e) Compute the stabilizer of the point Id.
(f) Prove that (\mathcal{P}, g) is a symmetric space.
(g) Consider the submanifold

$$
\{M \in \mathcal{P} \mid \operatorname{det}(M)=1\}
$$

with the induced Riemannian metric. Prove that it is a symmetric space.

Exercise 3. Consider the space \mathbb{R}^{n} with scalar product $\langle.,$.$\rangle . Let V \subset \mathbb{R}^{n}$ be a k-dimensional subspace, and let V^{\perp} be its orthogonal. We denote by $O(k) \times O(n-k)$ the subgroup of $O(n)$ that preserves the orthogonal decomposition $V \oplus V^{\perp}$, where the factor $O(k)$ is acting on V and the factor $O(n-k)$ is acting on V^{\perp}.

Consider the group $G=S O(n)$ and the subgroups $K_{1}=S O(k) \times S O(n-k), K_{2}=$ $S(O(k) \times O(n-k)$), where $S(H)$ denotes all the elements of the group H with determinant 1 .
(a) Prove that the spaces G / K_{1} and G / K_{2} are symmetric spaces.
(b) Find a natural covering map $G / K_{1} \rightarrow G / K_{2}$.
(c) Show that the group K_{2} / K_{1} has a natural action on G / K_{1}, that makes it the group of deck transformations of the covering above.
(d) What are G / K_{1} and G / K_{2} ? Can you find a geometric meaning of G / K_{1} and G / K_{2} that relates them to objects coming from linear algebra?

