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Abstract. In this paper we study Iwasawa modules arising from Galois cohomology
over general p-adic Lie extensions both in the local and global case. In particular we
calculate their Λ-ranks. Then we apply the results to abelian varieties.

1. Introduction

The Iwasawa theory for an elliptic curve over a Zp-extension of a number field was begun
by B. Mazur ([Ma], 1972). Some years later, M. Harris began the study of the Iwasawa
theory of an elliptic curve over the GL2(Zp)-extension of a number field ([Ha1], 1979).
Let E be an elliptic curve over a number field K without complex multiplication over
K̄ and consider K∞ = K(E[p∞]), the field obtained by adjoining all p-power division
points E[p∞] of E(K̄). By Serre’s theorem [Se2, IV 2.2], after fixing a Zp-basis of the
Tate module TpE, the Galois group G = G(K∞/K) is identified with an open subgroup
of GL2(Zp), so G is a p-adic analytic group of dimension 4. The aim of this paper is
to study Iwasawa modules, i.e. modules over the completed group algebra of G

(1) Λ(G) := lim←−Zp[G/U ],

where U runs over all normal open subgroups of G. While at the moment we restrict to
GL2-extensions, we should point out that most of our results are obtained for general
p-adic analytic extensions K∞ over K.

One of the important Iwasawa modules is the Selmer group defined as follows:

(2) Sel(E/K∞){p} := ker(H1(K∞, E[p∞])→
∏

H1(K∞,v, E)(p)).

Since the cohomology groups have a natural continuous G-action as well as an action
of Zp, the Selmer group is a discrete Λ(G)-module. Let S = S(K) be a finite set of
places of K such that S contains all places above p and ∞ and all places where E
has bad reduction. Denote by KS the maximal S-unramified extension of K and write
GS(K∞) = Gal(KS/K∞). Then the Selmer group is also given by the following exact
sequence

(3) 0→ Sel(E/K∞){p} → H1(GS(K∞), E[p∞])→ lim−→
n

⊕
w∈S(Kn)

H1(Kn,w, E)(p).

The vanishing of H2(GS(K∞), E[p∞]), which immediately follows from the theorem of
Iwasawa on the weak Leopoldt conjecture ([NSW, 10.3.25]), will allow us to obtain an
unconditional result on the Λ(G)-(co)rank of the middle term. Our main concern is
with the (co)rank of the Selmer group over K∞ and there is a basic conjecture on this
rank (Conjecture 7.4, also [CH, Conjecture 2.4]), but at this moment we are unable to
prove this conjecture but have only some inequalities (Propositions 5.1 and 7.3).
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The theory has recently made progress ([CH], [Ho3], [OV], [Su], [Ve1]), in particular
structure theorems of torsion modules recently obtained by O. Venjakob (the p-torsion
part, [Ve1]), S. Howson (the central torsion part, [Ho3]) and by J. Coates-P. Schneider-
R. Sujatha (the general part, [CSS]). In this paper we will calculate the ranks of
some Iwasawa modules arising from cohomology groups and determine their torsion
submodules (see Theorems 3.2, 4.1, 4.3 etc.). We will also calculate the projective
dimensions of certain Selmer groups (see Proposition 5.2 and Theorem 7.5) under the
basic conjecture on the rank of the Selmer group mentioned above. In section 4 we refine
Greenberg’s results on the structure of Galois cohomology groups in local Zp-extensions
(Theorem 4.3).

Iwasawa’s initial work studied certain Galois groups as Γ-modules, where Γ is a Galois
group isomorphic to Zp as a topological group. The section 4 of this paper extends
this case to the cases of general p-adic Lie extensions, and with natural assumptions we
prove analogous results as Iwasawa’s. Some of the results in the section were obtained
by Harris but ours are slightly more general and we hope that our proofs are more
structural by using Poitou-Tate duality.

This article will end with applications to the case of abelian varieties which was our
main motivation of this work.

We will make a full use of the diagram in [OV, Lemma 4.5] , and the language of
homotopy theory of modules, which we will review in the next section. This is a quite
different approach from Harris’ one that uses the common descent diagram [Ma, p. 231]
and an asymptotic formula ([Ha1, Theorem 1.10 and Lemma 3.4.1], but [Ha2, Theorem
1.10] is better), neither of which shall appear in this paper.

2. Prerequisites

Let K be a finite extension of Q and p an odd prime number. Let V be a p-adic
Galois representation of GK , which is unramified except a finite set of primes of K.
For instance V = VpE := TpE ⊗Zp Qp where TpE denotes the Tate module. For such
a V we can take a finite set S of places of K containing each prime above p and
every archimedean place and every place whose inertia group acts nontrivially on V .
Sf (K) denotes a subset of S(K) which consists of all finite places in S(K) and Sp(K)
is {v ∈ Sf (K) : v | p}.
We say that an extension K∞/K is a p-adic Lie extension if it is a Galois extension and
the Galois group Gal(K∞/K) is a compact p-adic Lie group of positive dimension. If
it is a pro-p Lie group, we say K∞/K is a pro-p Lie extension. Throughout this paper,
whenever we consider a p-adic Lie extension K∞ of a number field K, we always assume
that K∞ is contained in KS for some S = S(K) associated to V . The GL2-extension
in the introduction and Zrp-extensions are examples of p-adic Lie extensions.

Let us fix V of dimension dimQp
V = r, take a Galois-invariant Zp-lattice T of V and put

A = V/T . Let K∞ be a p-adic Lie extension of K with Galois group G = G(K∞/K)
contained in Ω, where Ω denotes the maximal S-ramified p-extension of K(A), and
K(A) denotes the extension of K defined by the kernel of the representation ρ : GK →
Aut(T ). Put H = G(Ω/K∞) and G = G(Ω/K). Then we have established the following
( [OV, 4.5]):
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Diagram 2.1.

0 0

JA,K∞

6

= JA,K∞
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#
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- H1(R, A)
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- 0

0

6

0

6

Furthermore, N ab(p)# is a projective Λ(G)-module, hence (N ab(p)#)H a projective
Λ(G)-module, and the latter module is isomorphic to (N ab(p)H)# if the action of H on
A is trivial.

When K is a finite extension of Ql (including the case l = p), we have a similar diagram
for any p-adic Lie extension K∞/K inside an algebraic closure Ω of K.

We will explain the notation as much as necessary for our applications.

(i) For a finitely generated Λ(G)-module M , we defined

(4) M [A] = M# := HomZp,cont(M,A)∨ = M ⊗Zp A
∨.

We recall that Λ[A] is a free Λ-module of rank r.
(ii) X = XA,K∞ = H1(H, A∨).
(iii) Y = YA,K∞ = (I(G)#)H, which has projective dimension≤ 1 ifH2(GS(K∞), A) =

0 since (N ab(p)#)H is a projective Λ(G)-module.
(iv) J = JA,K∞ = ker((Λ(G)#)H → (A∨)H), which has no nonzero torsion submod-

ule.
(v) d = dimFpH

1(G,Fp) ([NSW, 3.9.1]).

Next we recall the language of homotopy theory of modules. Three functors are defined
on the homotopy (stable) category Ho(Λ) of finitely generated Λ-modules, the two of
them we will use here: the loop space functor Ω and the transpose functor D. The
transpose functor satisfies D2 = 1. When two finitely generated Λ-modules M and N
are isomorphic in the category (homotopically isomorphic), we write M ' N .

There is the following important exact sequence:

(5) 0→ E1(DM)→M
φM→ M++ → E2(DM)→ 0.

A finitely generated Λ-module M is called reflexive if the map φM in the sequence (5)
is an isomorphism. It is proven that if Λ has no zero divisors and M is any finitely
generated Λ-module, the set of all torsion elements in M forms a Λ-submodule of M ,
and it is isomorphic to E1(DM) =: torΛ(M). The following result of Jannsen ([Ja1,
2.6]) is of frequent use in the sequel. We simplify the statements for our purpose.
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Proposition 2.2. Let G be a p-adic Lie group of dimension = cdp(G) = n and M a
finitely generated Λ(G)-module, which is finitely generated as a Zp-module of rank r.

(1) If M is finite and nonzero, then Ei(M) = 0 except i 6= n+1 and En+1(M) 6= 0.
(2) If M is a free Zp-module, then Ei(M) = 0 unless i = n and En(M) is a free

Zp-module of rank r and there is an isomorphism En(M)∨ ∼= M ⊗D(p)
n , where

D
(p)
n denotes the p-dualizing module of G ([NSW, p.149]).

Further Notation and Convention: We follow the notations in the paper [OV].
However the assumption on the prime number p was unnecessarily too restrictive there.
At least as long as abelian varieties are treated, the case p = 2 is OK too. In any case
p = 3 has no problem. In general the “Assumption I” put in the next section will be
enough for our applications. For more convenience of the reader, we put a list of the
notations.

(1) For an abelian group A, A[pm] := ker(A
×pm

→ A) and A[p∞] :=
⋃
n≥0A[pn]. µp∞ =

Gm[p∞] where Gm denotes the multiplicative group scheme over Q̄.

(2) For a Zp-module N , N∨ = HomZp,cont(N,Qp /Zp), is the Pontryagin dual of N ,
and for a p-divisible Zp-module, N∗ = lim−→i

Hom(piN,µp∞) = T (N)∨(1), where T (N) =
Hom(Qp /Zp, N) = lim←− piN .

(3) By a Noetherian ring, we mean a left and right Noetherian ring (with a multiplicative
unit). By pdΛ(M) we denote the projective dimension of M . The global dimension of
Λ is denoted by pd(Λ).

(4) Let G be a profinite group and H a closed subgroup of G. For a Λ(H)-module M ,
we define IndHG M := M⊗̂Λ(H)Λ(G) (compact induction), where ⊗̂ denotes completed
tensor product. Also CoindGHM := HomΛ(H)(M,Λ(G)).

(5) Let K be a field of characteristic 0. We write GK for the absolute Galois group
G(K̄/K). For a GK-module A, we use the notation A(K) := H0(G(K̄/K), A).

(6) Let Λ be a ring, and M a Λ-module. Then Ei(M) := ExtiΛ(M,Λ), and in the case
i = 0, we also write M+ := E0(M).

(7) Galois cohomology is always continuous one.

(8) The G-module Qp /Zp denotes an abelian group Qp /Zp on which G acts trivially.

(9) For a finitely generated abelian p-primary group A we denote by Adiv the quotient
of A by its maximal p-divisible subgroup.

3. The Global Case

Let us fix a prime number p, a number field K, V , T and S = S(K) as in the previous
section. For a p-adic Lie extension K∞/K, we write XS = H1(GS(K∞), A)∨ and
Uv = H1(K∞,v, A)∨.

Proposition 3.1. For any p-adic Lie extension K∞/K, XS and
⊕

v∈S(K) IndGv
G Uv

are finitely generated over Λ(G).

Proof: This is immediate from the diagram. Firstly Y is finitely generated since there
is a surjective morphism from a free Λ-module of finite rank. As Λ is Noetherian, XS

is also finitely generated. In the same way Uv is finitely generated over Λ(Gv) and
hence there is a surjective map Λ(Gv)k → Uv. Therefore there is also a surjective map
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Λ(G)k = Λ(G) ⊗Λ(Gv) Λ(Gv)k → Λ(G) ⊗Λ(Gv) Uv. It should be now obvious that the
Λ(G)-module

⊕
v∈S(K) IndGv

G Uv =
⊕

v∈S(K)(Λ(G)⊗Λ(Gv) Uv) is finitely generated over
Λ(G). �

Let us recall the fact that if G is any pro-p group and has no element of order p, then
Λ(G) has no divisors of zero (see [DSMS]). It follows that Λ(G) has a unique quotient
field Q(Λ) (division ring). For any finitely generated module M over such a Λ(G), we
define the rank of M , denoted by rkΛ(M), to be dimQ(Λ)(M ⊗Λ Q(Λ)).

Now we make the following assumption, which we will have to assume at many places.

Assumption I: The prime number p is odd or if p = 2, then all global fields considered
are totally imaginary.

The following is a generalization of the one in the Zp-case ([Gr1, Prop. 3]) to general
pro-p Lie extensions, assuming the above assumption.

Theorem 3.2. Assume the Assumption I. Let K be a number field and A, S as above.
For a pro-p Lie extension K∞/K such that Λ is an integral domain, i.e., has no zero
divisor, we have

(6) rkΛ(H1(GS(K∞), A)∨)− rkΛ(H2(GS(K∞), A)∨) = r2(K)× r
where r is the Zp-corank of A and r2(K) is the number of complex places of K.

Proof: By [Ja1, 5.4],

(7) (N ab(p))H ∼=
⊕

v∈S′∞(K)

IndGv
G Zp

⊕
Λ(G)d−r

′
1−r2−1

where S′∞(K) is the set of real places of K which ramify in K∞ and r′1 = #S′∞(K).
Since G is a pro-p group, Λ(G) is a local ring and any projective module is free. Hence
Nab(p) is a free Λ(G)-module: Nab(p) ∼= Λ(G)s for some s. Then (Nab(p)[A])H ∼=
(Λ(G)s[A])H = Λ(G)rs = (Nab(p))H[A]. Hence from the isomorphism (7), with the
Assumption I, s = d − r2 − 1. From the Diagram 2.1, the result follows. Note
rkΛ(JA,K∞) = r. �

We should also like to consider the inverse limit version of these modules. We write

(8) H i
Iw(K∞,TpA) := lim←−

n,m

H i(GS(Kn), pmA).

Under the Assumption I, H i
Iw(K∞,TpA) = 0 for i > 2 since cdp(GS(Kn)) ≤ 2.

Theorem 3.3. The Λ-modules H i
Iw(K∞,TpA) are finitely generated and

(9) rkΛ(H i
Iw(K∞,TpA)) = rkΛ(H i(GS(K∞), A)∨).

Proof: There is the following spectral sequence due to Jannsen ([Ja2]):

(10) Ep,q2 = Ep(Hq(GS(K∞), A)∨) =⇒ Hp+q
Iw (K∞,TpA).

This gives the following exact sequence:

(11) E1(A(K∞)∨)→ H1
Iw(K∞,TpA)→ E0(H1(GS(K∞), A)∨)→ E2(A(K∞)∨)

But Ei(M) are all torsion modules for i ≥ 1 and any finitely generated Λ-module M
(cf. [OV]). Therefore we obtain

rkΛ(H1(GS(K∞), A)∨) = rkΛ(E0(H1(GS(K∞), A)∨)) = rkΛ(H1
Iw(K∞,TpA)).
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There is a filtration E2
2 ⊂ E2

1 ⊂ E2
0 = E2 such that E2 = E2

0/E
2
1
∼= E0,2, E2

1/E
2
2
∼= E1,1

and E2
2
∼= E1,0. This shows that rkΛ(H2(GS(K∞), A)∨) = rkΛ(H2

Iw(K∞,TpA)). It is
clear that H i

Iw(K∞,TpA) are finitely generated over Λ. �

Remark: The spectral sequence of Jannsen and Proposition 3.3 also holds for any
`-adic local field, hence so does Theorem 3.3 (see Theorem 4.1 below).

By Propositions 3.2 and 3.3, we have

(12) rkΛ(H1
Iw(K∞,TpA))− rkΛ(H2

Iw(K∞,TpA)) = r2(K)× Zp-corank(A).

From Proposition 2.2 and the long exact sequence (11), if dim(G(K∞/k)) ≥ 2, then
H1
Iw(K∞,TpA) has no nonzero torsion submodule. But more can be said:

Proposition 3.4. Let K be a number field, and K∞/K a p-adic Lie extension such
that dim(G(K∞/K)) ≥ 3. Then H1

Iw(K∞,TpA) is reflexive.

Proof: PutX = H1(GS(K∞), A)∨ and H1 = H1
Iw(K∞,TpA). Then from the sequence

(11), Proposition 2.2 and the assumption, we have H1 = X+. Hence the sequence (5)
becomes

(13) 0→ E1(DX)→ X
φ→ (H1)+ → E2(DX)→ 0.

Put M = Coker(φ). Then the exact sequence 0→M → (H1)+ → E2(DX)→ 0 yields
0 → (H1)++ → M+ → E1E2(DX). But E1E2(DX) = 0 according to [OV, 2.4.3.].
Therefore (H1)++ = M+. Another sequence 0 → E1(DX) → X → M → 0 shows
M+ = X+ = H1. Hence H1 = (H1)++. �

Proposition 3.5. Let K be a number field, and K∞/K a p-adic Lie extension such
that dim(G(K∞/K)) ≥ 2 and the Iwasawa algebra Λ is an integral domain. Then

(14) torΛ(H1(GS(K∞), A)∨) ∼= E1(H2
Iw(K∞,TpA)).

Proof: Since J has no torsion part (see Section 2), torΛ(X) = torΛ(Y ). But [OV,
4.10] says DY ' H2

Iw(K∞,TpA). Hence E1(DY ) = E1(H2
Iw(K∞,TpA)). �

Because of the isomorphism (14), the structure of H2
Iw(K∞,TpA) is more interesting

but nothing is known except that if H2(GS(K∞), A) = 0, it is torsion by Theorem 3.3.
The structure of H i(GS(K∞), A)∨ in the Zp case, for i = 1, 2, is known as follows. Let
us prove those from the results above.

Proposition 3.6 ([Gr1]). Let K∞/K be a Zp-extension and p odd. Then

(1) H2(GS(K∞), A)∨ is a free Λ-module.
(2) If H2(GS(K∞), A)∨ = 0, then H1(GS(K∞), A)∨ has no finite submodule.

Proof: Since (N ab(p)#)H is free and pd(Λ) = 2 in this case, H2(GS(K∞), A)∨ must be
a projective Λ-module, and hence a free Λ-module as Λ is a local ring. If
H2(GS(K∞), A)∨ = 0, then pdΛ(Y ) ≤ 1, and hence it has no finite submodule ([NSW,
5.5.3, iv]), and therefore X = H1(GS(K∞), A)∨ has no finite submodule. �

For general p-adic Lie extensions, the first statement of the above proposition may not
be true in general, though in many interesting cases it is predicted to be zero (see
below “Assumption II”). At least it is torsion-free and H2(GS(K∞), A)∨ ' Ω2Y . The
second statement of the proposition has been extended to higher dimensional pro-p Lie
extensions, by Greenberg and Nguyen-Quang-Do (see [Ng]) in the commutative cases,
and by the second author in the noncommutative cases (see [Ve1, 3.0.3] or [OV, 4.6]).
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4. Local Results

Throughout this section K denotes a finite extension of Q`. Let A be as above and
K∞/K a p-adic Lie extension. First let us calculate a rank. We must assume that
Λ = Λ(G) is an integral domain. We begin by noting that H2(K∞, A) = 0, because
GL has p-cohomological dimension ≤ 1 for any infinite Galois extension L of K such
that G(L/K) contains an infinite pro-p subgroup ([NSW, 7.1.8.i]).

Theorem 4.1. Let K∞/K be a pro-p Lie extension and denote the Zp-corank of A by
r. Then

rkΛH1(K∞, A)∨ =
{
r[K : Qp] if ` = p

0 otherwise .

The proof is similar to the one of Proposition 3.2, which will use the structure of
N ab(p)H in the local case ([Ja1, 5.1.c] in the case ` = p). In the case ` 6= p, we have
N ab(p)H = Λ and d = 2 if K contains µp and N ab(p)H = 0 and d = 1 otherwise. For
the calculation of d = dimFpH

1(K,Z /pZ) see [NSW, 7.3.9]. The proof of the structure
of N ab(p)H is the same as the one for the case ` = p, ([Ja1] or [NSW, 7.4.1]). Let us
dare to have proof here as it is rather interesting. Firstly we look at the exact sequence
of Galois groups 1→ N → R → GKn → 1 (see the diagram just before Lemma 4.5 in
[OV]; here we take H = G(Ω/Kn)). The inflation-restriction homology sequence with
this sequence is

H2(Kn,Qp /Zp)∨ → H1(N ,Zp)GKn
→ H1(R,Zp)→ H1(Kn,Zp)→ 0.

But H2(Kn,Qp /Zp) = 0 (use Tate’s local duality). Hence we get

(15) 0→ N ab(p)GKn
→ Rab(p)→ GabKn

(p)→ 0.

In the Grothendieck group K0(Qp[Gn]), where Gn = Gal(Kn/K), we have

(16) [N ab(p)GKn
⊗Qp] = [Rab(p)⊗Qp]− [GabKn

(p)⊗Qp].

To calculate [Rab(p) ⊗ Qp], we use the following exact sequence (“Fox-Lyndon resolu-
tion”, [OV, Section 4.1]):

(17) 0→ Rab(p)→ Qp[Gn]
d → Qp[Gn]→ Zp → 0

This sequence implies

[Rab(p)⊗Qp] = [Qp[Gn]
d]− [Qp[Gn]] + [Qp] = [Qp[Gn]

d−1]− [Qp].

By local class field theory,

(18) GabKn
(p) ∼= lim←−

m

K×
n /(K

×
n )p

m ∼= H1(Kn,Zp(1)).

Since ` 6= p, [H1(Kn,Zp(1)) ⊗ Qp] = [Qp] ([NSW, 7.3.10]). In conclusion we have
obtained [N ab(p)GKn

⊗ Qp] = [Qp[Gn]d−1]. Since N ab(p)H is a projective Λ-module,
N ab(p)H ' Λd−1. By (5.6.10) in [NSW] we get the result as required. Now the structure
of N ab(p)H is determined in both cases ` = p and ` 6= p, we obtain Theorem 4.1 in the
same way as Theorem 3.2.

We now assume K∞/K is a Zp-extension. In this case Greenberg has proved the
following basic results on the structure of the cohomology group H1(K∞, A)∨.

Proposition 4.2 ([Gr1]). Let K∞/K be a Zp-extension and r = Zp -corank of A. Put
m = r[K : Qp].
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(1) Assume ` = p. Then H1(K∞, A)∨ ∼ Λm
⊕

TpA∗(K∞), where ∼ means pseudo-
isomorphism.

(2) Assume ` = p. If A∗(K∞) is finite, then X = H1(K∞, A)∨ is isomorphic to
a submodule of Λm of finite index. The quotient Λm/X is isomorphic to a
submodule of A∗(K∞).

(3) Assume ` = p. If A∗(K∞) = 0, then H1(K∞, A)∨ is a free Λ-module of rank
m.

(4) Assume ` 6= p. Then H1(K∞, A)∨ ∼ TpA∗(K∞). If A∗(K∞) is finite, then
H1(K∞, A) = 0.

We shall extend this result to extensions the Galois group of which is the semidirect
product of Γ ∼= Zp with a finite group of order prime to p. Moreover, we get canonical
exact sequences instead of just pseudo-isomorphisms.

Theorem 4.3. Let K∞/K be a Galois extension with the Galois group G ∼= Γ oω ∆,
where Γ ∼= Zp and ∆ is a finite group of order t prime to p, which acts on Γ via the
character ω : ∆→ Z∗p. We write χ = ω−1 for the inverse of the character (of G) which
determines the action on the p-dualizing module of G and we set X = H1(K∞, A

∗)∨ ∼=
H1
Iw(K∞,TpA). Let r be the Zp-codimension of A∗.

(1) If l = p, then the Λ(G)-module X fits into the canonical exact sequence

0→ TpA(K∞)→ X → P → N → 0

where P is a projective Λ(G)-module of rkΛ(Γ)P = rt[K : Qp] and the finite
module N is determined by the exact sequence

0→ N → A(K∞)div(χ)→ torZp(A
∗(K∞)∨).

Furthermore,
(a) if A(K∞) is finite, then TpA(K∞)(χ) = 0. If, in addition, A∗(K∞)∨ is

Zp-free, then N ∼= A(K∞).
(b) if A(K∞)∨ is Zp-free, then X ∼= P ⊕ TpA(K∞)(χ). In particular, X is

projective, if A(K∞) = 0.
(2) If l 6= p, then the Λ(G)-module X is isomorphic to

X ∼= TpA(K∞)(χ).

Proof: Recall the basic sequence of homotopy theory of modules:

(19) 0→ E1(DX)→ X → X++ → E2(DX)→ 0.

By [OV, Lemma 4.10 ,Proposition 4.11 ], we have

E1(DY ) = E1(A(K∞)∨) = TpA(K∞)(χ),

where the last equality follows from Proposition 2.2 and the fact that D
(p)
1 (Γ) =

Qp /Zp(ω). Since J has no torsion, E1(DX) = torΛ(X) = torΛ(Y ) = E1(DY ) =
TpA(K∞)(χ).

From the exact sequence
0→ X → Y → J → 0,

we get an exact sequence

E1(J)→ E1(X)→ E1(Y )→ E2(J) = 0,

since J has no nonzero finite submodule([Ja1, 3.1.d]). From the exact sequence

0→ J → Λ[A∗]→ A∗(K∞)∨ → 0,
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we get E1(J) = E2(A∗(K∞)∨) = A∗(K∞)div(χ). Hence we have obtained the exact
sequence

A∗(k∞)div(χ)
φ→ E1(Y )→ E1(X)→ 0.

Denote C = Coker(φ) and decompose this sequence into

0→ C → E1(Y )→ E1(X)→ 0

and
E1(J)

f→ C → 0.

From the first one, we get

E1(C)→ E2(DX)→ E2(DY )→ E2(C)→ 0,

while from the second one

0→ E1(C)→ E1E1(J) = E1(E2(A∗(K∞)∨)) = 0,

since E2(A∗(K∞)∨) is finite ([Ja1, 3.1 (d)], and Proposition 2.2). Hence E1(C) = 0 and
E2(DX) is a submodule of E2(DY ) = E2(A(K∞))∨ = A∗(K∞)div(χ) while it is easily
seen that E2(C) ⊆ torZp(A

∗(K∞)∨) holds.

The facts that pd(Λ) = 2 and Λ is local imply that X++ is a projective Λ-module.
Hence from all the things shown above, we obtain the following exact sequence

0→ TpA(K∞)→ X → P → N → 0

where N is a submodule of the finite module A∗(K∞)div(χ).

As we have already calculated, the rank of X, rkΛ(Γ)(X) = rt[K : Qp] if ` = p and 0
otherwise, and obviously rk(X) = rk(X++). �

This theorem gives another proof of the following

Corollary 4.4 ([Gr2, 2.3]). Let V be a one-dimensional p-adic representation of GK
and A = V/T with any GK-invariant Zp-lattice T in V . Then the Zp-corank of
H1(K,A) is [K : Qp] + δ, where δ = 1 if A = Qp /Zp or A = µp∞, and δ = 0
otherwise.

Proof: Let K∞/K be the cyclotomic Zp-extension with the Galois group Γ. Suppose
A 6= µp∞ . Since there is no proper submodule of Qp /Zp of finite index, A∗(K∞) is
finite. Put H1 = H1

Iw(K∞,TpA
∗). We have the following exact short sequence

(20) 0→ H1 → Λ[K:Qp] → N → 0

with some finite submodule N . Taking Γ-homology, we know the Zp-rank of H1
Γ is

[K : Qp]. Hence by the local duality, the Zp-rank of (H1(K∞, A)∨)Γ is also [K : Qp].
Next we look at the exact inflation-restriction sequence:

(21) 0→ H1(Γ, A(K∞))→ H1(K,A)→ H1(K∞, A)Γ → 0.

Now assume moreover A 6= Qp /Zp. Then H1(Γ, A(K∞)) is finite, hence the Zp-corank
of H1(K,A) is [K : Qp]. If A = Qp /Zp, then the Zp-corank of H1(K,Qp /Zp) is
[K : Qp] + 1.

Finally let us consider the case A = µp∞ . In this case we will get similarly an exact
sequence

0→ Zp → H1 f→ Λ[K:Qp] →W → 0
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with some finite W . Put Z = Coker(f). Then H1(Γ, Z) = H2(Γ,W ) is finite, hence
the Zp-rank of H1

Γ = [K : Qp] + 1. Since H1(Γ, A(K∞)) finite, we get the Zp-corank of
H1(K,µp∞) = [K : Qp] + 1. �

In the higher dimensional case the results are not as fine as above but still we obtain
the following

Proposition 4.5. Let K∞/K be an p-adic Lie extension with Galois group G, such
that dim(G) ≥ 2. Then the following hold:

(1) If p 6= l, then H1(K∞, A)∨ = 0.
(2) If p = l, then H1(K∞, A)∨ is a torsion-free Λ(G)-module, which is even reflexive

in case cdp ≥ 3.

The proof is completely analogous to that of theorem 4.3 using again 2.2 and [OV,
4.10,4.11], see also [OV, 5.4]. Note that in the case p 6= l the Galois group Gk(p) ∼=
Zp(1) o Zp of the maximal p-extension of any local field over Q` does not have any
proper quotient G of dim(G) ≥ 2.

5. Selmer Groups

Let K be a number field and V and T as in Section 2. The Bloch-Kato Selmer group
SelBK(K,A) is defined as follows ([BK]):

SelBK(K,V/T ) := ker(H1(K,V/T )→
∏

H̃1(Kv, V/T ).

here, the definition of H̃1 is the following:

H̃1(Kv, V/T ) = H1(Kv, V/T )/Im(H1
f (Kv, V/T ))

where Im(H1
f (Kv, V/T )) is the image of H1

f (Kv, V ) under the natural map V → V/T

and H1
f (Kv, V ) is defined as follows:

If v does not divide p, then

H1
f (Kv, V ) := ker(H1(Kv, V )→

∏
H1(Knr

v , V ))

where Knr
v denotes the maximal unramified extension of Kv;

If v divides p, then

H1
f (Kv, V ) := ker(H1(Kv, V )→

∏
H1(Kv, V ⊗Qp

Bcrys))

where Bcrys is the period ring defined by Fontaine ([Fo]).

It is shown in [BK] that for Vp(E), where E is an elliptic curve over K, H1
f (Kv, V ) =

E(Kv)⊗Zp Qp and SelBK(K,V/T ) = SelBK(K,E[p∞]) = Sel(E/K){p}.

On the other hand Greenberg has defined a Selmer group for V which satisfies the
so-called Panchishkin condition ([Gr3]). Let us recall the definition: V is said to satisfy
the Panchishkin condition at the place v if

• V is de Rham.
• There is an exact sequence of p-adic representations

(22) 0→ V̂ → V → Ṽ → 0

where V̂ and Ṽ satisfy V̂ ⊗ Cp
∼=

⊕
i>0 Cp(i)

⊕ki and Ṽ ⊗ Cp
∼=

⊕
i≤0 Cp(i)

⊕ki

as GKv -modules.
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If V satisfies the Panchishkin condition, then it satisfies the ordinary condition in the
sense of [Gr1]. For a p-adic representation satisfying the Panchishkin condition, the
Selmer group is defined in the following way:
(23)

SelGr(K,A) := ker(H1(GS(K), A)
φ→

∏
v|p

H1(Knr
v , A/F+

v A)⊕
∏

v-p,v∈S

H1(Knr
v , A)),

where F+
v A is a submodule of A defined by V̂ in the Panchishkin filtration (F+

v A is the
image of V̂ in A under the natural map), and S is a finite set of primes of K satisfying
the condition as before.

We have the following long exact sequence deduced from Poitou-Tate’s global duality
and Tate’s local duality:

0→ SelBK(K,V/T )→ H1(GS(K), V/T )→
⊕

v∈S(K)

H̃1(Kv, V/T )

ψ→ SelBK(K,T∗)∨ → H2(GS(K), V/T ).

Here Sel(K,T ∗) is defined as follows: Put Bv = ImH1
f (Kv, V ). Let Cv be the orthog-

onal complement of Bv under the perfect paring of Tate’s duality theorem. Then we
define the Selmer group SelBK(K,T ∗) as follows:

(24) SelBK(K,T ∗) := ker(H1(GS(K), T ∗)→
⊕

v∈S(K)

H1(Kv, T
∗)/Cv).

The map ψ in the long exact sequence is obtained as follows. Put A = V/T as before.
Let us make the following notation: Write for any i ≥ 0

(25) Xi(GS(K), A) := ker(H i(GS(K), A)→
⊕
S

H i(Kv, A)).

By Poitou-Tate global duality we have the following commutative diagram:

0 → X1(GS(K), A∗)∨ ∼=X2(GS(K), A)→H2(GS(K), A)(global duality)

↑

H1(GS(K), A∗)

↑⊕
S

H1(Kv, A
∗)∨ ∼=

⊕
S

H1(Kv, T ) (local duality)

∪ ∪⊕
S

(H1(Kv, A
∗)/Cv)∨=

⊕
S

Bv (by perfect paring)
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Hence we get the following diagram commutative, which gives the long exact sequence:
0 0

↓ ↓⊕
S

Bv =
⊕
S

(H1(Kv, A
∗)/Cv)∨

H1(GS(K), A)→
⊕
S

H1(Kv, A)
?

→ H1(GS(K), T ∗)∨
?

→H2(GS(K), A)

‖ ↓ ‖

H1(GS(K), A)→
⊕
S

H1(Kv, A)/Bv→ SelBK(K,T ∗)∨
?

→H2(GS(K), A)

↓ ↓

0 0

Over an infinite Galois extensionK∞ ofK we define the Selmer groups SelBK(K∞, V/T )
to be the direct limit of the Selmer group over each layer. The same with SelGr(K∞, V/T ).
We have similar long exact sequences as above for SelBK(K∞, V/T ), SelGr(K,V/T ),
and SelGr(K∞, V/T ). The finitely generatedness of H1(GS(K∞), V/T )∨ implies the
one of Sel?(K∞, V/T ) for ? = BK or Gr.

From now on we assume that V satisfies the Panchishkin condition, we consider the
Greenberg’s Selmer group SelGr(K,V/T ) and omit Gr from the notation. Note that
SelBK(K,V/T ) is a submodule of SelGr(K,V/T ). We also assume the following

Assumption II: H2(GS(K∞), A) = 0.

For instance if K∞ contains the cyclotomic Zp-extension, then this is believed to hold
([Gr1, Conjecture 3]).

The structure of the Selmer group, in particular, in the case V = Vp(E), has been
studied in [OV], where E/K is an elliptic curve without complex multiplication and
has good ordinary reduction at any prime over p. There are also interesting results in
other different cases (cf. [Gr2] and [Pe]). The following is easy.

Proposition 5.1. Assume the Assumptions I and II. Then we have inequalities

(26) r · r2(K)− Σv∈Sp [Kv : Qp]codim(F+
v V ) ≤ rkΛ(Sel(K∞, A)∨) ≤ r · r2(K)

where r is the dimension of V .

Proof: By the Assumption II and Theorem 3.2, we have

rkΛ(H1(GS(K∞), A)∨) = r · r2(K).

Hence rkΛ(Sel(K∞, A)∨) ≤ r · r2(K). In the same way one calculates with the results
above to obtain

rkΛ(
⊕
S

H1(K∞,v, A/F
+
v A)) = Σv∈Sp [Kv : Qp].

Hence from the exact sequence we get the other inequality

r · r2(K)− Σv∈Sp [Kv : Qp]codim(F+
v V ) ≤ rkΛ(Sel(K∞, A)∨).

�
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The proof of [OV, Proposition 5.3] was not given, so we shall give it here.

Proposition 5.2. Suppose that 3 ≤ cdp(G) = dim(G) and dim(G) > cdp(Gv) =
dim(Gv) and dim(Gv) ≥ 2 for any v - p, and assume the morphism φ in the sequence
(23) is surjective and the Assumption II. Then if A(K∞)∨ has a nontrivial finite sub-
module, then pdΛ(Sel(K∞, A)∨) = dim(G)− 1 and if A(K∞)∨ has no finite submodule,
then pdΛ(Sel(K∞, A)∨) = dim(G)− 2.

Proof: In this proof we also determine the projective dimension ofX = H1(GS(K∞), A)∨

under the same assumptions in the statement. Let M be a Λ-module such that it is
a finitely generated Zp-module. Then if it has no finite submodule, then pdΛ(M) =
dim(G), and if it has a nontrivial finite submodule, then pdΛ(M) = dim(G) + 1. This
follows from Proposition 2.2. Indeed putting n = dim(G) = cdp(G). By Proposition
2.2, if it has no finite submodule, then En(M) 6= 0, hence pdΛ(M) ≥ dim(G) and if it
has a nontrivial finite submodule, then En+1(M) 6= 0 and pdΛ(M) ≥ dim(G) + 1. But
in any case pdΛ(M) ≤ dim(G) + 1 ([Br, 4.1]).

Now we recall the well-known fact from homological algebra: Given an exact sequence
0→ N →M → L→ 0, then we have

(27) pdΛ(M) ≤ max{pdΛ(N), pdΛ(L)}.

and if it is not equality, then pdΛ(N) = pdΛ(L) − 1. Now we show the claim in the
case that A(K∞)∨ has no finite submodule. We have the exact sequence 0 → J →
Λ(G)[A] → A(K∞)∨ → 0, and since pdΛ(Λ(G)[A]) = 0, pdΛ(J) = n − 1. Now let
us look at another sequence 0 → X → Y → J → 0. By the assumption II, it is
known from the Diagram 2.1 that pdΛ(Y ) ≤ 1. As n − 1 ≥ 2 by another assumption,
pdΛ(X) = n− 2.

Repeat the same thing with H1(Kv,∞, A)∨. Then with the assumption dim(G) >
dim(Gv) we get pdΛ(Xv) < n − 2. Since dim(Gv) ≥ 2, if v does not divide p, then
H1(Kv,∞, A)∨ = 0. Hence

pdΛ(
⊕
S

IndGv
G H1(Kv,∞, A)∨) = max

⊕
S

pdΛ(IndGv
G H1(Kv,∞, A)∨) < n− 2.

Now from the long exact sequence above in the beginning of this section and (27), we
get pdΛ(Sel(K∞, A)∨) = dim(G)− 2.

The case that A(K∞)∨ contains a nontrivial finite submodule goes similarly. �

6. Galois Groups as Iwasawa Modules

In this section we consider the “original” case of Iwasawa theory, i.e., the case A =
Qp /Zp with trivial Galois action. Let K be a global number field and S a finite set
of places of K containing all primes above p and ∞. The dual of the cohomology
groups are isomorphic to Galois groups as Λ-modules, that is, X = Gal(L/K∞) =
Sel(K∞,Qp /Zp)∨ and X = Gal(M/K∞) = H1(GS(K∞),Qp /Zp)∨, where M is the
maximal abelian pro-p S-ramified extension of K∞ and L is the maximal unramified
extension of K∞. We also consider the extension L′, the subextension of L, in which all
primes of K∞ split completely. Write X′ = Gal(L′/K∞). We assume K∞/K is a pro-p
Lie extension such that its associated Iwasawa algebra has no nonzero zero divisor. For
the results in this section the following is crucial

Assumption III: No finite place of Sf (K) splits completely in K∞.
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The groups of global and local units are very important: In the following L denotes
any finite extension of K contained in K∞.

(1) E∞ = lim←−LE
′(L), where E′(L) is p-adic completion of units of L: E′(L) =

O×L ⊗ Zp.
(2) ES,∞ = lim←−LE

′
S(L), where E′S(L) is p-adic completion of S-units of L: E′(L) =

O×L ⊗ Zp.
(3) US,∞ =

⊕
v∈S IndGv

G U ′v(Lv), where U ′v((L) is p-adic completion of units of Lv.
(4) AS,∞ =

⊕
v∈S IndGv

G Av(Lv), where Av(Lv) = lim←−L
×/L×

pn

.

The basic diagram connecting these modules is the following ([NSW, 11.3.10]):

0 - H2(GS(K∞),Qp /Zp)∨ - ES,∞ - AS,∞ - XS
- X′ - 0

‖ ‖

0 - H2(GS(K∞),Qp /Zp)∨ - E∞

6

- US,∞

6

- XS
- X

6

- 0

There is also the following exact sequence:

(28) 0→ E∞ → ES,∞ →
⊕
Sun

IndGv
G Zp → X→ X′ → 0,

where Sun := {ν ∈ S(k) | p∞ - fν} and fν = f(k∞,ν/kν) denotes the degree of the
extension of the corresponding residue class fields.

Now by the Assumption III,
⊕

S IndGv
G Zp is torsion, so X′ is torsion if and only if X′ is

torsion.

The main result of this section is the following

Theorem 6.1. X′ and X are torsion Λ-modules under the Assumption III.

Lemma 6.2. Under the Assumption III, H2(GS(K∞), A) = 0 if and only if
X1(GS(K∞), A∗)∨ is Λ-torsion.

Proof: By [OV, Proposition 4.10 (ii) ], H2(GS(K∞, A) = 0 if and only if ZA(K∞) (see
loc. cit. for the definition) is Λ-torsion. From Poitou-Tate’s global duality, we have the
following exact sequence

(29) 0→X1(GS(K∞), A∗)∨ → ZA(K∞)→
⊕
S

(A∗)∨ ⊗Λ(Gv) Λ(G).

By the Assumption III,
⊕

S(A∗)∨⊗Λ(Gv)Λ(G) is Λ-torsion. Hence ZA(K∞) is Λ-torsion
if and only if X1(K∞, A

∗)∨ is Λ-torsion. �

Lemma 6.3. Under the assumption III, H2(GS(K∞), µp∞) = 0.

Proof: Under the Assumption III,

H2(GS(K∞), µp∞) = X2(K∞, µp∞) = lim−→X1(GS(Kn),Z /pm Z)

= lim−→
n,m

ClS(Kn)/pm = lim−→
n

ClS(Kn)⊗Z Qp /Zp = 0

since ClS(Kn) is finite for every n. �

Proof of Theorem 6.1:
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It is easy to see that X′ ∼= X1(K∞,Qp /Zp)∨. Hence from the two lemmas above, X′

is Λ-torsion under the assumption III. Hence so is X since X′ is torsion if and only if
X′ is torsion.

Remarks:

1. In the case of any Zp-extension, Iwasawa proved that X is a finitely generated Λ-
torsion module. This follows from our results immediately, as the Assumption III is
satisfied if Sf is taken to be the set of all primes of K above p.

2. It was claimed in [Ha1] that for a pro-p Lie extension K∞/K such that K contains
µp, X is torsion (Theorem 3.3). However, the proof in [Ha1] was incorrect (but Harris
himself has given a correct proof recently in [Ha2]). Our proof is quite different, and
was discovered independently.

Proposition 6.4. Assume the Assumption III and H2(GS(K∞),Qp /Zp) = 0 (the
weak Leopoldt conjecture). Then

(1) rkΛ(XS) = r2(K).
(2) rkΛ(AS,∞) = rkΛ(US,∞) = [K : Q].
(3) rkΛ(ES,∞) = rkΛ(E∞) = [K : Q]− r2(K).

Proof: From the vanishing assumption and Proposition 3.2, we get rkΛ(XS) = r2(K).
There is an exact sequence (compare the sequence (28)):

(30) 0→ US,∞ → AS,∞ →
⊕
Sun

IndGv
G Zp → 0.

Hence the Assumption III says rkΛ(AS,∞) = rkΛ(US,∞). By Kummer theory,

Av(K∞) = lim←−
i

(lim←−
n

K×
i /K

×
i
pn

) = lim←−
i

(lim←−
n

H i(Kv,i,Zp(1))).

By Proposition 3.3,

rkΛ(lim←−
n

H i(Kv,i,Zp(1))) = rkΛ(H1(K∞, µp∞)).

But by Lemma 6.3, H2(K∞, µp∞) = 0, hence by Proposition 4.1, consequently we have
rkΛ(Gv)(Av(K∞,v)) = [Kv : Qp]. Therefore we have rkΛ(G)(Λ(G) ⊗Λ(Gv) Av(K∞,v)) =
#{v ∈ Sp(K)} × [Kv : Qp] = [K : Q].

As the sequence (28) shows, rkΛ(ES,∞) = rkΛ(E∞) under the Assumption III. But by
now we know the ranks of X, XS , US,∞ and AS,∞. Hence from the diagram above we
get rkΛ(ES,∞) = rkΛ(E∞) = [K : Q]− r2(K). �

7. Abelian Varieties

Let X be an abelian variety defined over a finite extension K of Q, and X ′ denote
the dual abelian variety of X. Throughout this section we put A = X[p∞] and A∗ =
X ′[p∞], and we consider the Selmer group SelBK(K∞, A) = Sel(X/K∞){p} over the
field K∞ = K(X[p∞]) and just write Sel(K∞, A) omitting BK from the notation. Fix
a finite set S of places of K which contains all primes above p and∞ and all the primes
where A has bad reduction. For an infinite extension K∞ of K, we have a long exact



16 YOSHIHIRO OCHI AND OTMAR VENJAKOB

sequence, which is very basic for the Iwasawa theory of an abelian variety:

0→ Sel(K∞, A)→ H1(GS(K∞), A)→
⊕

v∈S(K)

CoindGGv
H1(K∞,v, X)(p)

→ (lim←−Sel(Kn,TpX
′))∨ → H2(GS(K∞), A).

In the classical Iwasawa theory this sequence is considered over a Zp-extension of K.
In particular, when X is an elliptic curve over Q and for the cyclotomic Zp-extension
of Q, then the structure of all these Λ-modules has been determined due to the recent
work of K. Kato ([Ka]). In our case we can calculate the ranks of these modules, except
the one of the Selmer group, relatively more easily than in Zp-cases. One reason is the
following

Proposition 7.1. (cf. [OV, 4.7]) Let K∞ be as above. Then H2(GS(K∞), A) = 0.

Another is the work of Coates and Greenberg on the Kummer theory for Selmer groups
([CG]). From now on we assume that X has good reduction at all primes above p.
Then according to [CG], Kv,∞ = Kv(X[p∞]) is a deeply ramified field ([CG] for the
definition) where v divides p, since it contains Kv(µp∞) by the Weil pairing. Then there
is the following isomorphism:

(31) H1(Kv,∞, X)(p) ∼= H1(Kv,∞, X̃[p∞])

where X̃ is mod-p reduction of X, which is an abelian variety over an extension of Fp
by assumption. From these we obtain the following

Proposition 7.2. Let K be a finite extension of Q`, X an abelian variety over K
of dimension g, and K∞ = K(A). Assume that X has good reduction. Put G =
Gal(K∞/K0) and Λ = Λ(G), where K0 = K(X[p]). Let r be the p-rank of X̃. First
suppose ` = p.

(1) The Λ-rank of H1(K∞, A)∨ is 2g[K0 : Qp].
(2) The Λ-rank of H1(K∞, X)(p)∨ is r[K0 : Qp].
(3) The Λ-rank of (X(K∞)⊗Qp /Zp)∨ is (2g − r)[K0 : Qp].
(4) Now suppose ` 6= p. Then H1(K∞, A) = H1(K∞, X)(p) is Λ-torsion.

Proof: The first and second statements follow from Theorem 4.1 and the isomorphism
(31). For 3, use the well-known exact sequence:

0→ X(K∞)⊗Qp /Zp → H1(K∞, A)→ H1(K∞, X)(p)→ 0.

and the isomorphism (31). Note if ` 6= p, X(K∞) ⊗ Qp /Zp = 0. The last statement
follows from Proposition 4.5.

�

Remark: The reason why we take K0 as the base field is that the Galois group
G = Gal(K∞/K0) is a uniform group ([DSMS]) and therefore Λ(G) is an integral
domain.

The results in the global situation are the following. First let us prepare the following
notation (as above, rv denotes the p-rank):

αv = rv[K0,v : Qp] for v ∈ Sp;

αp = Σv∈Spαv;
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βv = (g − rv)[K0,v : Qp] for v ∈ Sp;

βp = Σv∈Spβv.

Proposition 7.3. Let K be a finite extension of Q, X an abelian variety over K of
dimension g, and K∞ = K(A). Put G = Gal(K∞/K0) and Λ = Λ(G). Then

(1) The Λ-rank of H1(GS(K∞), A)∨ is g[K0 : Qp].
(2) H2

Iw(K∞,TpX) is Λ-torsion. The rank of H1
Iw(K∞,TpX) is also g[K0 : Q],

which is torsion-free.
(3) The Λ-rank of Λ(G)⊗Λ(Gv) H

1(K∞,v, X)(p)∨ is αv for any v ∈ Sp.
(4) rkΛ(Sel(K∞, A)∨)− rkΛ(lim←−Sel(Kn, TpX

′))∨ = βp. In particular,

rkΛ(Sel(K∞, A)∨) ≥ Σv∈Sp(g − rv)[K0,v : Qp].

Proof: The first statement is obtained by using Theorem 3.2 with Proposition 7.1.
This time we use the long exact sequence which is in the beginning of this section.
H2
Iw(K∞,TpA) is Λ-torsion because of Proposition 7.1 and [OV, 4.10]. The rank of

H1
Iw(K∞,TpA) is r2(K0) by Theorem 3.3 and 1. The third statement follows from

Proposition 7.2. The last statement follows from the long exact sequence in the begin-
ning of this section and Proposition 5.1. �

The following is the fundamental conjecture on the Selmer group:

Conjecture 7.4.

rkΛ(Sel(K∞, A)∨) = Σv∈Sp(g − rv)[K0,v : Qp].

This would follow if the similar conjectures due to Mazur (ordinary case) and Schneider
in the cyclotomic Zp-case are proven for any finite extension of Q ([Sc2], also [CH, 2.4]).
We end this paper with the projective dimension of the Selmer group of an elliptic curve
without complex multiplication.

Theorem 7.5. Assume E is an elliptic curve without complex multiplication, has good
reduction at any prime over p, and that the above rank conjecture holds. Let K∞ be
K(E[p∞]). Then the projective dimension of Sel(K∞, E[p∞])∨ is 2.

Proof: This follows from Proposition 5.2 and Serre’s calculation of the dimension of
the Galois groups (see [Se2] and [CH]) and a result in [ST], which says that there is
no bad reduction of additive type over K0, and hence dim(Gv) = 2 or 3 maybe except
the case E has supersingular reduction at v. But this case may be excluded thanks to
the isomorphism (31). Hence we can say G and Gv satisfy the condition in Proposition
5.2 (dim(G) = 4 and 4 > dim(Gv) ≥ 2 for any v). Proposition 7.3.4 shows that
the Conjecture implies the surjection of the map φ in the sequence (23), because the
Conjecture with the vanishing of H2(GS(K∞), E[p∞]) implies that lim←−n Sel(Kn,TpE)
is torsion. But

⊕
v∈S(K0)H

1(K∞,v, E[p∞]) has no nontrivial torsion submodule by
Proposition 4.5. Hence lim←−n Sel(Kn,TpE) = 0 and therefore φ is surjective. �
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