

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 22.11.2018

Übungsblatt 6

Examples of symmetric spaces

Exercise 1. Compute the killing form for $SL(n, \mathbb{R})$ and prove that $SL(n, \mathbb{R})$ is semisimple.

Exercise 2. Let $Sym(n, \mathbb{R})$ denote the vector space of symmetric $n \times n$ matrices. Consider the open subset of positive definite matrices:

$$\mathcal{P} = \{ M \in \operatorname{Sym}(n, \mathbb{R}) \mid M > 0 \}$$

As usual for open subsets of vector spaces, we will identify the tangent space at every point with $\text{Sym}(n, \mathbb{R})$ itself:

$$\forall M \in \mathcal{P}, \ T_M \mathcal{P} = \operatorname{Sym}(n, \mathbb{R})$$

We will denote by $Id \in \mathcal{P}$ the identity matrix.

(a) Prove that the formula

$$g_M(S,T) = \operatorname{tr}(M^{-1}SM^{-1}T)$$

intended as a bilinear form on the vector space $T_M \mathcal{P}$, for a $M \in \mathcal{P}$, defines a Riemannian metric on \mathcal{P} .

(b) Prove that the formula

$$GL(n,\mathbb{R}) \times \mathcal{P} \ni (A,M) \longrightarrow A^T M A \in \mathcal{P}$$

defines an action of $GL(n, \mathbb{R})$ on \mathcal{P} , given by base change of scalar products.

- (c) Prove that the given action of $GL(n, \mathbb{R})$ is transitive.
- (d) Prove that the given action of $GL(n, \mathbb{R})$ is by isometries for the Riemannian metric g.
- (e) Compute the stabilizer of the point Id.
- (f) Prove that (\mathcal{P}, g) is a symmetric space.
- (g) Consider the submanifold

$$\{M \in \mathcal{P} \mid \det(M) = 1\}$$

with the induced Riemannian metric. Prove that it is a symmetric space.

Exercise 3. Consider the space \mathbb{R}^n with scalar product $\langle ., . \rangle$. Let $V \subset \mathbb{R}^n$ be a k-dimensional subspace, and let V^{\perp} be its orthogonal. We denote by $O(k) \times O(n-k)$ the subgroup of O(n) that preserves the orthogonal decomposition $V \oplus V^{\perp}$, where the factor O(k) is acting on V and the factor O(n-k) is acting on V^{\perp} .

Consider the group G = SO(n) and the subgroups $K_1 = SO(k) \times SO(n-k)$, $K_2 = S(O(k) \times O(n-k))$, where S(H) denotes all the elements of the group H with determinant 1.

- (a) Prove that the spaces G/K_1 and G/K_2 are symmetric spaces.
- (b) Find a natural covering map $G/K_1 \rightarrow G/K_2$.
- (c) Show that the group K_2/K_1 has a natural action on G/K_1 , that makes it the group of deck transformations of the covering above.
- (d) What are G/K_1 and G/K_2 ? Can you find a geometric meaning of G/K_1 and G/K_2 that relates them to objects coming from linear algebra?