Riemann's existence theorem and the $K(\pi, 1)$ -property of rings of integers

by Kay Wingberg at Heidelberg

Preliminary version: December 6, 2007

Let k be a number field, S a finite set of nonarchimedean primes of k and p a prime number. We assume that p is odd or that k is totally imaginary. Let $k_S(p)$ be the maximal p-extension of k unramified outside S and $G_S(p) = Gal(k_S(p)|k)$. In geometric terms, we have

$$G_S(p) \cong \pi_1((Spec(\mathcal{O}_k) \setminus S)_{et}^{(p)}),$$

where $(Spec(\mathcal{O}_k)\backslash S)_{et}^{(p)}$ is the *p*-completion of the étale homotopy type of the scheme $Spec(\mathcal{O}_k)\backslash S$. If *S* contains the set S_p of primes dividing *p* (the *wild case*), then $G_S(p)$ has cohomological dimension less or equal to 2. Furthermore, if $T \supseteq S \supseteq S_p$ are sets of primes of *k*, then the canonical homomorphisms

$$\phi_{T,S}: \underset{\mathfrak{p}\in (T\setminus S)(k_S(p))}{*} T_{\mathfrak{p}}(k(p)|k) \longrightarrow G(k_T(p)|k_S(p))$$

of the free pro-*p* product of the groups $T_{\mathfrak{p}}(k(p)|k)$ into $G(k_T(p)|k_S(p))$; here $T_{\mathfrak{p}}(k(p)|k)$ is the inertia subgroup of the decomposition group $G_{\mathfrak{p}}(k(p)|k) \cong G(k_{\mathfrak{p}}(p)|k_{\mathfrak{p}})$, where $k_{\mathfrak{p}}$ is the completion of k with respect to the prime \mathfrak{p} . We say that Riemann's existence theorem holds for k, S, T.

In the tame case, i.e. $S \cap S_p = \emptyset$, and in the mixed case, i.e. $\emptyset \neq S \cap S_p \not\subseteq S_p$, until recently not much was known about the group $G_S(p)$: In the tame case $G_S(p)$ is a finitely presented pro-*p*-group (Koch), which can be infinite (Golod-Šafarevič), and which is a fab-group, i.e. U^{ab} is finite for each open subgroup $U \subseteq G_S(p)$.

In 2005, Labute considered the case $k = \mathbb{Q}$ and found finite sets S of prime numbers (called strictly circular sets) with $p \notin S$ such that $G_S(p)$ has cohomological dimension 2. In [S2] A. Schmidt also considered the tame case: he showed that for a number filed k, which does not contain the group of p-th roots of unity and whose *p*-part of its ideal class group is trivial, there always exists a finite set *T* of primes with $T \cap S_p = \emptyset$, such that $(Spec(\mathcal{O}_k) \setminus (S \cup T))_{et}^{(p)}$ is a $K(\pi, 1)$ for *p*, i.e. the higher étale homotopy groups of $(Spec(\mathcal{O}_k) \setminus (S \cup T))_{et}^{(p)}$ vanish; in particular, $\operatorname{cd}_p G_{S \cup T}(p) \leq 2$.

In this paper we will study the relationship of the $K(\pi, 1)$ -property of the scheme $Spec(\mathcal{O}_k)\backslash S$ and Riemann's existence theorem for sets $T \supseteq S$, where S is an arbitrary finite set of nonarchimedean primes. We extend results of [5] in the following way (see also [6]):

Theorem. Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let $T \supseteq S$ be finite sets of nonarchimedean primes of k. Assume that $(k_S(p))_{\mathfrak{p}} \neq k_{\mathfrak{p}}$ for all $\mathfrak{p} \in (T \setminus S) \cap S_p$. Then we have the following assertions are equivalent:

- (i) $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p and $(k_S(p))_{\mathfrak{q}} \neq k_{\mathfrak{q}}$ for all $\mathfrak{q} \in (T \setminus (S \cup S_p))_{\min}$.
- (ii) $Spec(\mathcal{O}_k) \setminus T$ is a $K(\pi, 1)$ for p and

$$\underset{\mathfrak{p}\in T\setminus S(k_S(p))}{\ast} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_T(p)|k_S(p)).$$

Using this theorem and results of [5], we will show that not only in the tame case but also in the mixed case one can find finite sets S of primes such that $\operatorname{cd}_p G_S(p) \leq 2$.

1 Free product decomposition

We introduce some notation. If p is a fixed prime number and G a prop group, then $H^i(G)$ denotes the cohomology group $H^i(G, \mathbb{Z}/p\mathbb{Z})$ and we put $h^i(G) = \dim_{\mathbb{F}_n} H^i(G)$. Furthermore,

$$\chi(G) = \sum_{i} (-1)^{i} h^{i}(G)$$
 and $\chi_{n}(G) = \sum_{i=0}^{n} (-1)^{i} h^{i}(G)$

denotes the Euler-Poincaré characteristic and partial Euler-Poincaré characteristic of G, respectively. If K|k is a Galois *p*-extension with Galois group G(K|k), we sometimes write $H^i(K|k)$ for $H^i(G(K|k))$.

Let k is a number field with absolute Galois group by G_k . If p is a prime number, then k(p) is the maximal p-extension of k with Galois group $G_k(p) =$ G(k(p)|k). If K|k is a Galois p-extension with Galois group G(K|k), we sometimes write $H^i(K|k)$ for $H^i(G(K|k))$.

By S_{∞} , $S_{\mathbb{R}}$ and $S_{\mathbb{C}}$ we denote the sets of archimedean, real and complex primes of k and put $r_1(k) = \#S_{\mathbb{R}}$ and $r_2(k) = \#S_{\mathbb{C}}$, respectively. We consider the extension $\mathbb{C}|\mathbb{R}$ as ramified. If p is a prime number, then S_p is the set of all primes of K above p.

If \mathfrak{p} is a prime k, then $k_{\mathfrak{p}}$ is the completion of k with respect to \mathfrak{p} with absolute Galois group $G_{k_{\mathfrak{p}}}$, and $U_{\mathfrak{p}}$ denotes is group of units.

If K|k is a Galois extension, then we denote the decomposition group and inertia group of the Galois group G(K|k) with respect to \mathfrak{p} by $G_{\mathfrak{p}}(K|k)$ and $T_{\mathfrak{p}}(K|k)$, respectively. We write $G_{\mathfrak{p}} = G_{\mathfrak{p}}(k) = G_{\mathfrak{p}}(k(p)|k) \cong G(k_{\mathfrak{p}}(p)|k_{\mathfrak{p}})$ and $T_{\mathfrak{p}} = T_{\mathfrak{p}}(k) = T_{\mathfrak{p}}(k(p)|k) \cong T(k_{\mathfrak{p}}(p)|k_{\mathfrak{p}})$; then $G_{\mathfrak{p}}/T_{\mathfrak{p}} = G(k_{\mathfrak{p}}^{nr}(p)|k_{\mathfrak{p}})$, where $k_{\mathfrak{p}}^{nr}(p)$ is the maximal unramified *p*-extension of $k_{\mathfrak{p}}$.

If S = S(k) is a set of primes and k'|k an algebraic extension of k, then we denote the set of primes of k' consisting of all prolongations of S by S(k'). Furthermore,

 k_S is the maximal extension of k which is unramified outside S,

 $k_S(p)$ is the maximal *p*-extension of k which is unramified outside S,

and by $G_S = G_S(k)$ and $G_S(p) = G_S(k)(p)$ we denote the Galois groups $G(k_S|k)$ and $G(k_S(p)|k)$, respectively.

For an arbitrary set S of primes of k we define the Safarevič-Tate groups $\operatorname{III}^{i}(G_{S}(p)) = \operatorname{III}^{i}(G_{S}(p), \mathbb{Z}/p\mathbb{Z})$ and the groups $\operatorname{coker}^{i}(G_{S}(p))$ by the exactness of the sequences

$$0 \longrightarrow \operatorname{III}^{i}(G_{S}(p)) \longrightarrow H^{i}(G_{S}(p)) \longrightarrow \prod_{\mathfrak{p} \in S} H^{i}(G_{\mathfrak{p}}) \longrightarrow \operatorname{coker}^{i}(G_{S}(p)) \longrightarrow 0.$$

Let

$$V_{S}(k) = \ker\left(k^{\times}/k^{\times p} \longrightarrow \prod_{\mathfrak{p} \in S} k_{\mathfrak{p}}^{\times}/k_{\mathfrak{p}}^{\times p} \times \prod_{\mathfrak{p} \notin S} k_{\mathfrak{p}}^{\times}/U_{\mathfrak{p}}k_{\mathfrak{p}}^{\times p}\right),$$

and $\mathbb{B}_{S}(k) = V_{S}(k)^{\vee}$. Observe that when $\mu_{p} \subseteq k$

$$\begin{split} \mathbf{B}_S(k) &= \ker(H^1(G_S(p),\mu_p) \to \prod_{\mathfrak{p} \in S} H^1(G_{\mathfrak{p}},\mu_p))^{\vee} \\ &= (Cl_S(k)/p)(-1) \,. \end{split}$$

Furthermore, we set

$$\delta = \begin{cases} 1, & \mu_p \subseteq k, \\ 0, & \mu_p \not\subseteq k, \end{cases} \quad \text{and} \quad \delta_{\mathfrak{p}} = \begin{cases} 1, & \mu_p \subseteq k_{\mathfrak{p}}, \\ 0, & \mu_p \not\subseteq k_{\mathfrak{p}}. \end{cases}$$

The following primes cannot ramify in a p-extension, and are therefore redundant in S:

- 1. Complex primes.
- 2. Real primes if $p \neq 2$.
- 3. Primes $\mathfrak{p} \nmid p$ with $N(\mathfrak{p}) \not\equiv 1 \mod p$.

Removing all these redundant places from S, we obtain a subset $S_{\min} \subseteq S$ which has the property that

$$G_S(p) = G_{S_{\min}}(p).$$

We need some results on the cohomology of a free product in the following case, see [3] chap.IV: Let $T = \lim_{\lambda \to \lambda} \bar{T}_{\lambda}$, where the sets $\bar{T}_{\lambda} = T_{\lambda} \cup \{*_{\lambda}\}$ are the one-point compactifications of discrete sets T_{λ} . Let $\mathcal{G} = \lim_{\lambda \to \lambda} \mathcal{G}_{\lambda}$ be the projective limit of bundles $\mathcal{G}_{\lambda} = \bigcup_{t_{\lambda} \in T_{\lambda}} G_{t_{\lambda}} \bigcup \{*_{\lambda}\}$, and let $G_t = \lim_{t \to \infty} G_{t_{\lambda}}$. Let A be an abelian torsion group considered as a trivial G-module where $G = \underset{T}{*} \mathcal{G}$. Then there are isomorphisms

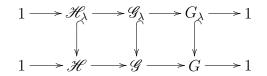
$$H^{i}(G, A) = \lim_{\lambda} \bigoplus_{T_{\lambda}} H^{i}(G_{t_{\lambda}}, A), \quad i \ge 0.$$

We will use the notation

$$\bigoplus_{T}' H^{i}(G_{t}, A) := \varinjlim_{\lambda} \bigoplus_{T_{\lambda}} H^{i}(G_{t_{\lambda}}, A).$$

We need the following

Lemma 1.1 Let



be an exact and commutative diagram of pro-p-groups and assume that $\mathscr H$ is a free pro-p-product of the form

$$\underset{\lambda \in S \ \sigma \in G \mid G_{\lambda}}{\ast} \mathscr{H}_{\lambda}^{\sigma} \xrightarrow{\sim} \mathscr{H},$$

where S is a profinite set, $\mathscr{H}^{\sigma}_{\lambda}$ is a closed subgroup of \mathscr{H} , which is conjugated to \mathscr{H}_{λ} under an arbitrary extension of σ to \mathscr{G} , and $G|G_{\lambda}$ is a complete system of representatives of G_{λ} in G. Assume that $cd_p \ \mathscr{H}_{\lambda} \leq 1$ and $cd_p \ G_{\lambda} \leq 1$ for all $\lambda \in S$. Then there is an exact sequence

$$\begin{split} 0 &\to H^1(G, A) \to H^1(\mathscr{G}, A) \to \bigoplus_{\lambda}' H^1(\mathscr{H}_{\lambda}, A)^{G_{\lambda}} \\ &\to H^2(G, A) \to H^2(\mathscr{G}, A) \to \bigoplus_{\lambda}' H^2(\mathscr{G}_{\lambda}, A) \to H^3(G, A) \to H^3(\mathscr{G}, A) \to 0, \end{split}$$

where A is a torsion group (considered as a \mathcal{G} -module with trivial action), and

- (i) $cd_p \mathscr{G} \leq 2$ implies $cd_p G \leq 3$, (ii) $cd_p \ G \leq 2$ implies $cd_p \ \mathscr{G} \leq 2$.

Proof: Using the results on the cohomology of free products, see [3] chap.IV, we obtain

$$H^{i}(G, H^{j}(\mathscr{H}, A)) \cong \bigoplus_{\lambda \in S}' H^{i}(G_{\lambda}, H^{j}(\mathscr{H}_{\lambda}, A)), \qquad j \ge 1.$$

These groups can be non-trivial only for i = 0, 1 and j = 1. Furthermore, we have

$$H^1(G_{\lambda}, H^1(\mathscr{H}_{\lambda}, A)) \cong H^2(\mathscr{G}_{\lambda}, A).$$

Since $cd_p \mathscr{H} \leq 1$, the Hochschild-Serre spectral sequence gives the result. \Box

Corollary 1.2 Let k be number field and p prime number. Assume that k is totally imaginary if p = 2. Let $T \supseteq S$ be non-empty sets of primes of k. Assume that $S_p \subseteq T$. Assume further that we have a free product decomposition

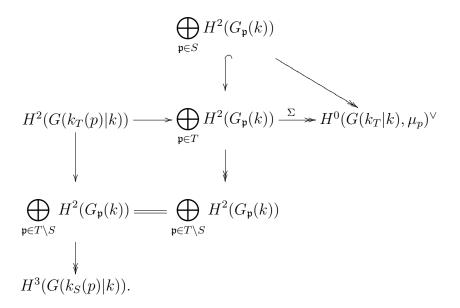
$$\underset{\mathfrak{p}\in(T\setminus S)(k_S(p))}{\ast} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_T(p)|k_S(p)),$$

and that $(k_S(p))_{\mathfrak{p}} = k_{\mathfrak{p}}^{nr}(p)$ for all $\mathfrak{p} \in (T\setminus S)_{\min}$. Then
 $cd_p \ G(k_S(p)|k) \leq 2.$

Proof: Since

$$cd_p T_{\mathfrak{p}}(k) = 1, \quad cd_p G_{\mathfrak{p}}(k)/T_{\mathfrak{p}}(k) = 1, \quad cd_p G(k_T(p)|k) \le 2,$$

we obtain from lemma (1.1), that the vertical left sequence in the commutative diagram



is exact. By the theorem of Poitou-Tate, see [3] (8.6.13), the horizontal sequence is exact. We obtain $H^3(G(k_S(p)|k)) = 0$, hence $cd_p \ G(k_S(p)|k) \leq 2$. \Box

Proposition 1.3 Let p be a prime number and let k be the number field.

(i) For an arbitrary set S of primes of k there is a canonical exact and commutative diagram

$$\begin{split} H^1(G(k(p)|k)) & \longrightarrow \bigoplus_{\mathfrak{p} \notin S} H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k)} \longrightarrow \mathcal{B}_S(k) \longrightarrow 0 \\ & & & & & \\ & & & & & \\ & & & & & \\ H^1(G(k(p)|k)) \longrightarrow H^1(G(k(p)|k_S(p)))^{G_S(p)} \longrightarrow \mathrm{III}^2(G_S(p)) \longrightarrow 0. \end{split}$$

(ii) Let $T \supseteq S$ be sets of primes of k. Assume that

$$\lim_{k'\subseteq k_S(p)} \mathbb{B}_S(k') = 0\,,$$

where k' runs through the finite extensions of k inside $k_S(p)$. Then the canonical map

$$H^{1}(G(k_{T}(p)|k_{S}(p))) \xrightarrow{\sim} \bigoplus_{\mathfrak{p}\in T\setminus S(k_{S}(p))}' H^{1}(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k_{S}(p))}$$

is an isomorphism.

(iii) Let $T \supseteq S \supseteq S_p \cup S_\infty$ be sets of primes of k. Then the canonical map

$$H^1(G(k_T(p)|k_S(p))) \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \in T \setminus S(k_S(p))}' H^1(T_\mathfrak{p}(k))$$

is an isomorphism.

Proof: Let $T_S = G(k(p)|k_S(p))$. We consider the group extension

$$1 \longrightarrow T_S \longrightarrow G_k(p) \longrightarrow G_S(p) \longrightarrow 1 .$$

From the commutative exact diagram

where the right-hand vertical map is injective by [3](9.1.10) and (10.4.8), we obtain the exact sequence

$$H^1(G_k(p)) \longrightarrow H^1(T_S)^{G_S(p)} \longrightarrow \operatorname{III}^2(G_S(p)) \longrightarrow 0.$$

Furthermore, we consider the commutative exact diagram

The row in the middle is exact by the Poitou-Tate theorem, see [3] (8.6.10) and (9.1.10), and the upper map is injective by definition of the group T_S . The exactness of the bottom row follows from the definition of $\mathbb{B}_S(k) = (V_S(k))^{\vee}$ and from $H^1_{nr}(G_p)^{\vee} = k_p^{\times}/U_p k_p^{\times p}$. This diagram and the exact sequence above imply that the commutative diagram

$$\begin{split} H^1(G_k(p)) & \longrightarrow \bigoplus_{\mathfrak{p} \notin S} H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k)} & \longrightarrow \mathcal{B}_S(k) & \longrightarrow 0 \\ & & & & \\ & & & & \\ & & & & \\ H^1(G_k(p)) & \longrightarrow H^1(T_S)^{G_S(p)} & \longrightarrow \mathrm{III}^2(G_S(p)) & \longrightarrow 0 \end{split}$$

is exact. This finishes the proof of (i).

Now let $T \supseteq S$ be sets of primes of k. Using (i) and passing to limit, we obtain

$$H^1(G(k(p)|k_S(p))) \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \notin S(k_S(p))}' H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k_S(p))},$$

as $\lim_{k' \subseteq k_S(p)} \mathbb{B}_S(k') = 0$ by assumption. From this assumption follows that $\lim_{k' \subseteq k_S(p)} \mathbb{B}_T(k') = 0$, as $\mathbb{B}_S(k')$ surjects onto $\mathbb{B}_T(k')$. Thus we also obtain an isomorphism

$$H^{1}(G(k(p)|k_{T}(p)))^{G(k_{T}(p)|k_{S}(p))} \xrightarrow{\sim} \bigoplus_{\mathfrak{p}\notin T(k_{S}(p))} H^{1}(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k_{S}(p))}$$

Now the the exact sequence

$$0 \to H^1(G(k_T(p)|k_S(p))) \to H^1(G(k(p)|k_S(p))) \to H^1(G(k(p)|k_T(p)))^{G(k_T(p)|k_S(p))}.$$

implies assertion (ii).

If $S_{\infty} \cup S_p \subseteq S$, then we have an isomorphism of finite groups

$$\operatorname{III}^2(G_S(p)) \cong \operatorname{E}_S(k)$$

by [3] (10.4.8) and (8.6.9). Therefore the map

$$H^1(G(k(p)|k_S(p)))^{G_S(k)(p)} \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \notin S(k)} H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k)},$$

is an isomorphism. Passing to the limit and observing that $G_{\mathfrak{p}}(k_S(p)) = T_{\mathfrak{p}}(k)$ for $\mathfrak{p} \notin S$ as $k_S(p)$ contains the cyclotomic \mathbb{Z}_p -extension, we obtain

$$H^1(G(k(p)|k_S(p))) \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \notin S(k_S(p))}' H^1(T_{\mathfrak{p}}(k)).$$

By the same argument as in (ii), the last assertion follows.

Proposition 1.4 Let p be a prime number, k a the number field and $T \supseteq S$ sets of primes of k. Assume that

- (i) $\varinjlim_{k' \subseteq k_S(p)} \mathbb{B}_S(k') = 0,$
- (ii) the local extensions $(k_S(p))_{\mathfrak{p}}|k_{\mathfrak{p}}$ are infinite for all $\mathfrak{p} \in T_{\min} \setminus S_{\infty}$, and, if p = 2, then $(k_S(2))_{\mathfrak{p}} = \mathbb{C}$ for all $\mathfrak{p} \in S \cap S_{\infty}$.

Then there is a free product decomposition

$$\underset{\mathfrak{p}\in T\setminus S(k_S(p))}{\ast} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_T(p)|k_S(p)).$$

Proof: We may assume that $T = T_{\min}$. Since $(k_S(p))_{\mathfrak{p}}|k_{\mathfrak{p}}$ is infinite for a prime $\mathfrak{p} \in T \setminus (S \cup S_{\infty})$, the field $k_S(p)_{\mathfrak{p}}$ is the maximal unramified *p*-extension of $k_{\mathfrak{p}}$. Using proposition (1.3)(ii), it follows that

$$H^1(G(k_T(p)|k_S(p))) \xrightarrow{\sim} \bigoplus_{\mathfrak{p}\in T\setminus S(k_S(p))}' H^1(T_\mathfrak{p}(k)).$$

Now we consider the exact sequence

$$0 \longrightarrow \operatorname{III}^2(G_T(k')(p)) \longrightarrow H^2(G(k_T(p)|k')) \longrightarrow \bigoplus_{\mathfrak{p} \in T(k')} H^2(G_{\mathfrak{p}}(k')),$$

where k' is a finite extension of k inside $k_S(p)$. Passing to the limit, we obtain

$$0 \longrightarrow \varinjlim_{k' \subseteq k_S(p)} \operatorname{III}^2(G_T(k')(p)) \longrightarrow H^2(G(k_T(p)|k_S(p))) \longrightarrow \bigoplus_{\mathfrak{p} \in T(k_S(p))}' H^2(G_{\mathfrak{p}}(k_S(p))).$$

By proposition (1.3)(i), we have an injection

$$\mathrm{III}^2(G_T(k')(p)) \hookrightarrow \mathrm{E}_T(k')$$

and the group on the right-hand side is an homomorphic image of $\mathbb{B}_{S}(k')$. Since $\lim_{k' \subseteq k_{S}(p)} \mathbb{B}_{S}(k')$ is trivial by assumption, it follows that

$$\lim_{k' \subseteq k_S(p)} \operatorname{III}^2(G_T(k')(p)) = 0.$$

Furthermore, $H^2(G_{\mathfrak{p}}(k_S(p))) \cong H^2(G(k_{\mathfrak{p}}(p)|k_S(p)_{\mathfrak{p}})) = 0$ for all $\mathfrak{p} \in T \setminus S_{\infty}$ as $k_S(p)_{\mathfrak{p}}|k_{\mathfrak{p}}$ is infinite, see [3] (7.1.8)(i), (7.5.8). It follows that

$$H^{2}(G(k_{T}(p)|k_{S}(p))) \longrightarrow \bigoplus_{\mathfrak{p}\in(S_{\infty}\cap(T\setminus S))(k_{S}(p))}' H^{2}(T_{\mathfrak{p}}(k)) = \bigoplus_{\mathfrak{p}\in T\setminus S(k_{S}(p))}' H^{2}(T_{\mathfrak{p}}(k))$$

is injective. Thus we proved that

$$H^{i}(G(k_{T}(p)|k_{S}(p))) \longrightarrow H^{i}(\underset{\mathfrak{p}\in T\setminus S(k_{S}(p))}{\star}T_{\mathfrak{p}}(k))$$

is an isomorphism for i = 1 and injective for i = 2. By [3](1.6.15), the desired result follows.

2 The $K(\pi, 1)$ -property

A locally noetherian scheme Y is called a $K(\pi, 1)$ for a prime number p if the higher homotopy groups of the p-completion $Y_{et}^{(p)}$ of its etale homotopy type Y_{et} vanish, see [5] §2.

Let p a fixed prime number. Let k be a number field and S a finite set of nonarchimedean primes of k. We assume that k is totally imaginary if p = 2. For the scheme $X = Spec(\mathcal{O}_k) \backslash S$ we have

$$G_S(p) \cong \pi_1((Spec(\mathcal{O}_k) \backslash S)_{et}^{(p)}),$$

where we omit the base point. We consider the property

$$\mathcal{K}(\mathcal{O}_k, S) := Spec(\mathcal{O}_k) \backslash S$$
 is a $K(\pi, 1)$ for p .

If S is infinite, one can extend the notion of being a $K(\pi, 1)$ for p in an obvious manner, see [5] §4. In the following we write $H^i_{et}(Spec(\mathcal{O}_k)\backslash S)$ for the group $H^i_{et}(Spec(\mathcal{O}_k)\backslash S, \mathbb{Z}/p\mathbb{Z})$ and $h^i(Spec(\mathcal{O}_k)\backslash S) = \dim_{\mathbb{F}_p} H^i_{et}(Spec(\mathcal{O}_k)\backslash S)$ **Proposition 2.1** Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let S be a non-empty set of non-archimedean primes of k. Then the following assertions are equivalent:

- (i) $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p.
- (ii) $cd_p G_S(p) \leq 2$ and the canonical map

$$H^2(G_S(p)) \hookrightarrow H^2_{et}(Spec(\mathcal{O}_k) \backslash S)$$

is surjective.

- (iii) $cd_p G_S(p) \leq 2$, $\operatorname{III}^2(G_S(p)) \cong \operatorname{E}_S(k)$ and $\dim_{\mathbb{F}_p} \operatorname{coker}^2(G_S(p)) = \delta$.
- (iv) $cd_p G_S(p) \leq 2$, $H^1(G(k_T(p)|k_S(p)))^{G_S(p)} \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \in T \setminus S} H^1(T_\mathfrak{p}(k))^{G_\mathfrak{p}(k)}$ for some set T containing $S \cup S_p$ and $\dim_{\mathbb{F}_p} \operatorname{coker}^2(G_S(p)) = \delta$.

If S is finite, then these assertions are equivalent to

(v)
$$cd_p G_S(p) \le 2$$
 and $\chi(G_S(p)) = r_1(k) + r_2(k) - \sum_{\mathfrak{p} \in S \cap S_p} [k_\mathfrak{p} : \mathbb{Q}_p].$

Proof: For the equivalence (i) \Leftrightarrow (ii) see [5] cor. 3.5. In order to show (ii) \Leftrightarrow (iii) we only have to consider the commutative and exact diagram

where $\dim_{\mathbb{F}_p} H^3_{et}(Spec(\mathcal{O}_k))) = \delta$, see [5] thm.3.4 and thm.3.6.

By (1.3)(i), the surjectivity of the map $\operatorname{III}^2(G_S(p)) \to \operatorname{E}_S(k)$ is equivalent to

$$H^1(G(k(p)|k_S(p)))^{G_S(p)} \xrightarrow{\sim} \bigoplus_{\mathfrak{p} \notin S} H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k)}$$

Using $T \supseteq S_p$ and (1.3)(iii), we obtain

$$H^1(G(k(p)|k_T(p)))^{G_T(p)} \longrightarrow \bigoplus_{\mathfrak{p} \notin T} H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k)}.$$

Therefore the commutative and exact diagram

shows (iii) \Leftrightarrow (iv).

Now let S be finite. By [5] prop.3.2,

$$\chi(Spec(\mathcal{O}_k)\backslash S) := \sum_i (-1)^i h^i(Spec(\mathcal{O}_k)\backslash S)$$
$$= r_1(k) + r_2(k) - \sum_{\mathfrak{p} \in S \cap S_p} [k_\mathfrak{p} : \mathbb{Q}_p].$$

Since $cd_p G_S(p) \leq 2$, we have

$$\chi(G_S(p)) = \sum_{i=0}^{2} (-1)^i h^i(G_S(p))$$

= $\chi(Spec(\mathcal{O}_k) \setminus S) + h^2(G_S(p)) - h^2(Spec(\mathcal{O}_k) \setminus S).$

This shows (ii) \Leftrightarrow (v).

Remarks:

(i) If S contains S_p , then $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p. This follows from the equivalence (i) \Leftrightarrow (iv) of proposition (2.1) and [3] (8.3.18),(10.4.9), see also [5] prop.2.3

(ii) Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let S be a non-empty finite set of non-archimedean primes of k. Assume that $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p. Then the sequence

$$0 \longrightarrow \mathcal{B}_{S}(k) \longrightarrow H^{2}(G_{S}(p)) \longrightarrow \prod_{\mathfrak{p} \in S} H^{2}(G_{\mathfrak{p}}) \xrightarrow{\Sigma} H^{0}(G_{k}, \mu_{p})^{\vee} \longrightarrow 0$$

is exact, where Σ is the dual map of the diagonal embedding

$$H^0(G_k,\mu_p) \to \prod_{\mathfrak{p}\in S} H^0(G_{k\mathfrak{p}},\mu_p) \cong \prod_{\mathfrak{p}\in S} H^2(G_{\mathfrak{p}})^{\vee}$$

This follows from $(2.1)(i) \Leftrightarrow (iii)$ and the commutative and exact diagram

$$\begin{split} H^2(G_S(p)) & \longrightarrow \prod_{\mathfrak{p} \in S} H^2(G_{\mathfrak{p}}(k)) & \longrightarrow \operatorname{coker}^2(G_S(p)) & \longrightarrow 0 \\ & & & & & & \\ & & & & & & \\ H^2(G_{S \cup S_p}(p)) & \longrightarrow \prod_{\mathfrak{p} \in S \cup S_p} H^2(G_{\mathfrak{p}}(k)) & \xrightarrow{\Sigma} H^0(G_k, \mu_p)^{\vee} & \longrightarrow 0, \end{split}$$

where the lower exact sequence is part of the 9-term exact sequence of the theorem of Poitou-Tate.

The following proposition is taken from [5] cor.2.2, and the proof presented here from [1].

Proposition 2.2 Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let S be a non-empty finite set of non-archimedean primes of k. Let k'|k be a finite extension inside $k_S(p)$. Then the following assertions are equivalent:

- (i) $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p.
- (ii) $Spec(\mathcal{O}_{k'}) \setminus S$ is a $K(\pi, 1)$ for p.

Proof: Let $R(k, S) = r_1(k) + r_2(k) - \sum_{\mathfrak{p} \in S \cap S_p} [k_\mathfrak{p} : \mathbb{Q}_p]$. Since p is odd or k is totally imaginary, we have R(k', S) = [k' : k]R(k, S). Therefore, using the equivalence (i) \Leftrightarrow (v) of proposition (2.1) and $\chi(G_S(k')(p)) = \chi(G_S(k)(p))[k':k]$, assertion (i) implies (ii). Conversely, let k''|k be a finite extension inside $k_S(p)$ containing k'. Then, using the implication (i) \Rightarrow (ii), we obtain

$$\chi_2(G_S(k'')(p)) = \chi(G_S(k'')(p))$$

$$= \chi(Spec(\mathcal{O}_{k''})\backslash S)$$

$$= [k'':k]\chi(Spec(\mathcal{O}_k)\backslash S)$$

$$= [k'':k]\Big(\chi_2(G_S(k)(p)) + h^2(G_S(k)(p)) - h^2(Spec(\mathcal{O}_k)\backslash S)\Big)$$

$$\geq [k'':k]\chi_2(G_S(k)(p))$$

Using [3] (3.3.15) equality follows, and so $h^2(G_S(k)(p)) = h^2(Spec(\mathcal{O}_k) \setminus S)$, and by [3] (3.3.16), $\operatorname{cd}_p G_S(k)(p) \leq 2$.

The following proposition is taken from [5] thm.9.1.

Proposition 2.3 Let p be a prime number and k a number field where p is odd or k is totally imaginary. Assume that $Spec(\mathcal{O}_k)\backslash S$ is a $K(\pi, 1)$ for p and $G_S(p) \neq 1$. Then $k_S(p)$ realizes the maximal p-extension $k_q(p)$ of k_q where $q \in S_{\min}\backslash S_p$.

Proof: We have only to show that \mathfrak{q} ramifies in $k_S(p)|k$. Suppose not, then $k_S(p) = k_{S'}(p)$, where $S' = S \setminus \{\mathfrak{q}\}$. By proposition (2.1)(i) \Leftrightarrow (v), it follows that $Spec(\mathcal{O}_k) \setminus S'$ is a $K(\pi, 1)$ for p, and so $\operatorname{III}^2(G_{S'}(p)) \xrightarrow{\sim} \mathbb{B}_{S'}(k)$. The commutative and exact diagram

$$\begin{array}{cccc} 0 \longrightarrow \mathcal{B}_{S'}(k) \longrightarrow H^2(G_{S'}(p)) \longrightarrow \prod_{\mathfrak{p} \in S'} H^2(G_{\mathfrak{p}}(k)) \\ & & & \\ 0 \longrightarrow \mathcal{B}_S(k) \longrightarrow H^2(G_S(p)) \longrightarrow \prod_{\mathfrak{p} \in S} H^2(G_{\mathfrak{p}}(k)), \end{array}$$

shows that $\mathbb{B}_{S'}(k) \cong \mathbb{B}_{S}(k)$. Using [3] (10.7.12), it follows that $h^{1}(G_{S}(p)) = h^{1}(G_{S'}(p)) + 1$ which is a contradiction.

Let $T \supseteq S$ be sets of nonarchimedean primes of k. We consider the properties

$$\mathcal{L}_{0}(k, S, T): (k_{S}(p))_{\mathfrak{p}} \neq k_{\mathfrak{p}} \quad \text{for all } \mathfrak{p} \in (T \setminus S) \cap S_{p},$$

$$\mathcal{L}_{1}(k, S, T): (k_{S}(p))_{\mathfrak{q}} \neq k_{\mathfrak{q}} \quad \text{for all } \mathfrak{q} \in (T \setminus (S \cup S_{p}))_{\min},$$

$$\mathcal{R}(k, S, T): \underset{\mathfrak{p} \in T \setminus S(k_{S}(p))}{*} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_{T}(p)|k_{S}(p)).$$

Using the subgroup theorem for free products, see [3](4.2.1), one has

$$\mathcal{R}(k, S, T) \Rightarrow (\mathcal{R}(k, U, T) \text{ and } \mathcal{R}(k, S, U)),$$

where $T \supseteq U \supseteq S$.

If $T \cap S_p = \emptyset$, then one part of the following theorem is also proved in [5] prop.8.1 and cor.8.2.

Theorem 2.4 (Reducing and enlarging the set of primes) Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let $T \supseteq S$

be finite sets of nonarchimedean primes of k. Assume that $\mathcal{L}_0(k, S, T)$ holds. Then we have the following assertions are equivalent:

(i) $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p and $(k_S(p))_{\mathfrak{q}} \neq k_{\mathfrak{q}}$ for all $\mathfrak{q} \in (T \setminus (S \cup S_p))_{\min}$.

(ii) $Spec(\mathcal{O}_k) \setminus T$ is a $K(\pi, 1)$ for p and

$$\underset{\mathbf{p}\in T\setminus S(k_S(p))}{\ast} T_{\mathbf{p}}(k) \xrightarrow{\sim} G(k_T(p)|k_S(p)).$$

The implication (i) \Rightarrow (ii) also holds when S or T is infinite.

Proof: Assume that $\mathcal{L}_1(k, S, T)$ and $\mathcal{K}(\mathcal{O}_k, S)$ holds. We may further assume that $(T \setminus S)_{\min} \neq \emptyset$; in particular, $G_S(p) \neq 1$. By proposition (2.2), it follows that $\mathcal{K}(\mathcal{O}_{k'}, S)$ for all finite extensions k'|k inside $k_S(p)$. Thus, using proposition (2.1) (i) \Leftrightarrow (iii),

$$\lim_{k'\subseteq k_S(p)} \mathbb{E}_S(k') = \lim_{k'\subseteq k_S(p)} \mathrm{III}^2(G_S(k')(p)) \subseteq \lim_{k'\subseteq k_S(p)} H^2(G_S(k')(p)) = 0.$$

Using proposition (2.3) and $\mathcal{L}_i(k, S, T)$, i = 0, 1, we see that $(k_S(p))_{\mathfrak{q}} \neq k_{\mathfrak{q}}$ for all $\mathfrak{q} \in T_{\min}$. By proposition (1.4), it follows that $\mathcal{R}(k, S, T)$ holds. The spectral sequence

$$H^{i}(G_{S}(p), H^{j}(G(k_{T}(p)|k_{S}(p))) \Rightarrow H^{i+j}(G_{T}((p)))$$

now shows that $cd_{\mathfrak{p}} G_T(p) \leq 2$. Consider the commutative and exact diagram

$$\bigoplus_{\mathfrak{p}\in T\setminus S} H^1(T_\mathfrak{p}(k))^{G_\mathfrak{p}(k)} \longrightarrow \bigoplus_{\mathfrak{p}\notin S} H^1(T_\mathfrak{p}(k))^{G_\mathfrak{p}(k)} \longrightarrow \bigoplus_{\mathfrak{p}\notin T} H^1(T_\mathfrak{p}(k))^{G_\mathfrak{p}(k)}$$

$$\uparrow^{\cong} \qquad \qquad \uparrow^{\operatorname{res}} \qquad \qquad \uparrow^{\operatorname{res}} \qquad \qquad \uparrow^{\operatorname{res}} \qquad \qquad \uparrow^{\operatorname{res}} H^1(k_T(p)|k_S(p))^{G_S(p)} \longrightarrow H^1(k(p)|k_T(p))^{G_T(p)},$$

Since $\mathcal{K}(\mathcal{O}_k, S)$ holds, the map res is an isomorphism, and we obtain

$$H^1(k(p)|k_T(p))^{G_T(p)} \longrightarrow \bigoplus_{\mathfrak{p} \notin T} H^1(T_{\mathfrak{p}}(k))^{G_{\mathfrak{p}}(k)}.$$

Using proposition (2.1)(i) \Leftrightarrow (iv), it follows that $\mathcal{K}(\mathcal{O}_k, T)$ holds.

Conversely, assume that $\mathcal{K}(\mathcal{O}_k, T)$ and $\mathcal{R}(k, S, T)$ hold. Then, by lemma (1.1), we obtain $cd_p G_S(p) \leq 3$. It follows exactly in the same way as in the proof of corollary (1.2), using the remark (ii), that $cd_p G_S(p) \leq 2$. Furthermore, since

 $cd_p G_S(p) \leq 2$, $cd_p G_T(p) \leq 2$ and $\mathcal{R}(k, S, T)$ holds, we can apply lemma (1.1) and obtain

$$\begin{split} \chi(G_T(p)) - \chi(G_S(p)) &= \sum_{\mathfrak{p} \in (T \setminus S)_{\min}} \left(\dim_{\mathbb{F}_p} H^1(T_\mathfrak{p}(k))^{G_\mathfrak{p}(k)} - \dim_{\mathbb{F}_p} H^2(G_\mathfrak{p}(k)) \right) \\ &= \sum_{\mathfrak{p} \in (T \setminus S) \cap S_p} \left(\dim_{\mathbb{F}_p} H^1(T_\mathfrak{p}(k))^{G_\mathfrak{p}(k)} - \dim_{\mathbb{F}_p} H^2(G_\mathfrak{p}(k)) \right) \\ &= \sum_{\mathfrak{p} \in (T \setminus S) \cap S_p} [k_\mathfrak{p} : \mathbb{Q}_p] \end{split}$$

Using proposition $(2.1)(i) \Leftrightarrow (v)$, we see that $\mathcal{K}(\mathcal{O}_k, S)$ holds.

Let $\mathbf{q} \in (T \setminus (S \cup S_p))_{\min}$. By proposition (2.3), $G_{\mathbf{q}}(k)$ is a subgroup of $G(k_T(p)|k)$. Since $\operatorname{cd}_p G_{\mathbf{q}}(k) = 2$, it can not be a subgroup of the free pro-p group $G(k_T(p)|k_S(p))$. Therefore $G_{\mathbf{q}}(k_S(p)|k)$ is non-trivial, and so $\mathcal{L}_1(k, S, T)$ holds.

Using remark (i), theorem (2.4) in the case $T = S \cup S_p$, and

$$\mathcal{R}(k, S, S \cup S_p) \Rightarrow \mathcal{R}(k, S \cup W, S \cup S_p)$$

for $W \subseteq S_p$, we obtain

Corollary 2.5 Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let S be a finite set of nonarchimedean primes of k with $S \cap S_p = \emptyset$ and $W \subseteq S_p$. Assume that $(k_S(p))_{\mathfrak{p}} \neq k_{\mathfrak{p}}$ for $\mathfrak{p} \in S_p$. Then

(i)

$$\mathcal{K}(\mathcal{O}_k, S) \Leftrightarrow \mathcal{R}(k, S, S \cup S_p).$$

(ii) Assume that $\mathcal{K}(\mathcal{O}_k, S)$ holds. Then also $\mathcal{K}(\mathcal{O}_k, S \cup W)$ holds, and in particular,

$$\operatorname{cd}_p G(k_{W\cup S}(p)|k) = 2.$$

Corollary 2.6 Let p be a prime number and k a number field where p is odd or k is totally imaginary. Let S be a finite set of nonarchimedean primes of kwith $Spec(\mathcal{O}_k) \setminus S$ is a $K(\pi, 1)$ for p. Then there exists a set T of nonarchimedean primes with $T \cap S = \emptyset$ and $\delta(T) = 1$, such that there are free product decompositions

(i)

$$\underset{\mathfrak{p}\in T(k_S(p))}{\ast} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_{T\cup S}(p)|k_S(p)),$$

(ii)

$$\underset{\mathfrak{p}\notin(T\cup S)(k_{T\cup S}(p))}{\ast} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k(p)|k_{T\cup S}(p)).$$

Proof: Since $k_S(p)|k$ is infinite, it follows from Čebotarev density theorem that the set

 $V = \{ \mathbf{q} \text{ a prime of } k \mid \mathbf{q} \text{ is completely decomposed in } k_S(p) \mid k \}$

has density zero. Let T be the complement of the set $S_{\infty} \cup S \cup V$, hence $\delta(T) = 1$. By theorem (2.4), we obtain that $Spec(\mathcal{O}_k) \setminus (T \cup S)$ is a $K(\pi, 1)$ for p and that there is an isomorphism

$$\underset{\mathfrak{p}\in (T\cup S)(k_S(p))}{\ast} T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_{T\cup S}(p)|k_S(p)).$$

Since $\delta(T \cup S) = 1$, it follows from [3] (10.5.9) that we have the desired decomposition (ii).

Remarks: (1) If S contains S_p , then the corollary above is well-known, see [3] (10.5.1): one can take for T all primes not in S.

(2) It is easy to see, that the corollary above implies that the pro-*p*-group $G(k(p)|k_S(p))$ is minimal generated by a system of minimal generators of the inertia groups $T_{\mathfrak{p}}(k), \mathfrak{p} \notin S$, with defining relations given by the local relations of the groups $G_{\mathfrak{p}}(k), \mathfrak{p} \in V$.

Using a result of A.Schmidt we will give another application of theorem (2.4). We start with a lemma and introduce the following notation: For a prime number q with $q \equiv 1 \mod p$ let $L_{q,p}$ be the maximal p-extension of \mathbb{Q} inside $\mathbb{Q}(\zeta_q)$, where ζ_q is a primitive q-th root of unity.

Lemma 2.7 Let p be a prime number and k a number field.

(i) Let $r \in \mathbb{N}$. Then the set $M_r(k)$ of prime numbers q which are completely decomposed in k and for which the congruences

$$q \equiv 1 \mod p^{2r}$$
 and $p^{\frac{q-1}{p^r}} \not\equiv 1 \mod q$

hold has density $1/[k(\zeta_{p^{2r}}):\mathbb{Q}] - 1/[k(\zeta_{p^{2r}}, \sqrt[p^r]{p}):\mathbb{Q}].$

(ii) The set of prime numbers q ≡ 1 mod p which are completely decomposed in k and which have the property that (L_{q,p} k)_p ≠ k_p for all p ∈ S_p has positive density.

Proof: (i) Let q be a prime number which is completely decomposed in $k(\zeta_{p^{2r}})$; in particular, we have $q \equiv 1 \mod p^{2r}$. Let \mathfrak{q} be a prime of $k(\zeta_{p^{2r}})$ above q. Then

$$p^{\frac{N(\mathfrak{q})-1}{p^r}} \equiv 1 \mod \mathfrak{q}, \quad \text{i.e.} \ (\sqrt[p^r]{p})^{N(\mathfrak{q})} \equiv (\sqrt[p^r]{p}) \mod \mathfrak{q},$$

if and only if \mathfrak{q} is completely decomposed in $k(\zeta_{p^{2r}}, \sqrt[p^r]{p}))$. Therefore the density of the set

 $\{q \text{ is completely decomposed in } k, q \equiv 1 \mod p^{2r}, p^{\frac{q-1}{p^r}} \equiv 1 \mod q\}$

is equal to $1/[k(\zeta_{p^{2r}}):\mathbb{Q}] \cdot 1/[k(\zeta_{p^{2r}}, \sqrt[p^r]{p}):k(\zeta_{p^{2r}})]$, and the set $M_r(k)$ has density $1/[k(\zeta_{p^{2r}}):\mathbb{Q}] \cdot (1-1/[k(\zeta_{p^{2r}}, \sqrt[p^r]{p}):k(\zeta_{p^{2r}})]).$

(ii) Let $r \in \mathbb{N}$ be big enough such that $\sqrt[p]{p} \notin k(\zeta_{p^{2r}})$ and $p^r > [k : \mathbb{Q}]$. Then, by (i), the set $M_r(k)$ has positive density. Obviously, if $q \equiv 1 \mod p^{2r}$ and $p^{\frac{q-1}{p^r}} \not\equiv 1 \mod q$, then the local unramified extension $(L_{q,p})_p |\mathbb{Q}_p$ has degree at least p^r . Therefore $(L_{q,p} k)_p$ is a non-trivial unramified extension of k_p for $\mathfrak{p}|p$.

Proposition 2.8 Let p be a prime number and k a number field where p is odd or k is totally imaginary. Assume that $\mu_p \not\subseteq k$ and $\operatorname{Cl}_k(p) = 0$. Let S be a finite set of nonarchimedean primes of k with $S \cap S_p = \emptyset$ and $W \subseteq S_p$. Let, in addition, T be a set of primes of Dirichlet density $\delta(T) = 1$. Then there exists a finite subset $T_1 \subseteq T$ such that $\mathcal{K}(\mathcal{O}_k, W \cup S \cup T_1)$ holds and

$$\underset{\mathfrak{p}\in(S_p\setminus W)(k_{W\cup S\cup T_1}(p))}{*}T_{\mathfrak{p}}(k) \xrightarrow{\sim} G(k_{S_p\cup S\cup T_1}(p)|k_{W\cup S\cup T_1}(p)).$$

In particular,

$$\operatorname{cd}_p G(k_{W\cup S\cup T_1}(p)|k) = 2.$$

Proof: Obviously we may assume that $T \cap (S_p \cup S_\infty) = \emptyset$ and that the underlying prime numbers of the primes of T are completely decomposed in k. We have to show that there exists a finite subset $T_1 \subseteq T$ such that $(k_{S \cup T_1}(p))_{\mathfrak{p}} \neq k_{\mathfrak{p}}$ for $\mathfrak{p} \in S_p$ and that $\mathcal{K}(\mathcal{O}_k, S \cup T_1)$ holds.

Using lemma (2.7)(ii), there is a prime number q such that $S_q \subseteq T$ and $(k_{S \cup S_q}(p))_{\mathfrak{p}} \neq k_{\mathfrak{p}}$ for $\mathfrak{p} \in S_p$. By a result of A. Schmidt, [5] thm.6.2, we obtain a finite subset $T_1 \subseteq T$ containing S_q with the desired properties.

Remark: The proposition above shows that besides the tame case $(W = \emptyset)$ also in the "mixed case" $(W \neq \emptyset$ and $W \neq S_p)$ we have examples of Galois groups with cohomological dimension equal to 2.

References

[1] Forré, P. Uber pro-p-Erweiterungen algebraischer Zahlkörper mit zahmer Verzweigung. Diplomarbeit, Heidelberg 2008

- [2] Labute, J. Mild Pro-p-Groups and Galois Groups of p-Extensions of Q.
 J. Reine u. Angew. Math. 596 (2006), 155-182
- [3] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields. 2nd edition, Springer 2008
- [4] Schmidt, A. Circular sets of prime numbers and p-extensions of the rationals. J. Reine u. Angew. Math. 596 (2006),115-130
- [5] Schmidt, A. Rings of integers of type $K(\pi, 1)$. Doc. Math. **12** (2007) 441-471
- [6] Schmidt, A. On the $K(\pi, 1)$ -property of rings of integers in the mixed case. Preprint
- [7] Vogel, D. Circular sets of primes of imaginary quadratic number fields. Preprints der Forschergruppe Algebraische Zykel und L-Funktionen. Regensburg/Leipzig Nr.5, 2006. http://www.mathematik.uniregensburg.de/FGAlgZyk

Mathematisches Institut der Universität Heidelberg Im Neuenheimer Feld 288 69120 Heidelberg Germany

e-mail: wingberg@mathi.uni-heidelberg.de