

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 01.11.2018

Übungsblatt 3

Recap of differential geometry

Exercise 1. Consider the vector space \mathbb{R}^{n+1} with the bilinear form

$$\langle x, y \rangle = -x_0 y_0 + x_1 y_1 + \dots + x_n y_n.$$

Consider the subset

$$C = \{ x \in \mathbb{R}^{n+1} \mid \langle x, x \rangle < 0 \}.$$

The set C is an open cone, and it projects to an open ball $\mathbb{B} \subset \mathbb{RP}^n$. For every $p \in B$ and $v \in T_p \mathbb{B}$, let ℓ_v be the projective line passing through p with tangent v. ℓ_v intersects the boundary $\partial \mathbb{B}$ in two points, v^+, v^- . There is a unique projective map $\phi : \ell_v \to \mathbb{RP}^1$ such that $\phi(v^-) = 0, \ \phi(v^+) = \infty$ and $\phi(p) = 1$. Define the number

$$\|v\|_p = |d(\log \circ \phi)[v]|$$

where $\log : \mathbb{R}_{>0} \to \mathbb{R}$ and $|\cdot|$ denotes the Euclidean norm on \mathbb{R} .

(a) Prove that there exists a unique Riemannian metric g on $\mathbb B$ such that

$$\left\|v\right\|_{p} = \sqrt{g_{p}(v,v)}$$

- (b) Prove that the group PO(n, 1) acts on \mathbb{RP}^n preserving \mathbb{B} , and it acts on \mathbb{B} by isometries for g.
- (c) Prove that g has constant sectional curvature.
- (d) Find all the geodesics for g.
- (e) Prove that g is complete.
- (f) Prove that the sectional curvature is negative.

Exercise 2. (a) Find two Riemannian manifolds M, N and a local diffeomorphism $f : M \to N$ such that for every $p \in M$ and for every $v \in T_p M$,

$$|df_p(v)| \ge |v|$$

and f is not a covering map.

(b) Find two Riemannian manifolds M, N with M complete, and a local diffeomorphism $f : M \to N$ such that there exists $p \in M$ such that for every $v \in T_p M$,

 $|df_p(v)| \ge |v|$

and f is not a covering map.

Exercise 3. Let (M, g) be a Riemannian manifold of dimension n with constant sectional curvature k.

(a) Show that for every vector fields X, Y, Z, T, we have the relation

$$g(R(X,Y)Z,T) = k(g(X,T)g(Y,Z) - g(X,Z)g(Y,T)).$$

(b) Let $\gamma : \mathbb{R} \to M$ be a geodesic parametrized by arc-length. Choose an orthonormal basis e_1, \ldots, e_n of $T_{\gamma(0)}M$ such that $e_1 = \dot{\gamma}(0)$. Let $e_i(t)$ be the parallel transport of e_i along γ . Let J be a normal Jacobi field along γ . In the basis $e_i(t)$, it looks like:

$$J(t) = \sum_{i=2}^{n} J^{i}(t)e_{i}(t),$$

where the $J^i : \mathbb{R} \to \mathbb{R}$ are functions. Write the functions J^i explicitly, each of them depends on two parameters.