Let \(G \) be a Lie group and \(K \) be a compact subgroup of \(G \). Let \(g = T_e G \) be the Lie algebra of \(G \), \(t \) be the Lie algebra of \(K \) and \(\mathfrak{z} \) be the center of \(g \), i.e. \(\mathfrak{z} = \{ x \in g \mid \forall y \in g, [x, y] = 0 \} \). Recall that every element \(g \in G \) defines an automorphism of \(\Psi_g : G \to G \) by \(\Psi_g(h) = ghg^{-1} \). The differential of \(\Psi_g \) at the identity is a Lie-algebra automorphism of \(g \), \(d\Psi_g|_e : g \to g \). The map \(\text{Ad} : G \ni g \to d\Psi_g|_e \in \text{GL}(g) \) is called the adjoint representation of \(G \). Recall also that for \(x, y \in g \), \(\text{ad}_x(y) = [x, y] \), and \(\text{ad} \) is a Lie-algebra homomorphism \(\text{ad} : g \to \text{gl}(g) \), where \(\text{gl}(g) \) is the set of all linear endomorphisms of \(g \). The map \(\text{ad} \) is called the adjoint representation of \(g \). The kernel of \(\text{ad} \) is \(\mathfrak{z} \). The Lie algebra \(\text{gl}(g) \) is the Lie algebra of the group \(\text{GL}(g) \), and the subalgebra \(\text{ad}(g) \) is the Lie algebra of the group \(\text{Ad}(G) \). Let \(B \) denote the Killing form of \(g \). A Lie algebra is called semi-simple if its Killing form is non-degenerate. An ideal \(i \) of \(g \) is a sub-algebra such that for every \(x \in g \) and every \(y \in i \), \([x, y] \in i \).

Exercise 1.

• Prove that \(\mathfrak{z} \) is an ideal.
• Prove that the orthogonal space to \(\mathfrak{z} \) for the Killing form \(B \), denoted by \(\mathfrak{z}^\perp \), is an ideal.
• Prove that if \(i \) is an ideal of \(g \) and \(B' \) is the Killing form of \(i \), then \(B' \) is the restriction of \(B \) to \(i \).
• Prove that, if \(g \) is semi-simple, then \(\mathfrak{z} \) is trivial.
• Prove that, if \(B \) is negative definite, then the group \(\text{Ad}(G) \) is compact.

Exercise 2.

• Prove that, if \(G \) is compact, there exists a positive definite quadratic form \(Q \) on \(g \) that is invariant by the action of \(G \) through the adjoint representation of \(G \).
• Prove that, if \(G \) is compact, there exists a basis of \(g \) such that every element of \(\text{Ad}(G) \) is represented by an orthogonal matrix, and every element of \(\text{ad}(g) \) is represented by a skew-symmetric matrix.
• Prove that, if \(G \) is compact, then \(B \) is negative semi-definite.
• Prove that, if \(G \) is compact and \(g \) is semi-simple, then \(B \) is negative definite.
• Prove that, if \(G \) is compact, then \(g \) is the direct sum \(\mathfrak{z} \oplus \mathfrak{z}^\perp \), and the Killing form of \(\mathfrak{z}^\perp \) is negative definite.
• Prove that, if \(t \cap \mathfrak{z} = (0) \), then the Killing form of \(G \) is strictly negative definite on \(t \).

Exercise 3. Assume that \((G, K)\) is a Riemannian symmetric pair and that \(t \cup \mathfrak{z} = (0) \). Prove that the involutive automorphism \(\sigma \) of \(G \) such that \((K_\sigma)_0 \subset K \subset K_\sigma \) is unique. (Hint: assume there are two different involutive automorphisms \(\sigma_1, \sigma_2 \). Consider the decomposition \(g = t + p_1 \), where \(p_1 \) is the eigenspace for the eigenvalue \(-1\) of \(\sigma_1 \). Prove that \(p_1 \) is orthogonal to \(t \). For \(X_1 \in p_1 \), decompose it as \(X_2 + T, X_2 \in p_2, T \in t \). This implies \(T \) is orthogonal to \(t \). Use previous exercise to conclude.)