RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 08.11.2018

ÜBUNGSBLATT 4

Symmetric and locally symmetric spaces

Exercise 1. Let (M, g_M) , (N, g_N) be two Riemannian manifolds with parallel curvature tensors. Given $m \in M$ and $n \in N$, assume that there exists a linear isometry $\phi : T_m M \to T_n N$ preserving the Riemann curvature tensors, i.e. such that for all $u, v, w \in T_m M$,

$$R_n^N(\phi(u),\phi(v))\phi(w) = \phi(R_m^M(u,v)w).$$

Prove that for every normal neighborhood U of m there exists a normal neighborhood V of n and a local isometry $f: U \rightarrow V$ such that f(m) = n and $D_m f = \phi$.

Exercise 2. Consider the action of the group \mathbb{Z}^n on \mathbb{R}^n by integral translations:

$$\mathbb{Z}^n \times \mathbb{R}^n \ni ((m_1, \dots, m_n), (x_1, \dots, x_n)) \longrightarrow (x_1 + m_1, \dots, x_n + m_n) \in \mathbb{R}^n.$$

Notice that the translations are isometries for the standard Riemannian metric of \mathbb{R}^n . The flat torus is the quotient $\mathbb{R}^n/\mathbb{Z}^n$, with its induced Riemannian metric. Prove that the flat torus is a symmetric space.

Exercise 3. Consider the open ball $\mathbb{B} \subset \mathbb{RP}^2$ with the Riemannian metric g constructed in Sheet 3, Exercise 1. The Riemannian manifold (\mathbb{B}, g) will be called the *hyperbolic plane*. Consider the matrix

$$A = \begin{pmatrix} 2 & \sqrt{3} & 0 \\ \sqrt{3} & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Prove that $A \in PO(2,1)$. This implies that A acts on (\mathbb{B},g) by isometries.
- (b) Prove that the action of A on \mathbb{B} leaves a geodesic invariant, call it a.
- (c) Prove that the quotient $\mathbb{B}/(A)$, with its induced Riemannian metric, is a complete Riemannian manifold, which is homeomorphic to a cylinder.

Hint: Given a point $p \in a$, consider the geodesics m_1, m_2 perpendicular to a and meeting a at p and A(p) respectively, as in the picture. A maps m_1 to m_2 .

(d) Prove that $\mathbb{B}/(A)$ is locally symmetric, but not symmetric.

Hint: Consider a point $q \in \mathbb{B}$, with $q \notin a$, and q between m_1 and m_2 . From the picture, you can see that the geodesic symmetry around q cannot be globally well defined on \mathbb{B}/A .

