Übungsblatt 3

Recap of differential geometry

Exercise 1. Consider the vector space \mathbb{R}^{n+1} with the bilinear form

$$
\langle x, y\rangle=-x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

Consider the subset

$$
C=\left\{x \in \mathbb{R}^{n+1} \mid\langle x, x\rangle<0\right\} .
$$

The set C is an open cone, and it projects to an open ball $\mathbb{B} \subset \mathbb{R P}^{n}$. For every $p \in B$ and $v \in T_{p} \mathbb{B}$, let ℓ_{v} be the projective line passing through p with tangent $v . \ell_{v}$ intersects the boundary $\partial \mathbb{B}$ in two points, v^{+}, v^{-}. There is a unique projective map $\phi: \ell_{v} \rightarrow \mathbb{R} \mathbb{P}^{1}$ such that $\phi\left(v^{-}\right)=0, \phi\left(v^{+}\right)=\infty$ and $\phi(p)=1$. Define the number

$$
\|v\|_{p}=|d(\log \circ \phi)[v]|
$$

where $\log : \mathbb{R}_{>0} \rightarrow \mathbb{R}$ and $|\cdot|$ denotes the Euclidean norm on \mathbb{R}.
(a) Prove that there exists a unique Riemannian metric g on \mathbb{B} such that

$$
\|v\|_{p}=\sqrt{g_{p}(v, v)}
$$

(b) Prove that the group $P O(n, 1)$ acts on $\mathbb{R} \mathbb{P}^{n}$ preserving \mathbb{B}, and it acts on \mathbb{B} by isometries for g.
(c) Prove that g has constant sectional curvature.
(d) Find all the geodesics for g.
(e) Prove that g is complete.
(f) Prove that the sectional curvature is negative.

Exercise 2. (a) Find two Riemannian manifolds M, N and a local diffeomorphism $f: M \rightarrow N$ such that for every $p \in M$ and for every $v \in T_{p} M$,

$$
\left|d f_{p}(v)\right| \geq|v|
$$

and f is not a covering map.
(b) Find two Riemannian manifolds M, N with M complete, and a local diffeomorphism f : $M \rightarrow N$ such that there exists $p \in M$ such that for every $v \in T_{p} M$,

$$
\left|d f_{p}(v)\right| \geq|v|
$$

and f is not a covering map.

Exercise 3. Let (M, g) be a Riemannian manifold of dimension n with constant sectional curvature k.
(a) Show that for every vector fields X, Y, Z, T, we have the relation

$$
g(R(X, Y) Z, T)=k(g(X, T) g(Y, Z)-g(X, Z) g(Y, T))
$$

(b) Let $\gamma: \mathbb{R} \rightarrow M$ be a geodesic parametrized by arc-length. Choose an orthonormal basis e_{1}, \ldots, e_{n} of $T_{\gamma(0)} M$ such that $e_{1}=\dot{\gamma}(0)$. Let $e_{i}(t)$ be the parallel transport of e_{i} along γ. Let J be a normal Jacobi field along γ. In the basis $e_{i}(t)$, it looks like:

$$
J(t)=\sum_{i=2}^{n} J^{i}(t) e_{i}(t)
$$

where the $J^{i}: \mathbb{R} \rightarrow \mathbb{R}$ are functions. Write the functions J^{i} explicitly, each of them depends on two parameters.

