

MATHEMATISCHES INSTITUT

Vorlesung Differentialgeometrie II Heidelberg, 25.10.2018

Übungsblatt 2

Recap of differential geometry

Exercise 1. The aim of this exercise is to prove the following proposition:

Proposition. Let B and C be manifolds, with B connected. Let $p: C \rightarrow B$ be a local diffeomorphism, satisfying the path lifting property. Then p is a covering map.

Recall that a map $p: B \to C$ is said to satisfy the path lifting property if for every path $\gamma: [0,1] \to B$ and for all $c \in p^{-1}(\gamma(0))$ there is a path $\bar{\gamma}: [0,1] \to C$ with $\bar{\gamma}(0) = c$ and $p \circ \bar{\gamma} = \gamma$. Now, let B, C, p be as in the proposition. Prove the following:

- (a) Squares can be lifted, i.e. if $\phi : [0,1] \times [0,1] \rightarrow B$ is a map and $c \in p^{-1}(\phi(0,0))$, then there is a unique $\bar{\phi} : [0,1] \times [0,1] \rightarrow C$ with $\bar{\phi}(0,0) = c$ and $p \circ \bar{\phi} = \phi$.
- (b) Let $\gamma_1, \gamma_2 : [0,1] \to B$ be two paths with $\gamma_1(0) = \gamma_2(0)$ and $\gamma_1(1) = \gamma_2(1)$. Let $c \in p^{-1}(\gamma(0))$, and consider their lifts $\overline{\gamma_1}, \overline{\gamma_2}$ such that $\overline{\gamma_1}(0) = \overline{\gamma_2}(0) = c$. Prove that if γ_1 and γ_2 are homotopic relatively to the end-points, then $\overline{\gamma_1}(1) = \overline{\gamma_2}(1)$ and $\overline{\gamma_1}$ and $\overline{\gamma_2}$ are also homotopic relatively to the end-points.
- (c) Let X be a simply connected manifold and $f: X \to B$ a smooth map. Choose $x \in X$ and $c \in p^{-1}(f(x))$. Then f can be lifted to some $\overline{f}: X \to C$ such that $\overline{f}(x) = c$ and $p \circ \overline{f} = f$.
- (d) Assume that C is connected and B is simply connected. Prove that in this case p is a diffeomorphism.
- (e) Prove the proposition.

Exercise 2. Let $\mathbb{S}^2 \subset \mathbb{R}^3$ be the unit sphere, c an arbitrary parallel of latitude on \mathbb{S}^2 and v a tangent vector to \mathbb{S}^2 at a point of c. Describe geometrically the parallel transport of v along c.

Hint: Consider the cone C tangent to \mathbb{S}^2 along c, and show that the parallel transport of v along c is the same, whether taken relative to \mathbb{S}^2 or to C.

Exercise 3. Let $p: \overline{M} \to M$ be a covering map, and g be a Riemannian metric on M.

- (a) Show that there exists a Riemannian metric \bar{g} on \bar{M} such that p is a local isometry. Such metric is called the *covering metric*.
- (b) Show that g is complete if and only if \bar{g} is complete.