RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
Mathematisches Institut

Vorlesung Differentialgeometrie II
Heidelberg, 25.10.2018

Übungsblatt 2

Recap of differential geometry

Exercise 1. The aim of this exercise is to prove the following proposition:
Proposition. Let B and C be manifolds, with B connected. Let $p: C \rightarrow B$ be a local diffeomorphism, satisfying the path lifting property. Then p is a covering map.

Recall that a map $p: B \rightarrow C$ is said to satisfy the path lifting property if for every path $\gamma:[0,1] \rightarrow B$ and for all $c \in p^{-1}(\gamma(0))$ there is a path $\bar{\gamma}:[0,1] \rightarrow C$ with $\bar{\gamma}(0)=c$ and $p \circ \bar{\gamma}=\gamma$.

Now, let B, C, p be as in the proposition. Prove the following:
(a) Squares can be lifted, i.e. if $\phi:[0,1] \times[0,1] \rightarrow B$ is a map and $c \in p^{-1}(\phi(0,0))$, then there is a unique $\bar{\phi}:[0,1] \times[0,1] \rightarrow C$ with $\bar{\phi}(0,0)=c$ and $p \circ \bar{\phi}=\phi$.
(b) Let $\gamma_{1}, \gamma_{2}:[0,1] \rightarrow B$ be two paths with $\gamma_{1}(0)=\gamma_{2}(0)$ and $\gamma_{1}(1)=\gamma_{2}(1)$. Let $c \in p^{-1}(\gamma(0))$, and consider their lifts $\overline{\gamma_{1}}, \overline{\gamma_{2}}$ such that $\overline{\gamma_{1}}(0)=\overline{\gamma_{2}}(0)=c$. Prove that if γ_{1} and γ_{2} are homotopic relatively to the end-points, then $\overline{\gamma_{1}}(1)=\overline{\gamma_{2}}(1)$ and $\overline{\gamma_{1}}$ and $\overline{\gamma_{2}}$ are also homotopic relatively to the end-points.
(c) Let X be a simply connected manifold and $f: X \rightarrow B$ a smooth map. Choose $x \in X$ and $c \in p^{-1}(f(x))$. Then f can be lifted to some $\bar{f}: X \rightarrow C$ such that $\bar{f}(x)=c$ and $p \circ \bar{f}=f$.
(d) Assume that C is connected and B is simply connected. Prove that in this case p is a diffeomorphism.
(e) Prove the proposition.

Exercise 2. Let $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ be the unit sphere, c an arbitrary parallel of latitude on \mathbb{S}^{2} and v a tangent vector to \mathbb{S}^{2} at a point of c. Describe geometrically the parallel transport of v along c. Hint: Consider the cone C tangent to \mathbb{S}^{2} along c, and show that the parallel transport of v along c is the same, whether taken relative to \mathbb{S}^{2} or to C.

Exercise 3. Let $p: \bar{M} \rightarrow M$ be a covering map, and g be a Riemannian metric on M.
(a) Show that there exists a Riemannian metric \bar{g} on \bar{M} such that p is a local isometry. Such metric is called the covering metric.
(b) Show that g is complete if and only if \bar{g} is complete.

