RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
Mathematisches Institut

Heidelberg, 18.10.2018

Übungsblatt 1

Grassmannians

Exercise 1. Let $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right), k<n$, be the set of all k-dimensional linear subspaces of \mathbb{R}^{n} (the Grassmannian).

Given $V \in \operatorname{Gr}\left(n-k, \mathbb{R}^{n}\right)$, consider the set

$$
\mathcal{U}_{V}=\left\{U \in \operatorname{Gr}\left(k, \mathbb{R}^{n}\right) \mid U \cap V=(0)\right\}
$$

(a) Choose $U_{0} \in \mathcal{U}_{V}$, and notice that $U_{0} \oplus V=\mathbb{R}^{n}$.
(b) Use linear algebra to define a bijection

$$
\phi_{V, U_{0}}: \mathcal{U}_{V} \rightarrow \operatorname{Hom}\left(U_{0}, V\right)=\mathbb{R}^{k \times(n-k)} .
$$

(c) Prove that the set of pairs $\left\{\left(\mathcal{U}_{V}, \phi_{V, U_{0}}\right)\right\}$ is an atlas for a smooth structure on $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$.

Exercise 2. Prove that the Grassmannian $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$ is compact.
Hint: It can be useful to choose a scalar product and to work with an orthogonal basis.

Exercise 3. We consider the following Riemannian metric on $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$. Choose a scalar product on \mathbb{R}^{n}. For every $U \in \operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$, recall from Exercise 1 that $\mathcal{U}_{U^{\perp}}$ is a neighborhood of U identified, via $\phi_{U^{\perp}, U}$, with $\operatorname{Hom}\left(U, U^{\perp}\right)$. Hence the tangent space $T_{U} \operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$ is identified, via $d \phi_{U, U^{\perp}}$ with $T_{0} \operatorname{Hom}\left(U, U^{\perp}\right)=\operatorname{Hom}\left(U, U^{\perp}\right)$, where 0 denotes the zero map. The scalar product on U and U^{\perp} induces a scalar product g_{U} on $\operatorname{Hom}\left(U, U^{\perp}\right)=U^{*} \otimes U^{\perp}$. Show that
(a) The Grassmannian $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$ is homogeneous, i.e. given two elements $U, V \in \operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$, there is an isometry $f \in \operatorname{Isom}\left(\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)\right)$ with $f(U)=V$.
(b) The Grassmannian $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$ is a symmetric space.

Exercise 4. Choose a scalar product on \mathbb{R}^{n}, as in exercise 3. This gives a Riemannian metric on $\operatorname{Gr}\left(k, \mathbb{R}^{n}\right)$. Choose an orthonormal family of vectors v_{1}, \ldots, v_{k}.
(a) Let $V_{m} \subset \operatorname{Span}\left\{v_{2}, \ldots, v_{k}\right\}^{\perp}$ an m-dimensional subspace, where $2 \leq m \leq n-k+1$. Show that

$$
P_{m}=\left\{\operatorname{Span}\left\{v, v_{2}, \ldots, v_{k}\right\} \mid v \in V_{m} \backslash(0)\right\}
$$

is a submanifold isometric to $\mathbb{R P}^{m-1}$.
(b) Let $m \leq \min (k, n-k)$, and let V_{i}, for $1 \leq i \leq m$ be a sequence of 2-dimensional, mutually orthogonal, subspaces of $\operatorname{Span}\left\{v_{1}, \ldots, v_{k-m}\right\}^{\perp}$. Show that

$$
T_{m}=\left\{\operatorname{Span}\left\{v_{1}, \ldots, v_{k-m}, w_{1}, \ldots, w_{m}\right\} \mid w_{i} \in V_{i} \backslash(0)\right\}
$$

is a submanifold isometric to a flat m-torus.

