Exercise 1.

(a) Consider the sphere $S^n_r = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} | \sum_{i=0}^n x_i^2 = r^2\}$, and the real projective space $\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$, with C^∞ structures defined by the atlases in Exercise sheet 1, §3. Prove that the map $\phi : S^n_r \to \mathbb{RP}^n$ defined by $\phi(x_0, \ldots, x_n) = [x_0, \ldots, x_n]$ is a smooth map. Is it locally invertible? Is it a diffeomorphism?

(b) Let M, N be differentiable manifolds with atlases $\{(\phi_i, U_i) | i \in I\}, \{(\psi_j, V_j) | j \in J\}$ respectively. Describe an atlas for the product $M \times N$ such that the two projections $\pi_1 : M \times N \to M$ and $\pi_2 : M \times N \to N$ are smooth maps.

(c) Prove that the map $\phi : \mathbb{R}^2 \to (\mathbb{R}_{>0})^2$ defined by $\phi(x, y) = (e^x, e^y)$ is a diffeomorphism.

Exercise 2.

(a) Prove that the identity map $i : S^n_r \to \mathbb{R}^{n+1}$ is an embedding of S^n_r into a submanifold of \mathbb{R}^{n+1}.

(b) Recall that for every point $p \in \mathbb{R}^{n+1}$, the tangent space $T_p\mathbb{R}^{n+1}$ can be identified with \mathbb{R}^{n+1} by the identity chart. For every point $q \in S^n_r$, show that the image of the differential of i at the point q (i.e. the subspace $di_q(T_qS^n_r)$) is equal to the orthogonal vector subspace to $i(q)$, with reference to the standard scalar product, $i(q)^\perp = \{v \in \mathbb{R}^{n+1} | \langle i(q), v \rangle = 0\}$.

Exercise 3.

(a) Let N be a differentiable manifold and $M \subset N$ a submanifold. Show that $f : M \to \mathbb{R}$ is a smooth function if and only if the following hold: for every point $p \in M$ there is an open neighborhood U of p in N and a smooth function $\phi : U \to \mathbb{R}$ such that $\phi|_{U \cap M} = f|_{U \cap M}$.

(b) Let M and N be smooth manifolds and $h : M \to N$ be a submersion. Show that a function $f : N \to \mathbb{R}$ is smooth if and only if $f \circ h$ is smooth. Show also that for every point $p \in M$, we have $\text{rank}_{h(p)} f = \text{rank}_p (f \circ h)$.

Exercise 4.

(a) Prove that a connected topological manifold is path-connected. (Hint: Fix a point p and consider the set of all points that can be joined to p with a continuous curve. Prove that this set is open and closed.)

(b) Let M be a differentiable manifold. If $[a, b] \subset \mathbb{R}$ is a closed interval, a map $\gamma : [a, b] \to M$ is called smooth if there exists $\varepsilon > 0$ and a smooth map $\gamma' : (a - \varepsilon, b + \varepsilon) \to M$ such that the restriction of γ' to $[a, b]$ coincides with γ. A map $\gamma : [a, b] \to M$ is called piece-wise smooth if there exists a finite number of points $x_0 = a < x_1 < \cdots < x_{n-1} < x_n = b$ such that the restriction of γ to every interval $[x_i, x_{i+1}]$ is smooth. Prove that in a connected differentiable manifold, for every two points there is a piece-wise smooth curve joining them.