Exercise 1. Consider again the catenoid and helicoid of exercise sheet 5, §1. Recall that the metrics \(g_1 \) and \(g_2 \) are expressed by the matrices \(\begin{pmatrix} \cosh^2 s & 0 \\ 0 & \cosh^2 s \end{pmatrix} \) and \(\begin{pmatrix} 1 & 0 \\ 0 & s^2 + 1 \end{pmatrix} \).

(a) Compute the Christoffel symbols for the two metrics on \(\mathbb{R}^2 \), in the identity chart.

(b) Are the two curves \(\mathbb{R} \to \mathbb{R}^2 \) given by \(s \to (s, 0) \) and \(t \to (0, t) \) geodesics for the two metrics?

Exercise 2. Let \(\Omega \) be an open subset of \(\mathbb{R}^2 \) with the restriction of the standard metric of \(\mathbb{R}^2 \).

(a) Find an explicit expression for the exponential map for the points of the domain \(\mathcal{D} \subset T\Omega \) where it is well defined.

(b) When \(\Omega = \mathbb{R}^2 \setminus \{0\} \), find explicitly the domain \(\mathcal{D} \).

(c) When \(\Omega = \mathbb{R}^2 \setminus \{0\} \), find two points that are not connected by a geodesic segment.

(d) Prove that \(\mathcal{D} = T\Omega \) if and only if \(\Omega = \mathbb{R}^2 \).

Exercise 3. Let \(S_1^2 \subset \mathbb{R}^3 \) be the sphere of radius 1. Fix an angle \(\theta \in (0, \pi) \), and consider the three curves \(\alpha : [0, \pi/2] \ni t \to (-\sin t, 0, \cos t) \in S_1^2 \), \(\beta : [0, \theta] \ni t \to (-\cos t, -\sin t, 0) \in S_1^2 \), \(\gamma : [0, \pi/2] \ni t \to (-\cos \theta \sin t, -\sin \theta \sin t, \cos t) \in S_1^2 \). The curve \(\gamma' \) that is the concatenation of \(\alpha \) and \(\beta \), and the curve \(\gamma \) are both piece-wise smooth curves from \(x = (0, 0, 1) \) to \(y = (-\cos \theta, -\sin \theta, 0) \). Show that the parallel transport linear isometries \(P_{\gamma}, P_{\gamma'} : T_xS_1^2 \to T_yS_1^2 \) differ by rotation by an angle \(\theta \). (Hint: you may use, without proving it, that the three curves \(\alpha, \beta, \gamma \) are geodesic segments).

Exercise 4. Let \(\pi : E \to M \) be a vector bundle over a manifold \(M \), with fiber modeled over a vector space \(V \) (for the notation, see exercise sheet 5, §4). The symbol \(\bigwedge^k(V^*) \) denotes as usual the space of alternating \(k \)-linear forms from \(V \times \cdots \times V \) to \(\mathbb{R} \). For \(p \in M \), denote by \(E_p \) the inverse image \(\pi^{-1}(p) \), with its structure of vector space isomorphic to \(V \). Denote by \(\bigwedge^k(E^*) \) the disjoint union \(\bigsqcup_{p \in M} \bigwedge^k(E_p^*) \).

(a) Using the charts for \(E \), construct a structure of vector bundle for \(\bigwedge^k(E^*) \) with a projection \(\pi^k : \bigwedge^k(E^*) \to M \). (Hint: given the open covering \(\{U_\alpha, \alpha \in A \} \) used to define \(E \), replace \(U_\alpha \times V \) with \(U_\alpha \times \bigwedge^k(V^*) \). You may use the fact that every linear automorphism of \(V \) induces in a natural way a linear automorphism of \(\bigwedge^k(V^*) \).

(b) For the definition of a section, refer to exercise sheet 6, §2.4. Prove that a map \(\omega : M \to \bigwedge^k(E^*) \) with \(\pi^k(\omega(x)) = x \) is smooth (hence a section) if and only if for every sections \(s_1, \ldots, s_k \in \Gamma(E) \), the function \(\omega(x)(s_1(x), \ldots, s_k(x)) : M \to \mathbb{R} \) is smooth.

(c) Let \(\nabla \) be a connection on \(E \). We define the symbol:

\[
(\nabla_X \omega)(s_1, \ldots, s_k) = X(\omega(s_1, \ldots, s_k)) - \omega(\nabla_X s_1, \ldots, s_k) - \cdots - \omega(s_1, \ldots, \nabla_X s_k)
\]

for \(X \in \mathfrak{X}(M) \), \(s_1, \ldots, s_k \in \Gamma(E), \omega \in \Gamma(\bigwedge^k(E^*)) \). Show that \(\nabla_X \omega \) is tensorial in \(s_1, \ldots, s_n \), hence it can be viewed as an element of \(\Gamma(\bigwedge^k(E^*)) \).

(d) Show that \(\nabla_X \omega \) is a connection on \(\bigwedge^k(E^*) \) (for the definition see exercise sheet 6, §2.4).