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Let p be a prime number, which, for simplicity, we shall always assume odd. In the
Iwasawa theory of an elliptic curve E over a number field k one has to distinguish
between curves which do or do not admit complex multiplication (CM). For CM-
elliptic curves their deep arithmetic properties and the link between their Selmer
group and special values of their Hasse-Weil L-functions are not only described by
the (one-variable) main conjecture corresponding to the cyclotomic Zp-extension
kcyc of k, but also by the (two-variable) main conjecture corresponding to the
extension k∞ = k(Ep∞) which arises by adjoining the p-power division points
Ep∞ of E. Moreover, both conjectures are proven by Rubin [36] in the case that
k is imaginary quadratic and E has CM by the ring of integers Ok of k.
Also for non-CM elliptic curves one would like to at least formulate a main conjec-
ture over the trivialzing extension k∞, but for lack of both an algebraic as well as
analytic p-adic L-function this has not been achieved. The aim of this paper is to
establish, under certain conditions, the existence of an algebraic p-adic L-function,
viz as an element of the first K-group K1(ΛT ) ∼= Λ×

T /[Λ
×
T ,Λ

×
T ] of a localization

ΛT of the usual Iwasawa algebra Λ = Λ(G) of the Galois group G = G(k∞/k).
Here, for a ring R, we denote by R× its group of units. By the Weil-pairing, kcyc
is contained in k∞ and we put H = G(k∞/kcyc) and Γ = G(kcyc/k). Furthermore
we write m(H) for the kernel of the canonical surjective ring homomorphism

ψH : Λ(G) � Fp[[Γ]]

and we set T := Λ\m(H). Since m(H) is a (completely) prime ideal T is obviously
a multiplicative subset of Λ = Λ(G). But in contrast to commutative ring theory
it is not clear at all whether one can localize a ring at a given multiplicative set.
Thus, from a technical point of view the following theorem is the starting point
of this paper

Theorem (Theorem 4.2). Let G be isomorphic the direct product H × Γ with
H a uniform group (i.e. a pro-p-group without element of order p and such that
[H,H] ⊆ Hp). Then the multiplicative set T satisfies the left and right Ore
condition for Λ(G). In particular, the localization ΛT exists and is a Noetherian
regular local ring with global dimension gl(ΛT ) < gl(Λ).

The proof relies on filtered ring techniques and makes decisive use of Lazard’s
fundamental work [27] which we review in section 2.1. The significance of the
existence of ΛT , which we will assume always henceforth, results from the observa-
tion that the relative K-group K0(Λ,ΛT ) is closely linked with a nice category of
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Λ-torsion modules. By Λ(G)-modH we denote the full subcategory of Λ(G)-mod
consisting of those Λ(G)-modules which are finitely generated over the subalgebra
Λ(H) of Λ = Λ(G). We will see below that such modules play an important role
in our arithmetic applications.

Proposition (Proposition 4.4). There are a canonical isomorphisms of groups

K0(Λ(G)-modH) ∼= K0(Λ(G),Λ(G)T ) ∼= Λ×
T /[Λ

×
T ,Λ

×
T ]Λ×.

This identification enables us to define characteristic elements FM in Λ×
T , unique

only modulo [Λ×
T ,Λ

×
T ]Λ×, for modules M in Λ(G)-modH requiring that it corre-

sponds via the above isomorphism to the class [M ] ε K0(Λ(G)-modH). From the
definition of T it is clear that the projection πH : Λ(G)→ Λ(Γ) extends to a ring
homomorphism πH : Λ(G)T → Q(Γ), where Q(Γ) denotes the field of fractions of
Λ(Γ). Thus we obtain a commutative “descent” diagram of K-groups with exact
rows

K1(Λ) //

(πH)∗
��

K1(ΛT ) //

(πH)∗
��

K0(Λ,ΛT ) //

(πH)∗
��

0

K1(Λ(Γ)) // K1(Q(Γ)) // K0(Λ(Γ), Q(Γ)) // 0

Λ(Γ)× // Q(Γ)× // Q(Γ)×/Λ(Γ)× // 1.

which can be used to define the evaluation of FM at “ 0 ” or using twisting (see
section 5) more generally at certain p-adic representations, see section 5.2 for
details. Thus let ρ : G → GL(V ) be a continuous linear representation on a
finite dimensional vector space V of dimension m over a finite extension K of Qp

with ring of integers O. We choose a G-invariant O-lattice T ⊆ V and define a
generalized G-Euler characteristic as follows

χ(G, V,M) :=
∏
i

(#Tor
Λ(G)
i (T,M))(−1)i

provided that all Tor-groups are finite. One checks easily that this is independent
of the choice of T.
Since the class of M in K0(Λ(G),Λ(G)T ) can also be described using virtual
objects (see section 3) which should be considered as universal Euler characteristic
of M and which behave well under change of rings one obtains immediately the
following relation between the characteristic element of a module M and its G-
Euler characteristic, which is very important for descent arguments in arithmetic
applications, e.g. if one wished to link the desired main conjecture with the Birch
and Swinnerton-Dyer conjecture.

Theorem (Theorem 6.6). Assume that M belongs to Λ(G)-modH . Then, if
χ(G, V,M) is finite, FM(ρ) is defined and we have

χ(G, V,M) = |FM(ρ)|−[K:Qp]
p

for any choice of FM . In particular, FM(ρ) is non-zero.
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Having settled these purely algebraic properties we want to verify its usefulness in
the study of Selmer groups over p-adic Lie extensions. Beneath k∞ = k(Ep∞) we
also consider the false-Tate-curve-case, i.e. k∞ arises as trivializing extension of a
p-adic representation which is analogous to that of the local Galois representation
associated with a Tate elliptic curve. More precisely, we assume that k contains
the group µp of pth roots of unity and then k∞ is obtained by adjoining to kcyc the
p-power roots of an element in k× which is not a root of unity. By Kummer theory,
its Galois group is isomorphic to the semidirect product G(k∞/k) ∼= Zp(1) o Zp

where the action is given by the cyclotomic character.
We write

X(kcyc) = Xf (E/kcyc) = (Selp∞(E/kcyc))
∨

for the the Pontryagin dual of the Selmer group Selp∞(E/kcyc) of E over kcyc
and similarly X(k∞) over k∞. Then X(kcyc) is a finitely generated Λ(Γ)-module
and in case it is torsion (as it is always conjecturally) we denote by fX(kcyc) its
(classical) characteristic polynomial.
The strongest confirmation that our algebraic p-adic L-function bears indeed
arithmetic information relies on the fact that the characteristic element FX(k∞) of
the dual of the Selmer group over k∞ specializes, up to some local Euler factors,
to the characteristic polynomial fX(kcyc) of the dual of the Selmer group over kcyc.

Theorem (Theorems 7.3, 7.7). Assume that in the false-Tate-curve- or GL2-
case X(kcyc) is a torsion Λ(Γ)-module with vanishing µ-invariant. Then X(k∞)
is finitely generated over Λ(H) and we have

πH(FX(k∞)) ≡ fX(kcyc) ·
∏
ν ε M

Pν(E(p)/k) mod Λ(Γ)×,

where Pν(E(p)/k) are local Euler factors, see section 7.1, while M denotes a cer-
tain finite set of primes of k which ramify in the extension k∞/k, see subsections
7.3 and 7.4.

Beneath the techniques developed above this result relies heavily on the vanish-
ing of higher H-homology groups of X(k∞) and descent calculations done by J.
Coates, P. Schneider and R. Sujatha [8] in the GL2-case and by Y. Hachimori and
the author [19] in the false Tate curve case. By evaluation of the above formula at
the trivial representation we reobtain under the above conditions the well known
determination of the G-Euler characteristic which can now be interpreted as the
value at “ 0 ” of the characteristic element of the dual of the Selmer group.

Theorem (Corollary 7.4). In the situation of the theorem and assuming that
the G-Euler characteristic χ(G,X(k∞)) of X(k∞) is finite let FX(k∞) ε ΛT be a
characteristic element of X(k∞). Then FX(k∞)(0) is defined (and non-zero) and
it holds that

χ(G,X(k∞)) = |FX(k∞)(0)|−1
p = ρp(E/k)×

∏
v ε M

|Lv(E, 1)|p.

Here, M denotes the same set of primes as above; for the definition of the p-
Birch-Swinnerton-Dyer constant ρp(E/k) see subsection 7.3.
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These results encourage us to suggest a possible shape of a main conjecture in
section 8 involving our definition of characteristic element for the dual of the
Selmer group. For a precise conjecture one needs a good guess for the ε-factors,
Deligne period, etc. and since there is very little empirical material available at
the moment this seems a very delicate and subtle point. But a similar recipe as
in [6] for the conjectural p-adic L-functions of motives over Q with respect to the
cyclotomic Zp-extension should generalize to our situation.
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General Notation and Conventions

(i) In this paper, a ring R is always associative and with a unit element.
When we are talking about properties related to R like being “Noether-
ian”, an “ideal”, a “unit”, of a certain “global dimension”, etc. we always
mean the left and right property if not otherwise stated. But by an R-
module we usually mean left R-module (not a bi-module).

(ii) By R× we denote the group of units, i.e. of right and left invertible
elements.

(iii) By pdR(M) we denote the projective dimension of a R-module M while
gl(Λ) denotes the global dimension of Λ.

(iv) By a local ring R we mean a ring in which the non-units form a proper
ideal, which is then automatically maximal as left, right and two-sided
ideal. Equivalently, R has both a unique left and a unique right maximal
ideal, which amounts to the same as the quotient R/J(R) of R by its
Jacobson radical being a skewfield.

(v) A filtration F•R := {FnR|n ε Z} of a ring we shall always assume is
indexed by Z, increasing, exhaustive and separated. We write grR =
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n ε Z FnR/Fn−1R for its associated graded ring. A similar notation

and convention is used for filtered left R-modules.
(vi) For a discrete (resp. compact) Zp-module N with continuous action by

some profinite group G, N∨ = HomZp,cont(N,Qp/Zp) is the compact
(resp. discrete) Pontryagin dual of N with its natural G-action. If N
is p-divisible, Tp(N) = Hom(Qp/Zp, N) = lim←−

i

piN denotes the Tate

module of N, where piN denotes the kernel of the multiplication by pi.
For G = Gk the absolute Galois group of a number field or a local field
k, we define the rth Tate twist of N by N(r) := N ⊗Zp Tp(µ)⊗r for r ε N
and N(r) := N ⊗Zp Hom(Tp(µ)⊗r,Zp) for −r ε N, where µ denotes the
Gk-module of all roots of unity and by convention Tp(µ)⊗0 = Zp with
trivial G-action. Finally, we set N∗ := lim−→i

Hom(piN,µp∞) = Tp(N)∨(1).

1. p-adic Lie groups

Since the towers of number fields studied in non-commutative Iwasawa theory
form a p-adic Lie extension in this subsection we recall basic facts about p-adic
Lie groups. The reader who is familiar with this topic may skip this section or
only glance at it for notational reasons.

There is a famous characterization of p-adic analytic groups due to Lazard [27]
(see also [13] 9.36): A topological group G is a compact p-adic Lie group if and
only if G contains a normal open uniformly powerful pro-p-subgroup of finite
index. Let us briefly recall the definitions: A pro-p-group G is called powerful,
if [G,G] ⊆ Gp for odd p, respectively [G,G] ⊆ G4 for p = 2, holds. Here for
any prime p and natural number n we write Gpn

for the subgroup of G which
is generated by all elements of the form gp

n
, g ε G. A (topologically) finitely

generated powerful pro-p-group G is uniform if it has no element of order p (see
[13], p. 62). For instance, for p ≥ n + 2, the group Gln(Zp) has no elements
of order p, in particular, GL2(Zp) contains no elements of finite p-power order if
p ≥ 5 (see [20] 4.7). It follows that all the congruence kernels ofGLn(Zp), SLn(Zp)
or PGLn(Zp) are uniform pro-p-groups for p 6= 2.

We should mention that Lazard himself did not use the notation of powerful
or uniform groups. Instead, he formulated the above characterization of p-adic
analytic groups using the notation of p-valuable groups, i.e. complete p-valued
groups of finite rank, see [27, thm. III.3.1.7]. We recall that a group G is called
p-valued [27, III, Def. 2.1.2] if it possesses a p-valuation, i.e. a function ω : G →
(0,∞] satisfying the following axioms for all g and h in G :

(i) ω(1) =∞, and 1/(p− 1) < ω(g) <∞ for g 6= 1,
(ii) ω(gh−1) ≥ min{ω(g), ω(h)},
(iii) ω(g−1h−1gh) ≥ ω(g) + ω(h) and
(iv) ω(gp) = ω(g) + 1.

In particular, it follows that Gν := {g ε G|ω(g) ≥ −ν} and Gν+ := {g ε G|ω(g) >
−ν} are normal subgroups for each ν in R. A p-valued group (G,ω) is said to be
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complete if G = lim←−
ν

G/Gν . Putting

grG :=
⊕
ν ε R

Gν/Gν+

we obtain a graded Lie algebra (the Lie bracket being induced by the group
commutator) over the graded ring Fp[π0] = gr Zp with π0 in degree −1 (the
action of π0 on gr G corresponds to taking the pth power of an element of G,
see [27, pp. 464-465]). In fact, gr G is free as a gr Zp-module and its rank is
called the rank of (G,ω) ([27, III 2.1.3]). In particular, a p-valued group has no
element of order p. The class of p-valuable groups is closed under taking closed
subgroups and forming finite products. We should remark that by [27, III 3.1.11]
a p-valuable group always admits a p-valuation which has rational values, more
precisely in a discrete subset of Q. Henceforth we assume that ω is of the latter
sort. If a compact p-adic group G is p-valued it is automatically pro-p ([27, III
3.1.7]. As mentioned above, Lazard’s original characterization now reads as: A
topological group is a compact p-adic Lie group (of finite dimension d) if and
only if it contains a normal open p-valuable subgroup of finite rank d ([27, III
3.1.3/7/9, 3.4.5]). In this case the dimension dimG (of the underlying p-adic
manifold) and the rank of G coincide (loc. cit.).

As explained in the remark after [39, lem. 4.3] the relation between p-valuable and
uniform pro-p-groups (for p 6= 2 for simplicity) is as follows (see also the Notes
at the end of chapter 4 in [13]): A p-valuable group G is called p-saturated [27,
III.2.1.6] if G has a p-valuation ω with the property that any g ε G with ω(g) >
p/(p − 1) is a pth power. If moreover, G has a minimal system of (topological)
generators g1, . . . , gd such that ω(gi)+ω(gj) > p/(p−1) for any 1 ≤ i 6= j ≤ d, we
say that G is strongly p-saturated as this property implies that every commutator
in G is a pth power. In particular, every strongly p-saturated p-valued group
G is powerful, and thus uniform since it does not have an element of order p.
Conversely, uniform groups even allow a p-valuation ω with ω(gi) = 1 for every gi
of an arbitrary minimal system of generators g1, . . . , gd. Since any element in G2

is a pth power [13, le. 4.10] one has: For p 6= 2, a p-valuable group G is uniform
if and only if it is strongly p-saturated.

2. The Iwasawa algebra - a review of Lazard’s work

Throughout this section we make the following assumption: Let O be a commu-
tative Noetherian local ring which is complete in its m-adic topology, where m is
the maximal ideal. We assume that κ = O/m is a finite field of characteristic p,
in particular O is compact.

In our applications O is usually the ring of integers in a finite extension field of
Qp or a finite field.

We denote by Λ = Λ(G) the Iwasawa algebra of a compact p-adic Lie group G,
i.e. the completed group algebra of G over O

Λ(G) = O[[G]] = lim←−
U

O[G/U ],
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where U runs through the open normal subgroups of G. For a good treatment of
basic properties of Λ, some of which we recall below, we refer the reader to [30,
V§2]. First we should mention that Λ is a semi-local ring, it is local if and only
if G is pro-p.

The global dimension glΛ(G) equals cdpG+glO where cdp denotes p-cohomological
dimension [3]. By a result of Serre [40] cdpG is finite if and only if G does not
contain an element of order p.

The whole deeper structure theory of Λ relies on the following observation which
is essentially due to Lazard [27].

Theorem 2.1. (Lazard) Assume that G is a p-valuable (hence compact p-adic
Lie) group and, in addition to our general assumptions, that O is a finite field or
a discrete valuation ring (DVR). Then O[[G]] possesses a complete separated and
exhaustive (increasing) filtration F•Λ such that

grO[[G]] ∼=
{
κ[X0, X1, . . . , Xd] if O is a DVR

κ[X1, . . . , Xd] if O = κ is a finite field

are isomorphisms of graded rings. Here d = dimG, and the grading on the
polynomial ring is given by assigning to each variable a certain strictly negative
integer degree.

For O = Zp this reformulation of Lazard’s result is [9, prop. 7.2]. Before we
extend it to a bigger class of rings O we restate Lazard’s original results more
precisely. First note that any valuation ω of G extends to a filtration also called
ω of the Iwasawa algebra Zp[[G]] and with respect to this filtration Lazard [27,
Ch. III 2.3.3/4] has established a canonical isomorphism

grω Zp[[G]] ∼= U(grω G).

Using this results he shows that one can describe the elements of Zp[[G]] as certain
power series in non-commuting variables. For this purpose we fix an ordered basis
of G, i.e. a sequence of elements g1, . . . , gd ε G\{1} such that the elements giGωgi

+

form a basis of gr G as an Fp[π0]-module. Then any λ ε Zp[[G]] has a unique
convergent expansion

λ =
∑
α ε Nd

λα(g1 − 1)α1 · . . . · (gd − 1)αd ,

with λα ε Zp for all α and conversely all such series converge in Zp[[G]] ([27, III
2.3.8], see also [39, §4]). In the language of Lazard this means that Λ is complete-
free ([27, I 2.1.17]) with topological basis

bα := (g1 − 1)α1 · . . . · (gd − 1)αd , α ε Nd.

In other words there is an isomorphism of filtered (in particular topological) Zp-
modules

Zp[[G]] ∼=
∏
α

Zpbα,

where the filtration of the left hand side is the product filtration with Zpbα being
isomorphic to the filtered Zp-module Zp(rα) which is isomorphic to Zp but with

shifted filtration by rα =
∑d

i=1 ω(gi).
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Now observe that there is a canonical isomorphism of topological O-algebras

O[[G]] ∼= O ⊗Zp Zp[[G]].

Thus the tensor product filtration on the right hand side induces a filtration on
O[[G]] such that there is an isomorphism of filtered (thus in particular topological)
O-modules

O[[G]] ∼=
∏
α

Obα

and an isomorphism of graded grO-algebras

grO[[G]] ∼= U(grO ⊗gr Zp grG),

where U(gr O ⊗gr Zp gr G) denotes the enveloping algebra of the Lie algebra
gr O ⊗gr Zp gr G. Furthermore, it is always possible to replace the valuation ω
by a valuation ω′ with values in Q such that (G,ω′) is also p-valued and such
that grω′G is an abelian Lie algebra. In this case, we obtain an isomorphism

grω′O[[G]] ∼= (grO)[X1, . . . , Xd]

where d is the dimension of G. Now the theorem follows immediately in the
general case. Also we obtain the following Proposition where by mG we denote
the maximal ideal of O[[G]].

Proposition 2.2. Let G be a uniform group and assume that O is as in the above
theorem. Then, with respect to the mG-adic filtration there is an isomorphism of
(possibly non-commutative) graded grO-algebras

grmG
O[[G]] ∼= U(grG⊗gr Zp grO).

Remark 2.3. Lazard uses filtrations indexed by the positive real numbers in gen-
eral. But in [9, proof of 7.2/3] it is explained that in our situation one always can
rescale the filtration on Zp[[G]] to get one indexed by Z. Of course, this extends
to general O[[G]].

Now, the strategy is to use techniques from the theory of filtered rings and mod-
ules to fully exploit Lazard’s Theorem and to derive further properties of Λ and
of its module category. Most of these methods can be found in the book [28].

Corollary 2.4. Assume that O is finitely generated as a Zp-module and let G be
a compact p-adic Lie group. Then O[[G]] is Noetherian.

Proof. Using Lazard’s characterization of p-adic Lie groups and the fact that for
an open subgroup H of G the module Λ(G) is finitely generated over Λ(H) we
may assume that G itself is p-valued. Now the result follows since gr Λ(G) ∼=
(grO)[X1, . . . , Xd] is Noetherian and Λ(G) is complete ([28, II§1 prop. 3]). �

Using similar techniques one shows that for a p-valued compact p-adic Lie group
the ring O[[G]] has no zero divisor if O is either a finite field or a DVR:

Corollary 2.5. In the situation of the Theorem O[[G]] is an integral domain.

In the mixed characteristic case A. Neumann [31] shows this for all torsionfree pro-
p p-adic Lie groups (in the case O = Zp) by different means, which unfortunately
do not generalize e.g. to the case of a finite field O = κ.
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Proposition 2.6. (Neumann) Assume that O is regular with mixed characteristic
and let G be a pro-p-group without any element of order p and such O[[G]] is
Noetherian (e.g. if G is a pro-p p-adic Lie group). Then O[[G]] has no zero
divisor.

The proof is completely analogous to [31, thm 1] using a theorem of Walker since
the finiteness of the global dimension is well known by Brumer’s result.

3. Virtual objects and some requisites from K-theory

We begin recalling Swan’s construction of relative K-groups. For any ring Λ we
denote by P(Λ) the category of finitely generated projective Λ-modules. For any
homomorphism of rings φ : Λ→ Λ′, the relative K-group K0(Λ,Λ

′) is defined by
generators and relations, as follows. Consider triples (M,N, f) withM,N ε P(Λ),
f : Λ′ ⊗Λ M ∼= Λ′ ⊗N. For brevity, let M ′ = Λ′ = Λ′ ⊗Λ M, etc. A morphism

(µ, ν) : (M1, N1, f1)→ (M2, N2, f2)

consists of a pair of maps µ ε HomΛ(M1,M2), ν ε HomΛ(N1, N2), such that

ν ′ ◦ f1 = f2 ◦ µ′ : M ′
1 → N ′

2.

We write (M1, N1, f1) ∼= (M2, N2, f2) if both µ and ν are isomorphisms. A short
exact sequence of triples is a sequence

0 // (M1, N1, f1)
(µ1,ν1)

// (M2, N2, f2)
(µ2,ν2)

// (M3, N3, f3) // 0

such that each pair (µi, νi) is a morphism, and where the sequences of Λ-modules

0 // M1
µ1 // M2

µ2 // M3
// 0

and similarly for Ni with νi are exact. Now K0(Λ,Λ
′) is defined as the free abelian

group generated by all isomorphism classes of triples, modulo the relations

(L,N, gf) = (L,M, f) + (M,N, g)

and for each short exact sequence as above

(M2, N2, f2) = (M1, N1, f1) + (M3, N3, f3).

This relative K-group fits into the following exact sequence of groups

K1(Λ) // K1(Λ
′)

δ // K0(Λ,Λ
′)

λ // K0(Λ) // K0(Λ
′),

where the map δ is defined by δ(f) = [Λn,Λn, f ] for f ε GLn(Λ
′), while the map

λ is given by λ([M,N, f ]) = [M ]− [N ], and where the brackets denote classes of
triples in K0(Λ,Λ

′) and K0(Λ), respectively.

Next we consider the special case where Λ′ arises as localisation ΛT of a Noe-
therian regular ring Λ without zero-divisors by an Ore set T . Recall that a mul-
tiplicative closed subset T of a ring R is said to satisfy the right Ore condition if,
for each r ε R and s ε T , there exist r′ ε R and s′ ε T such that rs′ = sr′. If R
is Noetherian, then the right Ore condition guarantees that the right localisation
RT of R at T exists. There is an analogous left version of this and we say that
T is an Ore set if it satisfies both the left and right Ore condition. In this case
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the left and right localisation are canonically isomorphic and thus identified and
called localisation of R at T . A good reference for (classical) localisation is the
book [29, Ch. 2].

We say that a Λ-module M is T -torsion if ΛT ⊗Λ M = 0 and we denote by
Λ-modT −tor the full subcategory of Λ-mod consisting of all T -torsion modules.
Now the category ΛT -mod can be identified with the quotient category of Λ-mod
with respect to the Serre subcategory Λ-modT −tor. Using that by regularity of the
rings Λ and ΛT their G- and K-theory coincide the localisation exact sequence
of K-theory looks like

K1(Λ) // K1(Λ
′)

δ // K0(Λ-modT −tor)
λ // K0(Λ) // K0(Λ

′),

where the map λ is induced by the inclusion of categories while the map δ is
defined by δ(f) = [coker(f)] for f ε GLn(Λ

′)∩Mn(Λ) and noting that any element
of GLn(Λ

′) is a product of the form fg−1 with f, g ε GLn(Λ
′) ∩Mn(Λ), see [1].

It is well known and follows from the 5-lemma that there is a canonical isomor-
phism of groups

K0(Λ-modT −tor) ∼= K0(Λ,ΛT )(3.1)

once we have established a map commuting with the δ’s and λ’s. Since in our
applications both Λ and ΛT are regular rings we only describe it in this situation,
for simplicity. First note that under this assumptions the maps λ are both trivial
because [Λ] ε Z[Λ] ∼= K0(Λ) is mapped to 0 6= [ΛT ] ε Z[ΛT ] ∼= K0(ΛT ). Now let
M be in Λ-modT −tor and choose a (finite) projective, thus free resolution

F • = F •(M) : · · · //F i //· · · // F 2 // F 1 // F 0 // 0

of M. After tensoring with ΛT this becomes an acyclic resolution F •
T of free ΛT -

modules by assumption on M. By F+ = F+(M) and F− = F−(M) we denote
the even and odd sum ⊕

i even

F i and
⊕
i odd

F i,

respectively, and similarly for F •
T . Now we choose successively sections in order

to obtain a map φ : F+
T → F−

T and we define the image of M in K0(Λ,ΛT ) as

M 7→ [F+, F−, φ].

We leave it to the reader to check that this is independent of the choice of the
resolution F • as well as of the map φ, for more details in a slightly different
context see also [11, lem. 1.1.3,1.2.2,1.2.3, thm. 1.2.1]. One also has to check
that our map is additive on short exact sequences in order to see that the above
assignment really induces a map on classes [M ] ε K0(Λ-modT −tor), cf. (thm. 1.2.7,
loc. cit.). For an example of this construction, see 6.9 (i).

Note that under the assumption that both Λ and ΛT are local, i.e. K1(ΛT ) ∼=
Λ×
T /[Λ

×
T ,Λ

×
T ] and similarly for Λ by [42, ex. 1.6], the group K0(Λ,ΛT ) is generated

by triples of the form [Λ,Λ, f ] with f ε Λ×
T ∩ Λ. One sees immediately that

[Λ,Λ, f ] 7→ [coker(f)] induces the inverse map K0(Λ,ΛT ) ∼= K0(Λ-modT −tor).
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Now we shall describe the image of M in K0(Λ,ΛT ) using the concept of virtual
objects due to Deligne [12] and further developed by Burns and Flach [4] and also
used by Huber and Kings [23] in their approach to non-commutative Iwasawa
theory. Let R be a associative ring with unit. The category of virtual objects
V (R) is a Picard category, i.e. a groupoid ( a category in which all morphisms
are isomorphisms) equipped with a bifunctor (L,M) 7→ L�M satisfying certain
conditions, see [4, §2.1] for details, in particular it has a unit object 1V (R) unique
up to unique isomorphism. Furthermore V (R) comes equipped with a functor

[−] : (Dp(R), is)→ V (R),

where Dp(R) denotes the category of perfect complexes (as full triangulated sub-
category of the derived categoryDb(R) of the homotopy category of bounded com-
plexes of R-modules) and (Dp(R), is) denotes the subcategory of isomorphisms.
For the construction of that functor and a list of its compatibility properties we
refer the reader to (prop. 2.1, loc. cit.), here we only mention that [−] commutes
with the functors R′ ⊗R − : Dp(R) → Dp(R′) and R′ ⊗R − : V (R) → V (R′)
induced by any ring extension R→ R′ (prop. 2.1 d), loc. cit.) and that for each
exact triangle in Dp(R)

Σ = Σ(u, v, w) : X
u // Y

v // Z
w // X[1]

there is a nonempty set [Σ] of isomorphisms φ : [Y ] ∼= [X] � [Z] in V (R); in
case R is a regular ring [Σ] consists of precisely one element, φΣ say (prop. 2.1,
loc. cit.). Finally, one has for X ε Dp(R) such that all Hi(X) ε Dp(R), too, a
canonical isomorphism

[X] ∼= �
i ε Z

[Hi(X)](−1)i−1

,(3.2)

see (loc. cit. (9)).
For a commutative local ring the pair (V (R), [−]) is equivalent to the determinant
functor in the sense of Knudsen and Mumford [25] taking values in the category
of graded line bundles on Spec(R) (this is the best way to think about virtual
objects). Finally we should mention that the fundamental groups of the Picard
category V (R) (π0(V (R)) is the group of isomorphism classes of objects of V (R)
while π1(V (R)) = AutV (R)(1V (R))) are canonically isomorphic to the K-groups
K0(R) and K1(R) of R (§2.3, loc. cit.). Also the relative K-group K0(R,R

′) for
a ring homomorphism R→ R′ can be realized as fundamental group of a Picard
category: Let P be the Picard category with unique object 1P and AutP(1P) = 0.
Following [4, (20)] we define V (R,R′) to be the fibre product category V (R)×V (R′)

P . Thus objects of V (R,R′) consists of pairs (M,λ) with M ε V (R) and λ :
R′ ⊗RM → 1V (R′) an isomorphism in V (R′). In analogy with prop. 2.4 (loc. cit)
we obtain an isomorphism

K0(R,R
′) ∼= π0(V (R,R′))

where [M,N, f ] is mapped to ([M ] � [N ]−1, [f ] � id[R′⊗RN ]−1).

Now we return to our previous situation and let M be in Λ-modT −tor. Then the
associated complex M [0] concentrated in degree 0 belongs to Dp(Λ) and its image
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in Dp(ΛT ) is given by an acyclic complex. Thus the isomorphism ΛT ⊗ΛM [0]→ 0
in Dp(ΛT ) induces an isomorphism

λM : ΛT ⊗Λ [M [0]] = [ΛT ⊗Λ M [0]]→ [0] = 1V (ΛT )

and hence the pair ([M [0]], λM) is an element in V (Λ,ΛT ). We denote its class
in K0(Λ,ΛT ) by charΛ(M) and call it the characteristic class of M.

From the analog of [4, rem. in 2.7] we obtain the following

Proposition 3.1. Under the above identifications K0(Λ-modT −tor) = K0(Λ,ΛT ) =
π0(V (Λ,ΛT )) the different classes associated to M ε Λ-modT −tor coincide

[M ] = [F (M)+, F (M)−, φ] = charΛ(M).

Since K1 of a local ring can be calculated via the Dieudonné determinant and the
relative K-group K0(Λ,ΛT ) fits into the following short exact sequence

K1(Λ) // K1(ΛT ) // K0(Λ,ΛT ) // 0

Λ×/[Λ×,Λ×] // Λ×
T /[Λ

×
T ,Λ

×
T ] // Λ×

T /[Λ
×
T ,Λ

×
T ]Λ× // 1,

we can consider charΛ(M) also as an element FM [Λ×
T ,Λ

×
T ]Λ× ε Λ×

T /[Λ
×
T ,Λ

×
T ]Λ×.

Then we call any such choice FM ε Λ×
T a characteristic element of M.

Remark 3.2. Let G be a pro-p p-adic Lie group without element of order p and
denote by Q(G) its skew field of fractions of Λ(G). Then the above applies to
the ring homomorphism Λ(G) → Q(G) and in this case the relative K-group
K0(Λ(G), Q(G)) describes nothing else than the Grothendieck group of the full
torsion subcategory Λ(G)-modtor of Λ(G)-mod. Thus one could define charac-
teristic classes for Λ(G)-torsion modules inside this K-group. Unfortunately, in
the noncommutative case there are examples M of (pseudo-null) Λ(G)-torsion
modules whose class in K0(Λ(G)-modtor) vanishes though the G-Euler-Poincaré
characteristic of M does not (cf. [8, §4]), i.e. the latter K-group does not discover
this characteristic and thus cannot bear the arithmetic content of e.g. the Selmer
group of an elliptic curve (see section 7). In fact, the module in the following ex-
ample which stems from [8] has this property. It also illustrates that, in general,
the G-Euler characteristic is not invariant under pseudo-isomorphisms.

Example 3.3. Let G = H × Γ be a p-valuable group with Γ ∼= Zp, generated
by γ say, and assume that H contains a subgroup which is a semi-direct product
of the following form. Let H1 and H2 be two closed subgroups of H which are

isomorphic to Zp, and which are such that h2h1h
−1
2 = h

φ(h2)
1 for fixed topological

generators hi of Hi, where φ : H2
� � // Aut(H1) = Z×

p is a continuous injective

group homomorphism; in particular, the subgroup H1H2 of H is non-abelian.
For example, such subgroup exists for any H which is open in SLn(Zp) (n ≥ 2.)
Putting

g = h1 − 1, ω := h2 + pr,



CHARACTERISTIC ELEMENTS IN NONCOMMUTATIVE IWASAWA THEORY 13

for any integer r ≥ 1, and

u = h2 ·
h
φ(h2)
1 − 1

h1 − 1

one verifies that

gω = ug(3.3)

holds. Using this relation one sees immediately that right multiplication by g on
Λ induces a short exact sequence

0 // Λ/Λ(γ − u) ·g // Λ/Λ(γ − ω) // M // 0(3.4)

defining the Λ-module M. Note that Λ/Λ(γ − ω) is isomorphic as Λ(G)-module
to Λ(H) on which Γ acts via right multiplication by ω, similar for Λ/Λ(γ − u).
Thus M is a pseudo-null Λ(G)-module because its Λ(H)-rank is zero, cf. [44]. We
postpone the calculation of the Euler characteristic to section 6 where we will have
more techniques available, see Example 6.9 where we also construct a pseudo-null
module with non-trivial Euler characteristic for the semi-direct product Zp o Zp.
We determine the class of M in K0(Λ(G)-modtor) : from the short exact sequence
(3.4) one sees that the class of

(γ − ω)(γ − u)−1

in Q(G)×/[Q(G)×, Q(G)×]Λ(G)× represents that module, and is zero. For the
convenience of the reader we recall the short argument from [8, §4]: Since γ is in
the center of G, by (3.3) we have

g(γ − ω) = (γ − u)g

and thus we get in Q(G)×/[Q(G)×, Q(G)×]Λ(G)×

g(γ − ω)(γ − u)−1 = (γ − u)g(γ − u)−1(3.5)

= (γ − u)(γ − u)−1g(3.6)

= g.(3.7)

Since g is invertible in Q(G)×/[Q(G)×, Q(G)×]Λ(G)× the result follows. But we
should also mention that we do not know any example for a pseudo-null module
with non-vanishing class in K0(Λ(G)-mod).

Thus one could try to search for smaller subcategories of Λ(G)-modtor. But the
characteristic class in the corresponding K-group can only be identified with an
characteristic element if the suitable subcategory of Λ-modtor can be described
by a pair of rings as for Λ → ΛT for a suitable Ore-set T . Also, only in this
case the formalism of virtual objects can be applied to “descent” as we will do in
section 6. This is our motivation to study Ore-sets associated with certain group
extensions in section 4.
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4. Ore sets associated with group extensions

In section 3 we saw that for every Ore-set T the group K0(Λ,ΛT ) describes the
Grothendieck group of T -torsion Λ-modules. From classical Iwasawa theory over
Zp-extensions we know that characteristic elements live in K0(Λ(Γ), Q(Γ)). In
order to make use of this information we are looking for a ring R with Λ(G) ⊆
R ⊆ Q(G) such that the projection ψH : Λ(G)→ Λ(Γ) extends to a commutative
diagram

Λ(G) // //
� _

��

Λ(Γ)
� _

��

R // Q(Γ).

The first candidate for R would be ΛT ′ in case T ′ := Λ(G) \ ker(ψH) satisfies the
Ore condition. But firstly it seems difficult to prove this for a general class of
groups (only the case G = Zp o Zp is known and straightforward) and secondly
even if the existence is known the associated T ′-torsion category is not closed
under the kind of twisting by representations (even for G abelian) that will be
discussed in section 5. Thus we shall take a slightly smaller set T below.

Since these type of questions are of general interest and since there does not seem
to exist any localisation result of this sort in the literature we treat this topic in
greater generality than needed for our applications. But see [34, thm. 2.14/15]
where a similar topic is discussed in the context of the (usual) group algebra of
polycyclic-by-finite groups with coefficients in a field.

Let G be an extension of a torsionfree pro-p p-adic Lie group Γ by a p-adic Lie
group H, i.e. we have an short exact sequence

1 // H // G // Γ // 1.

The projection G � Γ induces a canonical surjective ring homomorphism

ψH : O[[G]] � κ[[Γ]],

where κ denotes the residue class field of O as before. Note that due to compact-
ness m(H) := ker(ψH) equals O[[G]]mH = mHO[[G]], where mH denotes the kernel
of the canonical map

O[[H]] � κ.

We put T := Λ \m(H) and dare to formulate the following

Conjecture 4.1. Assume that H is a pro-p group. Then, the multiplicative closed
set T is an Ore set of Λ.

Recall that an element x ε R is right regular if xr = 0 implies r = 0 for r ε R.
Similarly left regular is defined and regular means both right and left regular (and
hence not a zero divisor). For an ideal I of R we define the multiplicatively closed
set

CR(I) := {s ε R|s+ I is regular in R/I}.
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Note that the above set T is nothing else than C(m(H)) because κ[[Γ]] ∼= κ[[X]]
is an integral domain or in other words m(H) is a completely prime ideal.

Theorem 4.2. Let G the semi-direct product ZpoZp or the direct product H×Γ
of a uniform group H with a torsion-free pro-p p-adic Lie group Γ. Then the
multiplicative set T satisfies the left and right Ore condition for Λ = O[[G]] for
O either a finite field or a DVR. In particular, the localisation ΛT exists and is
a Noetherian regular local ring with gl(ΛT ) < gl(Λ).

Proof. We mention that since the uniformising element of O is central in Λ and
contained in m(H) it would suffice to prove the statement for a finite field κ by
[41, lem. 4.2]. Now the strategy is to show that

(i) m(H) satisfies the (left and right) Artin Rees property ([29, 4.2.2]) and
(ii) CΛ/m(H)2(m(H)/m(H)2) is an Ore set of Λ/m(H)2.

Then [41, cor. 4.7] (see also [29, 4.2.10]) implies that T is an Ore set of Λ. These
properties will be investigated in the next subsections. The other statements
follow from the following lemma. �

We hope that one can modify the above criteria (i) and (ii) replacing the m(H)-
adic filtration by a filtration induced by Lazard’s more general filtration associ-
ated with Λ(H) for any p-valued group (H,ω) or using the stronger criterion of
Smith [41, lem. 4.1, thm. 4.6] applied to the m(H ′)-adic filtration associated with
an uniform normal subgroup H ′ of G contained in H. This hope is the reason for
the above conjecture which could even extend to a larger class of not necessarily
pro-p groups, e.g. to open subgroups of GLn(Zp). In fact, there is already joint
work with J. Coates and R. Sujatha in progress in order to settle these cases.

Lemma 4.3. Let Λ be a Noetherian local ring with maximal ideal m and P 6= m
a completely prime ideal. Suppose that T := C(P) = Λ \ P satisfies the Ore
condition. Then ΛT is again a local ring, i.e. its non-units form a maximal ideal,
and the global dimension of ΛT is (strictly) less than that of Λ. More precisely,
the units are of the following form

Λ×
T = {λt−1| λ, t ε T }.

Proof. Let M $ ΛT be a maximal left ideal. By [29, Prop. 2.1.16] we conclude
that M = ΛT (M∩ Λ) ⊆ I(H)T as M∩ Λ ⊆ P by the properness of M (Note
that this argument holds only for localisations at completely prime ideals). By
symmetry we see that PT is the unique left and the unique right maximal ideal of
ΛT which implies that ΛT is local. The statement concerning the global dimension
follows from [29, cor. 4.3] and theorem 4.4 (loc. cit.) applied to the unique simple
Λ-module Λ/m. The description of the units is an immediate consequence from
the well known fact that the maximal ideal of ΛT is PΛT = {pt−1|p ε P, t ε T }.

�

For the next statement we assume that Γ ∼= Zp. In the arithmetic applications we
have in mind those Λ(G)-modules which are finitely generated over Λ(H) play an

important role, see Theorem 7.3. We write Λ(G)-modH for the full subcategory
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of Λ(G)-mod consisting of such modules. Recall that a Λ(G)-module M is called
T -torsion, if M ⊗Λ ΛT = 0. The significance of T being an Ore set results from
the following observation.

Proposition 4.4. Assume that T is an Ore-set.

(i) Let g ε Mn(Λ(G)) ∩ GLn(Λ(G)T ) for some natural number n, Then the
cokernel of g is finitely generated as Λ(H)-module while ker g is trivial.

(ii) The inclusion Λ(G)-modH ⊆ Λ(G)-modT −tor is an identity of categories
where the latter one consists of all those finitely generated Λ(G)-modules
which are Λ(G)T -torsion.

(iii) K0(Λ(G),Λ(G)T ) ∼= K0(Λ(G)-modT −tor) ∼= K0(Λ(G)-modH).

Before we give the proof consider the canonical ring homomorphism πH : Λ(G)→
Λ(Γ) which is induced by the group homomorphism G → Γ. Since π−1

H ((p)) =
m(H) and thus πH(T ) ⊆ Λ(Γ) \ (p), one obtains a ring homomorphism

Λ(G)T → Λ(Γ)(p).

Proof. Set M := coker(g). For all n the augmentation map πH induces homomor-
phisms of groups

GLn(Λ(G)T )→ GLn(Λ(Γ)(p)).

Thus reduction modulo I(H) induces a short exact sequence

0 // Λ(Γ)n // Λ(Γ)n // MH
// 0,

where MH is a finitely generated Zp-module because any element in MH has an
annihilator prime to p (this implies the left-exactness because MH being Λ(Γ)-
torsion forces the kernel to be torsion as well, but Λ(Γ)n is torsionfree). Then
Nakayama’s lemma implies (i) (for the kernel use the same argument as above).
Next we prove that every module in Λ(G)-modH is indeed Λ(G)T -torsion: Let
m ε M arbitrary. By Lemma 4.5 below there is an element in T and a surjection
Λ/Λf � Λm ⊆M. Since f obviously annihilates m the claim follows.

Now letM ε Λ(G)-modT −tor be arbitrary and choose a finite set of Λ(G)-generators
mi, i ε I of M. By assumption there exists for every i ε I an element fi in T such
that fimi = 0 and thus M is the homomorphic image of the finitely generated
Λ(H)-module

⊕
i ε I Λ(G)/Λ(G)fi by Lemma 4.5 again. This proves (ii). The last

item follows from (ii) and the standard exact localisation sequences of (relative)
K-theory. �

Lemma 4.5. Let J be a left ideal of Λ = Λ(G). Then M := Λ/J is finitely
generated as Λ(H)-module if and only if J contains an element of T .

Proof. Asssume first that M is a finitely generated Λ(H)-module and suppose all
elements of J reduce to zero in κ[[Γ]]. Then M/m(H)M ∼= κ[[Γ]]. But since there
is some surjection Λ(H)n → M and since mH ⊆ m(H) the module M/m(H)M
is a finitely generated κ-module, a contradiction. Now assume for simplicity that
J = Λ(G)f with f ε T , i.e. we have a short exact sequence

Λ(G)
·f // Λ(G) // M // 0.
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Tensoring with κ[[Γ]] ∼= Λ(G)/m(H) leads to

κ[[Γ]]
·f̄ // κ[[Γ]] // M/mHM // 0

showing that M/mHM is a finite-dimensional κ-module. Thus, by Nakayama’s
Lemma, M is finitely generated over Λ(H). �

4.1. The direct product case.

Theorem 4.6. Let G = H ×Γ be the direct product of a uniform group H and a
torsion-free pro-p p-adic Lie group Γ. Then the Iwasawa algebra Λ(G) is complete
and separated with respect to its m(H)-adic filtration. Its associated graded ring
grΛ(G) is isomorphic to a generalized enveloping algebra

grm(H)Λ(G) ∼=
{
U(grH ⊗grZp κ[π])⊗κ[π] κ[[Γ]][π] if O is a DVR,
U(grH ⊗grZp κ)⊗κ κ[[Γ]] if O = κ is a finite field.

in particular, it is a Noetherian integral domain.

For G = H o Γ, the above isomorphism is still an isomorphism of grade κ[π]-
modules. Analyzing the induced ring structure will hopefully lead to a proof of
Conjecture 4.1 in this case.

Proof. Since m(H) is contained in the maximal ideal of Λ(G) the m(H)-adic
filtration is separated. By compactness of Λ(G) the canonical map

Λ(G)→ lim←−
n

Λ(G)/m(H)n

is thus an isomorphism. Now we calculate the graded ring, using flatness of Λ(G)
over Λ(H) and Corollary 2.2 we obtain the following isomorphisms of graded
κ[π]-modules

grm(H)Λ(G) ∼=
⊕
n≥0

m(H)n/m(H)n+1

∼=
⊕
n≥0

mn
HΛ(G)/mn+1

H Λ(G)

∼=
⊕
n≥0

(
(mn

H/m
n+1
H )⊗Λ(H) Λ(G)

)
∼=

⊕
n≥0

(
(mn

H/m
n+1
H )⊗κ κ[[Γ]]

)
∼=

(
grmH

Λ(H)
)
⊗κ κ[[Γ]]

∼= U(grH ⊗grZp grO)⊗κ κ[[Γ]]
∼= U(grH ⊗grZp grO)⊗κ[π] κ[[Γ]][π].

Since G = H × Γ this is also a ring-isomorphism. By [29, 1.7.14] and 2.1 the
latter ring is an Noetherian integral domain. Observe that the above calculation
holds (up to the ring structure) also for arbitrary group extensions of the form
considered above. �
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Recall that a filtered ring R with filtration F•R is called a Zariski ring if its
associated Rees ring

R̃ =
⊕
n ε Z

FnRt
n ⊆ R[t, t−1]

is Noetherian and F−1R is contained in the Jacobson ideal of F0R. Now, the
equivalences of (1), (3) and (4) of [28, ch. II §2 thm. 2.1.2] imply the following

Corollary 4.7. Under the assumptions of the theorem Λ(G) endowed with its
m(H)-adic filtration is a Zariski ring, in particular it satisfies the (left and right)
Artin Rees property for the ideal m(H).

Lemma 4.8. Under the conditions of the theorem it holds that

CΛ(m(H)) ⊆ CΛ(m(H)2).

Thus CΛ/m(H)2(m(H)/m(H)2) is an Ore set of Λ/m(H)2.

Proof. Let λ be in CΛ(m(H)) = Λ \ m(H) and let λ′ be an element in Λ such
for which λ′λ ε m(H)2 holds. Note that λ′ is in m(H) because λ belongs to
CΛ(m(H)). We have to prove that λ′ is in m(H)2. We assume the contrary, i.e.
λ′ ε m(H) \m(H)2. But then we obtain that in the graded ring grm(H)Λ(G)

(λ′ + m(H)2) · (λ+ m(H)) = λ′λ+ m(H)2 = 0,

which contradicts the integrality of that ring.

The implication that if λλ′ ε m(H) then λ′ ε m(H) follows by symmetry and thus
we have shown the first statement which in turn implies that

CΛ/m(H)2(m(H)/m(H)2) ⊆ CΛ/m(H)2(0).

Now the second statement follows from Small’s theorem [29, 4.1.3/4]. �

4.2. The semi-direct product case. In this subsection we restrict to the eas-
iest semi-direct product case, viz G = Zp o Zp, though the methods certainly
extend to a wider class of poly-cyclic pro-p-groups.

Again, we are first concerned with the Artin-Rees property.

Proposition 4.9. Let O = κ be a finite field. Then m(H) satisfies the Artin
Rees property.

Proof. We identify Λ(G) with the skew power series ring κ[[Y,X;σ, δ]]as in [44].
Note that Y is a normal element of Λ(G), i.e. Λ(G)Y = Y Λ(G), which generates
m(H). Thus the statement follows from [29, thm. 4.2.7]. �

With the same technique and some calculations one easily shows that the propo-
sition holds also if O is a DVR.

Lemma 4.10. For O a DVR or a finite field and a uniform group G = H o Γ
which is the semidirect product of a normal uniform subgroup H and Γ ∼= Zp it
holds that

CΛ(m(H)) ⊆ CΛ(m(H)2).

Thus CΛ/m(H)2(m(H)/m(H)2) is an Ore set of Λ/m(H)2.
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Proof. Let λ be in CΛ(m(H)) = Λ \m(H) and let λ′ be an element in Λ such that
λ′λ ε m(H)2 holds. Note that λ′ is in m(H) because λ belongs to CΛ(m(H)). We
have to prove that λ′ is in m(H)2. We assume the contrary, i.e. λ′ ε m(H)\m(H)2.
We identify Λ(G) with the skew power series ring Λ(H)[[X;σ, δ]] (see [44], σ is
the ring isomorphism of Λ(H) induced by the operation of Γ on H while δ denotes
the σ-derivation σ − id). We expand λ and λ′ as

λ =
∑
i≥0

λiX
i and λ′ =

∑
i≥0

λ′iX
i,

where all λ′i ε mH (note that for any n ≥ 0 the ideal m(H)n consists precisely
of those power series in the variable X whose coefficients all lie in mn

H). By
assumption there exist i0 and j0 such that λi0 and λ′j0 are not in mH and m2

H ,
respectively. Let us assume that these indices are chosen minimal with this
property. We want to calculate the product λ′λ in Λ/m(H)2 and we observe
that the latter ring is isomorphic to the skew power series ring Λ(H)/m2

H [[X;σ]]
where σ is induced by σ, while δ induces the zero derivation. For the (i0 + j0)th
coefficient one obtains

0 ≡ (λ′λ)i0+j0 ≡
∑

k+l=i0+j0

λ′kσ
k(λl) mod m2

H .

The products λ′kσ
k(λl) are in m2

H for k < j0 by definition of j0 and for k > j0
because then λ′k and σk(λl) (l < i0) both belong to mH as mH is σ-invariant.
Thus λ′j0σ

j0(λi0) belongs to m2
H , which is a contradiction as σj0(λi0) is a unit of

Λ(H). The rest is identical as in the proof of lemma 4.8. �

5. Twisting

The twisting of the complex L-function by an Artin character corresponds on the
algebraic side to tensoring the associated modules (e.g. the dual of the Selmer
group of an elliptic curve) by the accordant representation. Basic properties of
the latter formalism are studied in the first subsection. In the second subsection
we apply it in order to define the evaluation of an characteristic class or ele-
ment at certain p-adic representations. In the third subsection we discuss several
definitions of (equivariant) Euler-characteristics.

5.1. Twisting of Λ-modules. Let T be a free O-module of finite rank r with
continuous G-action given by

ρ : G→ AutO(T ) = Glr(O).

Definition 5.1. For a finitely generated Λ = Λ(G)-module M we define the
finitely generated Λ-module

M(ρ) := M ⊗O T = Homcont.,O(M,A)∨

with diagonal G-action and where A = T∨ denotes the Pontryagin dual of T,

Note that the functor −(ρ) is exact. The following lemma is well-known.
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Lemma 5.2. For any choice of an O-basis of T, i.e. of an O-module isomorphism
φ : T ∼= Or, there is a canonical isomorphism

Λ(ρ)→ Λ⊗O Or ∼= Λr,

induced by mapping g ⊗ t, g ε G, t ε T, to gφ(ρ(g−1)t).

From this lemma, it follows that if P is a projective Λ-module, then so is P (ρ).

Now let ρ : G → GL(V ) be a continuous linear representation on a finite di-
mensional Vector space V over a finite extension K of Qp with ring of integers
O. We choose a G-invariant O-lattice T ⊆ V. We denote by Λ(G) = O[[G]] the
Iwasawa-algebra of G with coefficients in O.
The following lemma is immediately verified.

Lemma 5.3. For any finitely generated Λ-module M there are canonical isomor-
phism of O-modules

T ⊗O[[G]] M ∼= (T ⊗O M)⊗O[[G]] O,(5.8)

where t⊗m is mapped to t⊗m⊗ 1 while the inverse map is induced by mapping
t⊗m⊗ o to o(t⊗m) = (ot)⊗m = t⊗ (om). They induce isomorphisms

Tor
O[[G]]
i (T,M) ∼= Tor

O[[G]]
i (T ⊗O M,O)(5.9)

for all i ≥ 0.

Now let us again assume to be in the situation of section 4 with G being pro-p
and G/H ∼= Zp. The exact functor T ⊗O − induces the following homomorphism
of K-groups

ρ∗ : K0(Λ(G)-modH)→ K0(Λ(G)-modH),

indeed, if M is finitely generated over Λ(H), so is T ⊗O M. In fact, ρ∗ is inde-
pendent of the choice of the lattice T.

Lemma 5.4. Assume that the Weierstrass preparation theorem holds or that
κ[[G]] is an integral domain. Let M ε Λ(G)-modH and T ′ a further G-invariant
lattice of V. Then we have

[T ⊗O M ] = [T ′ ⊗O M ]

in K0(Λ(G)-modH).

Proof. By a standard argument we may assume that T ′ ⊆ T and that M = Λ/Λf
with an element f of finite reduced order because classes of such modules generate
the K-group. It follows easily from our assumption that M is a torsionfree O-
module. Denoting by E the finite G-module T/T ′ we obtain thus the following
exact sequence

0 // T ′ ⊗O M // T ⊗O M // E ⊗O M // 0.

Using a Jordan Hölder series of E it is sufficient to show that [κ⊗OM ] vanishes.
But this follows from the following exact sequence in Λ(G)-modH

0 // M
π // M // κ⊗O M // 0,

where π denotes an uniformizer of O. �
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Using the isomorphism K0(Λ(G),Λ(G)T ) ∼= K0(Λ(G)-modH) established in Pro-
position 4.4, we obtain also a homomorphism

ρ∗ : K0(Λ(G),Λ(G)T )→ K0(Λ(G),Λ(G)T ),

which can be described as follows:

Consider a triple (P1, P2, λ) representing a class of K0(Λ(G),Λ(G)T ) with Pi
projective (thus free) Λ(G)-modules and λ : P1⊗Λ(G)Λ(G)T → P2⊗Λ(G)Λ(G)T an
isomorphism of Λ(G)T -modules. Since Pi ⊗Λ(G) Λ(G)T , i = 1, 2, are free Λ(G)T -
modules of rank m, say, and since λ can be described by a invertible matrix
with coefficients in Λ(G)T it is easily seen by finding a common denominator
of the matrix elements that there exist matrices Ai ε Mm(Λ(G)) ∩GLm(Λ(G)T )
such that A1(A2)

−1 represents λ (for a certain choice of bases). Now we twist
the Λ(G)-homomorphisms λi given by the Ai with T and denote the composite
T ⊗O λ1 ◦ (T ⊗O λ2)

−1 by T ⊗O λ. Now the triple (P1, P2, λ) is sent to (T ⊗O
P1, T ⊗O P2, T ⊗O λ).

We also would like to see how twisting by ρ operates on K1(Λ(G)T ) ∼= (Λ(G)×T )ab.
To this end, for a finite dimensional continuous O-representation ρ : G →
AutO(T ) we define the twist operator

twρ : Λ(G)→ EndO(T )⊗O Λ(G)

as follows. By continuity we may assume that λ ε Λ(G) is of the form
∑
agg

where almost all ag ε O are zero. Then we set twρ(λ) :=
∑
agρ(g

−1)⊗ g.
The restriction of twρ to T and the choice of an O-basis of T induces the multi-
plicative map

twρ : T →Mm(Λ) ∩GLm(ΛT ),

if T is an Ore-set of O[[G]] and where m = rkOT. Thus twρ extends to a ring
homomorphism

twρ : ΛT →Mm(ΛT ).

Restricting it to the units we obtain a group homomorphism

twρ : Λ×
T → GLm(ΛT ).

If we compose this map with the “determinant”

det : GLm(ΛT )→ K1(ΛT )→ (Λ×
T )ab

we have

det ◦twρ : Λ×
T → (Λ×

T )ab,

which explicitly describes the action on K1(ΛT ). From a functorial point of view
this action is nothing else that the K1(−)-functor applied to the ring homomor-
phism twρ and using Morita equivalence:

K1(ΛT )→ K1(Mm(ΛT )) ∼= K1(ΛT ).

In fact, we can easily extend componentwise the above twisting operator to

twρ : Mn(Λ(G))→ EndO(T )⊗O Mn(Λ(G)).
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Note that the latter ring can be identified - for a chosen O-basis of T - with
Mnm(O[[G]]). The augmentation map πH : O[[G]]→ O[[Γ]] induces the map

πH : Mn(O[[G]])→Mn(O[[Γ]])

which we denote by the same symbol by abuse of notation.

Then we have the more general

Lemma 5.5. Let g be in Mn(Λ(G)) for some n and assume that coker(g) is
finitely generated as Λ(H)-module. Then twρ(g) is in GLnm(ΛT ) if T is an Ore-
set of Λ. In any case

πH(twρ(g)) ε GLnm(Q(Γ)).

Proof. Applying T ⊗O − to the short exact sequence

0 // Λ(G)n
g // Λ(G)n // coker(g) // 0.

gives the short exact sequence

0 // O[[G]]nm
twρ(g)

// O[[G]]nm // T ⊗O coker(g) // 0.

after choosing a O-basis of T and using the isomorphism

T ⊗O Λ(G) ∼= O[[Γ]]m

which is induced by t ⊗ g 7→ ρ(g−1)t ⊗ g with g ε G and t ε T (cf. 5.2). It is
well-known that under our assumptions T ⊗O coker(g) is again finitely generated
as Λ(H)-module which implies the first statement. Taking H-coinvariants we
obtain the short exact sequence

0 // O[[Γ]]nm
πH(twρ(g))

// O[[Γ]]nm // (T ⊗O coker(g))H // 0.

which is injective since the kernel is O[[Γ]]-torsionfree of rank zero. Since (T ⊗O
coker(g))H is a finitely generated O-module the last claim follows after tensoring
with QO(Γ). �

Lemma 5.6. Let M be in Λ-modH and T as above. Then, for every choice of
characteristic elements FT⊗OM and FM , we have the equality

FT⊗OM = detΛT ◦ twρ(FM)

in (Λ×
T )ab/im(Λ×).

Proof. By multiplicativity and additivity of FM and [M ], respectively, we may
assume that FM ε T . Then [M ] = [coker(FM)] and applying ρ∗ gives immediately
[T ⊗O M ] = [coker(twρ(FM)] using that for every g ε T

T ⊗O coker(g) ∼= coker(twρ(g))

via the isomorphism 5.2. Now the result follows from the definition of the deter-
minant. �
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5.2. Evaluating at representations. We would like to evaluate the character-
istic elements FM ε Λ(G)T at “0” - in other words at the trivial representation -,
i.e. we would like to extend the augmentation map Λ(G)→ O to Λ(G)T → K, in
order to relate the value to the G-Euler characteristic of M. But since we have to
be careful with those denominators which map to zero we define it in two steps,
firstly for elements of Q(Γ) and secondly of Λ(G)T :

First let F = hg−1 be an element of Q(Γ) with h and g in Λ(Γ) prime to each
other. If the image g(0) of g under the augmentation Λ(Γ)→ O is not zero, we say
that F can be evaluated at zero and set F (0) := h(0)g(0)−1. With other words,
F (0) is defined, if F belongs to the localisation Λ(Γ)I(Γ) at the augmentation
ideal I(Γ), and then equals the image of F under the extended augmentation
map Λ(Γ)I(Γ) → K.

Now let F = hg−1 be an element of Λ(G)T with h in Λ(G) and g in T ⊆ Λ(G). We
say that F (0) is defined if πH(F )(0) is defined and then we set F (0) := πH(F )(0),
where

πH : Λ(G)T → Q(Γ)

is the extended augmentation map (with respect to H).

We want to evaluate F ε ΛT at certain representations using the twist operator.
Thus let ρ : G→ GL(V ) be a continuous linear representation on a finite dimen-
sional vector space V of dimension m over a finite extension K of Qp with ring
of integers O. We choose a G-invariant O-lattice T ⊆ V and fix an O-basis.

Consider the following composition of ring homomorphisms

ΛT
twρ// Mm(ΛT )

πH //Mm(Q(Γ)).

It induces a group homomorphism

Λ×
T

twρ // GLm(ΛT )
πH //GLm(Q(Γ))

det //Q(Γ)×,

which factorizes over the abelianization (Λ×
T )ab of Λ×

T . Moreover, the composite
detQ(Γ) ◦πH ◦ twρ factorizes mod Λ(Γ)× over the quotient (Λ×

T )ab/im(Λ×). We
say that F (ρ) is defined if (detQ(Γ) ◦πH ◦ twρ(F ))(0) ε Q(Γ) is so, and then we
take the latter as value of F at ρ. Since the change to another lattice and O-
basis corresponds to conjugation by some matrix A ε GL2(Qp) and due to taking
determinant, the value of F (ρ) in K× is independent of the choice of T and a
basis.

From the functoriality of determinants and by Lemma 5.6 we obtain immediately
the following

Lemma 5.7. (i) For every F in Λ×
T it holds that

πH ◦ detΛT ◦ twρ(F ) = detQ(Γ) ◦ πH ◦ twρ(F ).

(ii) For every M ε Λ-modH and T as above we have, for every choice of
characteristic elements FT⊗OM and FM ,

FM(ρ) = FT⊗OM(0)

in K×/O×.
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There is a second but less general way to describe the evaluation at represen-
tations. The continuous homomorphism ρ : G → GLO(T ) of groups induces a
homomorphism

ρ : Λ(G)→ EndO(T )

of O-algebras and we can compose this map with

detK : EndO(T )→ O ⊆ K ⊆ Qp

in order to evaluate elements f ε Λ(G) at the representation ρ :

f(ρ) := detK(ρd(f)) ε OQp
,

where OQp
denotes the ring of integers of Qp and where we have chosen the

contragredient representation ρd of ρ, which belongs to the representation on
HomO(T,O) induced by ρ, i.e. in terms of matrices ρd(g) is the transpose matrix
of ρ(g−1) (after choosing a basis of T ). The reason for this is that we want
compatibility with the twisting operator, see Lemma 5.8. Note that this value is
independent of the choice of the lattice T. Also one easily verifies that

f(ρd) = f ι(ρ)

where −ι : Λ(G)→ Λ(G) denotes the involution which maps g to g−1.

We still have to justify that this new definition is compatible with our earlier
definition of f(ρ).

Lemma 5.8. Let F = fg−1 be in ΛT with f ε Λ(G), g ε T . If g(ρ) 6= 0, then we
have

F (ρ) =
f(ρ)

g(ρ)
.

In particular, the quotient is independent of the choice of fraction F = fg−1 with
g(ρ) 6= 0 (if such fraction exists at all).

Proof. If g(ρ) 6= 0, then we have

πΓ(detQ(Γ)(πH(twρ(F )))) = πΓ(detQ(Γ)(πH(twρ(f)) · πH(twρ(g))
−1))

= πΓ(detQ(Γ)(πH(twρ(f)))) · πΓ(detQ(Γ)(πH(twρ(g))))
−1

= detK(πG(twρ(f))) · detK(πG(twρ(g)))
−1

=
f(ρ)

g(ρ)
.

Note that the last equality relies on our choice to define f(ρ) using the contragre-
dient representation ρd and thus we have πG(twρ(f)) = ρd(f)t ε EndO(T ) where
t indicates the dual or transpose endomorphism. �
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5.3. Equivariant Euler-characteristics. Let O be a complete discrete valu-
ation ring which is a finitely generated Zp -module, and let K be its field of
quotients. Let G a compact (not necessarily pro-p) p-adic Lie group and U ⊆ G
a normal open subgroup. Then we set ∆ := G/U. It is well known as a con-
sequence of Maschke’s theorem and general Wedderburn theory that the group
algebra with coefficients in K decomposes as a product of matrix algebras

K[∆] ∼=
k∏
l=1

Mnl
(Do

l ),

whereDo
l denotes the opposite of the division fields of endomorphisms EndK[∆](Vl)

corresponding to a system of representatives of irreducible K-representations Vl,
1 ≤ l ≤ k, of ∆. The integers nl is the length of EndDl

(Vl) and equals the
multiplicity with which the representation Vl occurs in the regular representation
of K[∆]. The centers Kl of Dl = EndK[∆](Vl) (and Mnl

(Do
l ) = EndDl

(Vl)) are
finite field extensions of K, whose ring of integers we denote by Ol.
Henceforth we suppose that Dl = Kl for all 1 ≤ l ≤ k which holds e.g. if
K is a splitting field of ∆ but we don’t assume this stronger condition. Then∏k

l=1Mnl
(Ol) is a maximal order in K[δ]. By choosing ∆-invariant Ol-lattices Tl

of Vl and a basis of Tl the above isomorphism induces an embedding of O-algebras

Ω : O[∆] ⊆
k∏
l=1

Mnl
(Ol),(5.10)

whose cokernel is finite and annihilated by the order |∆p| of a p-Sylow group δp
of ∆. I am grateful to D. Vogel for pointing out to me the following

Example 5.9. If ∆ is a p-group, by a theorem of Fong one obtains an embedding
of Zp-algebras with finite cokernel

Zp[∆] ⊆
k∏
l=1

Mnl
(Zp[ζpml ]),

i.e. Kl = Qp(ζpml ) where ζpml denotes a primitive pmlth root of unity for some ml.

In order to define equivariant Euler-characteristics we will first discuss which
different possibilities of (relative) K-groups exist in which they could live. To
this end consider the following diagram



26 OTMAR VENJAKOB

K0(F(O[∆]))

forget

��

K0(O[∆],Qp)
θ // //ψoo

forget

��

K0(
∏k

l=1Mnl
(Ol),Qp)

∏k
l=1K0(Mnl

(Ol),Qp)

Morita∏k
l=1K0(Ol,Qp) ∼=

∏k
l=1 Z

∏
[κl:κ]forget

K0(F(O)) K0(O,Qp) ∼= Z ∏k
l=1K0(O,Qp) ∼=

∏k
l=1 Z

∑′
oo

Here we write F(O[∆]) and F(O) for the categories of finite O[∆]- and O-
modules, respectively. For a Zp-algebra A which is free and finitely generated
as Zp -module we denote by K0(A,Qp) the relative K-group associated to the
ring homomorphism A → A ⊗Zp Qp in the sense of Swan [43]. But we mention
that K0(A,Qp) can be identified with the Grothendieck group of the category of
finite A-modules of finite projective dimension. Therefore the exact functor

{finite A-modules of finite projective dimension} → {finite A-modules}
induces a homomorphism ψ, but note that K0(O[∆],Qp) and K0(F(O[∆]) are
not isomorphic in general.

Since O is regular we have the first isomorphism in the bottom line which is
induced by the analogue of ψ. The maps labelled “forget” are induced by the
forgetful functor O[∆]-modules→ O-modules and Ol-modules→ O-modules, re-
spectively. Thus the first quadrant obviously commutes. In the second quadrant
the map θ is induced by the base change functor

∏k
l=1Mnl

(Ol)⊗O[∆]−, it is sur-

jective because of the canonical isomorphism K1(K[∆]) ∼= K1(
∏k

l=1Mnl
(Kl)) (use

the (long) exact sequence of relative K-theory and functoriality of base change).
The map labelled “Morita” comes from Morita equivalence, more precisely it is in-
duced by the functor Tl⊗Mnl

(Ol)−, where Tl is considered as Ol−Mnl
(Ol)- bimod-

ule in the obvious way. Note that we have natural isomorphisms of Ol−Mnl
(Ol)-

bimodules

Mnl
(Ol) ∼=

nl⊕
i=1

einl
Mnl

(Ol) ∼= T nl
l ,

where einl
, 1 ≤ i ≤ nl, denotes the idempotent

einl
ε Mnl

(Ol)
whose unique non-zero entry is 1 at the ith diagonal place. Thus the functor
Tl ⊗Mnl

(Ol) − is equivalent to applying einl
for some i, say 1.

Identifying K0(Ol,Qp) with Z by associating to a finite Ol-module M its
lengthOl

(M) and analogously for K0(O,Qp) one immediately verifies that the
forgetful functor induces the map

[κl : κ] : Z→ Z, a 7→ [κl : κ]a,
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where κl and κ denote the residue class fields of Ol and O, respectively.

Finally, by definition the map
∑′ :

∏k
l=1 Z→ Z maps (al)l to

∑k
l=1 nl · al and we

claim

Lemma 5.10. The above diagram is commutative.

Proof. Note that the group K0(O[∆],Qp) can be generated by triples
(O[∆],O[∆], f⊗Zp Qp) where f : O[∆]→ O[∆] is a O[∆]-module homomorphism
with finite kernel and cokernel. The image of such a class in K0(O,Qp) ∼= Z is
lengthO(coker(f)).

Using the embedding 5.10 one obtains the following commutative diagram of
O-modules with exact rows

0 // O[∆] //

f

��

∏k
l=1Mnl

(Ol) //

F
��

C //

��

0

0 // O[∆] // ∏k
l=1Mnl

(Ol) // C // 0,

where F =
∏k

l=1Mnl
(Ol) ⊗O[∆] f. Since C is finite and observing that ker(f) =

ker(F ) = 0 one concludes by the snake lemma that

lengthO(coker(f)) = lengthO(coker(F )).

On the other hand F =
∑k

l=1 T
nl
l ⊗O[∆] f and thus

lengthO(coker(F )) =
k∑
l=1

nl · lengthO(coker(Fl)),

where Fl = Tl ⊗O[∆] f. This implies the lemma. �

Now we are in a position to discuss different Euler-characteristics: Let M be a
finitely generated O[[G]]-module with finite projective dimension (if G does not
have an element of order p this holds for every O[[G]]-module) and assume that
all homology groups Hi(U,M) are finite. With other words, choosing a projective
resolution P • →M we obtain a bounded complex of finitely generated projective
O[∆]-modules

P •
U = O[∆]⊗L

O[[G]] M

with finite homology groups. Using as before the category of virtual objects we
obtain an element (P •

U , λP •U ) ε V (O[∆], K[∆]) whose class in K0(O[∆]),Qp) we
denote by

χu(U,M)
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because it should be considered as the “universal” U -Euler characteristic in this
situation. On the other hand we define

χf (U,M) :=
∑
i

(−1)i [Hi(P
•
U)] ε K0(F(O[∆]))(5.11)

=
∑
i

(−1)i [Tor
O[[G]]
i (O[∆],M)](5.12)

=
∑
i

(−1)i [Hi(U,M)].(5.13)

If it happens that all Hi(P
•
U) are in Dp(O[∆]), then it follows from (3.2) that

ψ(χu(U,M)) = χf (U,M),

but we don’t know whether there is any relation in general. In any case their
images under the forgetful functor coincide by the regularity of O and (3.2) and
they equal the “absolute” U -Euler characteristic

χa(U,M) :=
∑
i

(−1)i lengthO(Hi(U,M)) ε Z ∼= K0(O,Qp).(5.14)

Considering the right hand side of the above diagram we are lead to consider G-
Euler characteristics of twisted modules. For any finitely generated freeO-module
with continuous G-action we define

χa(G, T,M) :=
∑
i

(−1)i lengthO(Tor
O[[G]]
i (T,M)) ε Z ∼= K0(O,Qp),(5.15)

if all Tor-groups are finite, compare with [22, §3] where it is shown that this
twisted Euler characteristic only depends on V = T ⊗OK if G is a pro-p-group, a
fact which will turn out automatically in the situation we will consider in section
6.1. For the trivial representation we also write

χa(G,M) := χa(G,O,M),

which is conform with our definition of χa(U,M) for U = G.

From Lemma 5.10 and its proof we obtain

Proposition 5.11. The Euler characteristic χu(U,M) is defined if and only if
χa(G, Tl,M) is defined for all 1 ≤ l ≤ k. If these equivalent statements hold, then

the image of χu(U,M) under the above map K0(O[∆],Qp) →
∏k

l=1K0(O,Qp)
equals (χa(G, Tl,M))l. Consequently we have

χa(U,M) =
k∑
l=1

nl · χa(G, Tl,M) = χa(G,M) +
∑
l 6=1

nl · χa(G, Tl,M),

where we assume without loss of generality T1 = O.

Let us consider special cases.

Case I: ∆ is a p-group.

Then O[∆] is a local ring with unique simple module κ (with trivial action) [30,
ch. V]. ThusK0(F(O[∆]) = K0(F(O)) = Z and therefore χf (U,M) and χa(U,M)
coincide. By example 5.9 we may take O = Zp here and then [κl : κ] = 1 for all l.
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Case II: ∆ is of order prime to p.

Now the embedding Ω is an isomorphism [10, prop. 27.1] and thus χu(U,M) is
completely determined by the tuple (χa(G, Tl,M))l. Moreover, O[∆] is regular
now and thus ψ : K0(O[∆],Qp) ∼= K0(F(O[∆])) is an isomorphism.

6. Descent of K-theory

Let G be a compact p-adic Lie group satisfying the following conditions: (i) G is
pro-p, (ii) G has no element of order p, and (iii) G has a closed normal subgroup
H such that Γ := G/H ∼= Zp. In particular, G is isomorphic to the semi-direct

product H o Γ. By Λ(G)-mod and Λ(G)-modH we denote as before the category
of finitely generated Λ(G)-modules and its full subcategory consisting of modules
which are finitely generated as Λ(H)-module, respectively. The latter is a full
subcategory of the category of finitely generated torsion Λ(G)-modules.

In [8, §4] Coates-Schneider-Sujatha define the alternating characteristic ideal of

M ε Λ(G)-modH as follows:

AkG(H,M) :=
∏
i≥0

charΓ(Hi(H,M))(−1)i

.

This can be considered as a relative Euler characteristic and following J. Coates
we call it the Akashi series of M. This is a fractional ideal of the quotient field
Q(Γ) of Λ(Γ) and can alternatively be interpreted as an element of Q(Γ)×/Λ(Γ)×.
Then the above invariant induces the following map of K-groups

AkG(H,−) : K0(Λ(G)-modH)→ K0(Λ(Γ), Q(Γ)) ∼= Q(Γ)×/Λ(Γ)×,

where K0(Λ(Γ), Q(Γ)) denotes the relative K-group of the ring-homomorphism
Λ(Γ)→ Q(Γ) in the sense of Swan [43], see section 3.

Now assume that the multiplicative set T defined in subsection 4 is an Ore-set
and recall from section 3 that we had associated with every M ε Λ(G)-modH =
Λ(G)-modT −tor an characteristic class

charG(M) := charΛ(G)(M)

in the group K0(Λ,ΛT ) which fits into the following short exact sequence

K1(Λ) // K1(ΛT ) // K0(Λ,ΛT ) // 0

Λ×/[Λ×,Λ×] // Λ×
T /[Λ

×
T ,Λ

×
T ] // Λ×

T /[Λ
×
T ,Λ

×
T ]Λ× // 1.

Thus we considered charG(M) also as an element FM [Λ×
T ,Λ

×
T ]Λ× ε Λ×

T /[Λ
×
T ,Λ

×
T ]Λ×

and we called (any such choice) FM ε Λ×
T a characteristic element of M.

Now consider the canonical ring homomorphism πH : Λ(G) → Λ(Γ) which is
induced by the group homomorphism G→ Γ. It induces a commutative diagram
of K-groups with exact rows
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K1(Λ) //

(πH)∗
��

K1(ΛT ) //

(πH)∗
��

K0(Λ,ΛT ) //

(πH)∗
��

0

K1(Λ(Γ)) // K1(Q(Γ)) // K0(Λ(Γ), Q(Γ)) // 0

Λ(Γ)× // Q(Γ)× // Q(Γ)×/Λ(Γ)× // 1,

where the middle map (πH)∗ is induced by Λ×
T → Q(Γ)×. The following result is

now almost self-proving.

Proposition 6.1. Let M ε Λ(G)-modH . Then the following holds:

AkG(H,M) ≡ πH(charG(M)) ≡ πH(FM) mod Λ(Γ)×,

i.e. there is a commutative diagram

K0(Λ(G)-modH)

AkG(H,−) ))SSSSSSSSSSSSSS
K0(Λ(G),Λ(G)T )

(πH)∗
��

Λ(G)×T /[Λ(G)×T ,Λ(G)×T ]Λ(G)×.

(πH)∗tthhhhhhhhhhhhhhhhhh

K0(Λ(Γ), Q(Γ))

Proof. The second ≡ follows from the functoriality of our identifications. To
prove the first choose a projective resolution P • → M by a perfect complex P •.
As explained in the paragraph before Proposition 3.1 charG(M) is given by the
class of ([P •], λP •) ε V (Λ,ΛT ) where

λP • : ΛT ⊗Λ [P •] = [ΛT ⊗Λ P
•] ∼= 1V (ΛT )

is the canonical isomorphism of virtual objects in V (ΛT ) associated to the quasi-
isomorphism ΛT ⊗Λ P

• → 0. Now the base chance maps πH : Λ → Λ(Γ) and
πH : ΛT → Q(Γ) induce a morphism of Picard categories

(πH)∗ : V (Λ,ΛT )→ V (Λ(Γ), Q(Γ))

under which ([P •], λP •) is mapped to ([Λ(Γ)⊗Λ P
•], Q(Γ)⊗ΛT λP •) where we use

the compatibility of (non-commutative) determinants [−] with arbitrary change
of rings:

Q(Γ)⊗ΛT ΛT ⊗Λ [P •] = Q(Γ)⊗Λ(Γ) [Λ(Γ)⊗Λ P
•],

Q(Γ)⊗ΛT 1V (ΛT ) = 1V (Q(Γ))

and thus

Q(Γ)⊗ΛT λP • : Q(Γ)⊗Λ(Γ) [Λ(Γ)⊗Λ P
•]

∼= // 1V (Q(Γ)).

Since for the commutative rings Λ(Γ) and Q(Γ) we can replace [−] by the functor
det(−), the above shows that πH(charG(M)) in K0(Λ(Γ), Q(Γ)) is represented by
the pair (detΛ(Γ)(Λ(Γ)⊗Λ P

•), λΛ(Γ)⊗ΛP •), where

λΛ(Γ)⊗Λ(G)P
• = Q(Γ)⊗ΛT λP • : detQ(Γ)(Q(Γ)⊗Λ P

•) ∼= detQ(Γ)(0) = (Q(Γ), 0).
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Since Λ(Γ) is regular we obtain by [25] or [4, (9)] a canonical isomorphism

detΛ(Γ)(Λ(Γ)⊗Λ(G) P
•) ∼=

⊗
i ε Z

detΛ(Γ)(H
i(Λ(Γ)⊗Λ(G) P

•)(−1)i−1

=
⊗
i ε Z

detΛ(Γ)(Hi(H,M))(−1)i−1

.

But Kato [24, prop. 6.1] observed that charΓ(N)“ = ”(detΛ(Γ)(N))−1 for every
torsion Λ(Γ)-module N, in the sense that under the canonical isomorphism

detQ(Γ)(Q(Γ)⊗Λ(Γ) N) ∼= detQ(Γ)(0) = (Q(Γ), 0)

detΛ(Γ)(N) ⊆ detQ(Γ)(Q(Γ)⊗Λ(Γ)N) is mapped to the fractional ideal generated by
charΓ(N)−1. This implies that detΛ(Γ)(Λ(Γ)⊗Λ(G)P

•) is mapped under λΛ(Γ)⊗Λ(G)P
•

to Λ(Γ)AkG(H,M) ⊆ Q(Γ) and the proposition follows.

In order to understand better the different constructions we now sketch a second
proof which avoids the use of virtual objects (which have nice functorial and uni-
versal properties as we have seen above but which are quite difficult to imagine).
To this end we represent M by the class [P+, P−, φ] where φ : P+

T → P−
T is an

isomorphism obtained by choosing successively sections, see section 3. Since M
is torsion P+ and P− are free of the same rank, r say, and thus the class of
φ ε AutΛT (Λr

T ) in K1(ΛT ) is a characteristic element of M. Base change with
respect to πH gives a class [P+

H , P
−
H , φH ] where

φH = Q(Γ)⊗ΛT φ : Q(Γ)⊗Λ(Γ) P
+
H
∼= Q(Γ)⊗Λ(Γ) P

−
H

is the induced isomorphism of free Q(Γ)-modules. Of course, φH = (πH)∗(φ) is a
characteristic element of the complex P •

H . Now using Proposition 3.1 one can pro-
ceed as above using determinants or - if one even wants to avoid them - it is not
difficult but tedious to show directly that [P+

H , P
−
H , φH ] can be expressed as alter-

nating sum of classes associated to the homology groups of P •
H (cf. [11]), which are

Λ(Γ)-torsion modules and thus represented by classes
[Λ(Γ),Λ(Γ), charΓ(Hi(H,M))].

But the most elegant way to prove the proposition is the following: Use the fact
that Λ(G)×T is generated by the elements in T and check the commutativity just
for t ε T . Obviously, t is mapped to the module Λ/Λt whose Akashi series is just
πH(t). �

Remark 6.2. (The commutative case) Let G be isomorphic to Zp
d for some integer

d ≥ 2 and fix for the moment a subgroup H such that G/H ∼= Zp. Recall from
[2, §4.5] that in this situation we have canonical isomorphisms

K0(Λ(G)-modtor/PN ) ∼= K0(Λ(G)-modtor)
∼= Div(Λ(G)),

where Div(Λ(G)) ∼=
⊕

P ε P Z denotes the group of divisors of Λ(G) and P de-
notes a system of representatives of classes of irreducible elements of Λ(G). In
particular, using this identification an element f = (unit)

∏
P P

vP (f) ε Q(G)× ∼=
K1(Q(G)) is mapped to its divisor div(f) =

∑
P vP (f)P under the connecting

map in the localization sequence of K-theory. Now one sees immediately that
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the injection Λ×
T → Q(G)× induces a commutative diagram

Λ×
T /Λ(G)×

� _

��

K0(Λ(G)-modH)
� _

��
Q(G)×/Λ(G)× K0(Λ(G)-modtor).

In particular, we see that our characteristic class or element for modules which
are finitely generated over Λ(H) can be identified with the usual one of the
full torsion category. In the next remark we will see that this fails in the non-
commutative situation because the big commutator subgroups of the units destroy
the injectivity. The image of K0(Λ(G)-modH) in Div(Λ(G)) is precisely

Div(Λ(G))H :=
⊕

P ε Pred

Z,

where Pred denotes the subset of P consisting of all elements having finite reduced
order (with respect to H). In geometric terms Div(Λ(G))H consists precisely of
those cycles, which have codimension 1 and which have good intersection with
the closed subscheme defined by m(H).
If now H ranges over all subgroups of G having a quotient isomorphic to Zp one
concludes using [16, lem. 2] that

lim−→
H

K0(Λ(G)-modH)) ∼= Div(Λ(G)⊗Zp Qp) ∼=
⊕

p6=P ε P

Z,

i.e. up to Zp-torsion modules one obtains all Λ(G)-torsion modules this way.

Remark 6.3. In Remark 3.2 we have discussed why we have to replace the full tor-
sion category Λ(G)-modtor by a smaller subcategory like Λ(G)-modH ∼=
Λ-modT −tor. Note that the example mentioned there also shows that the canonical
map

K0(Λ(G)-modH)→ K0(Λ(G)-mod)

is not injective in general. In contrast to our expectation from the commutative
theory (e.g. Gersten’s conjecture) it is also remarkable that the canonical map

K0(Λ-modΛ(H)−tor)→ K0(Λ(G)-modH)

is not trivial, i.e. also pseudo-null Λ(G)-modules (in Λ(G)-modH) can give rise to
non-trivial classes.

Remark 6.4. Let FM = gh−1 be a characteristic element for M ε Λ(G)-modH

with g, h ε ΛT . Then we have

rkΛ(H)M = ordred(FM) := ordred(g)− ordred(h),

where for g ε Λ(G) we denote by ordred(g) the order of the power series ψH(g) ε κ[[Γ]] ∼=
κ[[T ]] (cf. [44]). In particular, ordred(FM) ≥ 0 is independent of the chosen
fraction. We think of rkΛ(H)M as a generalized λ-invariant. The claim fol-
lows from the fact that the Λ(H)-rank is additive on short exact sequences
and thus induces a group homomorphism rkΛ(H) : K0(Λ(G)-modH) → Z. Now
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[M ] = [Λ/Λg]− [Λ/Λh] and from the Weierstrass preparation theorem (loc. cit.)
we conclude that rkΛ(H)Λ/Λg = ordred(g).

Proposition 6.5. Assume that M in Λ(G)-modH satisfies a relation [M ] =
[coker(f)]− [coker(g)] for some f, g ε Mn(Λ(G)) such that coker(f), coker(g) be-
long to Λ(G)-modH . Then for all representations ρ : G→ AutO(T ) we have

AkG(H,T ⊗O M) = detQ(Γ)(πH(twρ(f)) · πH(twρ(g))
−1)

in K0(O[[Γ]], Q(Γ)). In particular, it holds for any choice of FM that

AkG(H,T ⊗O M) = detQ(Γ)(πH(twρ(FM)).

Proof. Applying ρ∗ to the relation [M ] = [coker(f)]− [coker(g)] gives the relation

[T ⊗O M ] = [coker(twρ(f))]− [coker(twρ(g))]

which in turn induces after evaluating the functor AkG(H,−) (withO-coefficients)

AkG(H,T ⊗O M) = AkG(H, coker(twρ(f))) · AkG(H, coker(twρ(f)))−1

= detQ(Γ)(πH(twρ(f))) · detQ(Γ)(πH(twρ(g)))
−1

= detQ(Γ)(πH(twρ(f)) · πH(twρ(g))
−1),

where the second equality is easily verified, compare with the proof of Lemma
5.5. �

In subsection 5.3 we have defined an additive Euler characteristic, but for our
arithmetic applications the following multiplicative version is more suitable

χ(G, T,M) := (#κ)χa(G,T,M) (if χa(G, T,M) is defined).

Similarly we write χ(U,M) for the multiplicative version of χa(U,M).

Proposition 6.6. Assume that M in Λ(G)-modH satisfies a relation [M ] =
[coker(f)]− [coker(g)] for some f, g ε Mn(Λ(G)) such that coker(f), coker(g) are
finitely generated over Λ(H). Then, if χ(G, T,M) is finite, fg−1(ρ) is defined
(and non-zero) and we have

χ(G, T,M) = |fg−1(ρ)|−[K:Qp]
p ,

where the norm is normalized by |p|p = 1
p
. In particular, we have for any choice

of FM
χ(G, T,M) = |FM(ρ)|−[K:Qp]

p .

This proposition in junction with Lemma 5.4 shows that χ(G, T,M) actually
depends only on the p-adic representation V = T⊗OK and thus we will sometimes
write χ(G, V,M) for it.

Proof. Under the assumptions AkG(H,T ⊗O M)(0) is defined in the sense of [8,

§4] and χ(G, T ⊗O M) = |AkG(H,T ⊗O M)(0)|−[K:Qp]
p by [8, lem. 4.2]. Actually,

the lemma is only stated for Zp-coefficients but it obviously generalizes to the
case of coefficients in O using the well known fact that

#(O/Of) = |f |[K:Qp]
p
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for every f ε O \ {0}. The idea of that lemma is the following: evaluating
an element of K0(Λ(Γ, Q(Γ)) at zero means calculating the Γ-Euler character-
istic of that element (if defined), i.e. in this case the Γ-Euler characteristic of∏

i≥0 charΓ(Hi(H,M))(−1)i
, which is related to the G-Euler characteristic of M

via the (almost degenerating) spectral sequence

Hp(Γ,Hq(H,M))⇒ Hp+q(G,M).

Inspection of the latter gives their lemma.

By Prop. 6.5 we have detQ(Γ)(πH(twρ(f))·πH(twρ(g))
−1)(0) = AkG(H,T⊗OM)(0)

and thus fg−1(ρ) is defined and the claim follows from the previous Lemma. �

For G ∼= Zp it is well known that also a converse statement holds: If fM(0) 6= 0,
then χ(G,M) is defined. But in higher dimensions one easily constructs coun-
terexamples in which lemma 4.2 of [8] and thus this sort of statement fails to be
true.

Corollary 6.7. Let U be an open normal subgroup of G and M ε Λ(G)-modH .
Then, for any choice of FM , we have

χ(U,M) =
∏
ρ

|FM(ρ)|−[K:Qp]nρ
p

where ρ runs through a system of representatives of irreducible K-representations
of ∆ := G/U and where K is a splitting field of ∆.

This result should be compared with well-known formulas in the Zp-situation, see
[30, Ch. V § 3 Ex. 3].

At the end of this section we want to determine characteristic elements in sev-
eral examples and use them to calculate the Euler characteristics. Of particular
interest is D. Vogel’s example of a non-principal reflexive left ideal in a Iwasawa
algebra which we state first:

Example 6.8. ([44, Appendix A.3]) Consider the Iwasawa algebra Λ = Zp[[G]]
of the semidirect product G = Γ1 o Γ2 of two copies Γ1,Γ2 of Zp where p is any
odd prime number. Let the action of Γ2 on Γ1 be given by the continuous group
homomorphism

ρ : Γ2 → Aut(Γ1), γ2 7→ (γ1 7→ γp+1
1 )

for appropriate generators γi of Γi. As in [44] we identify Λ with the skew power
series ring

Zp[[G]] ∼= Zp[[X, Y ;σ, δ]]

where X := γ1−1, Y := γ2−1 and recall that the ring automorphism σ of Zp[[X]]
is induced by X 7→ (X + 1)p+1 − 1 and δ is the σ-derivation given by δ = σ − id.
Now let u be in Zp with the following properties: (i) uπ + σ2(π) is divisible by

σ(π) in R, (ii) u ≡ 1 mod p and (iii) uπ+σ2(π)
σ(π)

≡ 2 mod (p,X). Putting ξ = X − p
he defines skew polynomials

f := Y 2 + (2− uξ + σ2(ξ)

σ(ξ)
)Y + (u− uξ + σ2(ξ)

σ(ξ)
+ 1)
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and

k := ξY + (ξ − σ(ξ)).

He then shows that an element u ε Zp with the above properties exists and that
the left ideal L := Λf + Λk generated by f and k is reflexive, but cannot be
generated by a single element in Λ.
Concerning this example D. Vogel shows in [46] that there is an exact sequence
of Λ-modules

0 // Λ/ΛN
d // Λ/Λf // Λ/L // 0,

where N = Y + 1− u and the map d is given by λ + ΛN 7→ λk + Λf for λ ε Λ.
Thus setting

FΛ/L = fN−1 = {Y 2 + (2− β)Y + (u− β + 1)}{Y + 1− u}−1

where

β =
uξ + σ2(ξ)

σ(ξ)

is a characteristic element for Λ/L and AkG(H,Λ/L) is generated by

πH(FΛ/L) =
Y 2 + (1− u)Y
Y + 1− u

= Y.

In particular, χ(G,Λ/L) is not defined.

Example 6.9. (i) As in Example 6.8 let G ∼= ZpoZp, where now the action
is defined by an arbitrary non-trivial continuous character ρ : Zp → Z×

p .

In particular, we have γhγ−1 = hδ for fixed topological generators h, γ
and with non-trivial δ = ρ(γ) ε Z×

p . Again we identify Λ = Λ(G) with
Zp[[X, Y ;σ, δ]], where X = h− 1 and Y = γ − 1. In this case it is a little
exercise to deduce that the pro-p Fox-Lyndon resolution ([30, 5.6.6], see
also [26, Satz 7.7]) P • → Zp has the following form

0 // Λ
d2 // Λ2 d1 // Λ // Zp

// 0,

where d2 is given by right multiplication with the matrix
(
M N

)
where N = −σ(X) and M = Y + X−σ(X)

X
(or equivalently, if δ is a

positive integer, N = 1 − γhγ−1 and M = γ −
∑δ−1

i=0 h
i). The map d1

corresponds to the matrix

(
X
Y

)
. Tensoring with ΛT gives a short split

exact sequence

P •
T : 0 // ΛT

d2 // Λ2
T

d1 //

t

jj ΛT //
s

jj 0.

A possible choice for s is for instance given by the matrix (0 Y −1) and
then d ◦ t = id− s ◦ d1 is given by(

1 −XY −1

0 0

)
.
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We conclude that thus t corresponds to

(
M−1

0

)
. Hence, the map

P−
T
∼= Λ2

T
d1⊕t // Λ2

T
∼= P+

T

is given by the matrix (
M−1 X

0 Y

)
and using Proposition 3.1 we see that

FZp = M−1Y =
(
Y +

X − σ(X)

X

)−1

Y

is a characteristic element for Zp. For any continuous character ψ : Zp →
Z×
p we obtain characteristic elements

FZp(ψ) = twψ(FZp)

=
(
twψ(Y ) +

X − σ(X)

X

)−1

twψ(Y )

where
twψ(Y ) = ψ(γ)−1(Y + 1)− 1

(viewing ψ via G � Zp as a character of G). Thus AkG(H,Zp(ψ)) is
generated by

πH(FZp(ψ)) =
ψ(γ)−1(Y + 1)− 1

ψ(γ)−1(Y + 1)− ρ(γ) + 1

and hence we have

χ(G,Zp(ψ)) = | 1− ψ(γ)

1− ψ(γ)(ρ(γ)− 1)
|p = |ψ(γ)− 1|p,

which is different from 1 for non-trivial ψ.
(ii) Finally we complete the discussion of Example 3.3: Using sequence (3.4)

to calculate the H-homology Coates-Schneider-Sujatha show that the
ideal AkG(H,M) is generated by

fM(T ) =
T − ω(0) + 1

T − u(0) + 1
,

where for any z ε Λ(H) we write z(0) for the image of z under the
augmentation map in Zp. Since φ is injective we have

ω(0) = 1 + pr 6= φ(h2) + pr = u(0)

and thus fM is not a unit in Λ(Γ). From the short exact sequence (3.4)
one sees immediately that

FM = (c− ω)(c− u)−1 ε ΛT

is a characteristic element of M. This gives a second calculation of fM
by 6.1. Finally, by 6.6 the G-Euler characteristic is given by

χ(G,M) = |φ(h2)− 1 + pr

pr
|p,
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which is generically non-trivial.

7. Characteristic elements of Selmer groups

In this section we are going to apply the techniques developed so far to study
properties of the Selmer group of an elliptic curve over a p-adic Lie extension
k∞. Needless to say that we could also take arbitrary abelian varieties or motives
instead, but all the phenomena we want to discuss occur already for elliptic
curves, for which moreover lots of examples have been discussed recently (e.g. [7],
[8], [19],[21], [22], [32]). We shall consider the characteristic element associated
with the Pontryagin dual of the Selmer group over k∞ (provided this module is
finitely generated over Λ(H), where H denotes the Galois group G(k∞/kcyc)) and
discuss its relation with the characteristic polynomial of E over the cyclotomic
Zp-extension kcyc. To this end we first have to recall some facts from the latter
theory.

We fix an odd prime p. Let k be a number field, S a finite set of places of k
containing the set Sp of places lying above p and the set S∞ of infinite places.
By kS we denote the maximal outside S unramified extension of k and, for any
intermediate extension kS|L|k, we writeGS(L) := G(kS/L) for the Galois group of
kS over L. Suppose that GS(k) acts continuously and linearly on a vector space V
over Qp of dimension d. Let T be a Galois invariant Zp-lattice in V. Then A = V/T
is a discrete GS(k)-module which is isomorphic to (Qp/Zp)

d as an Zp-module. We
set V ∗ = Hom(V,Qp(1)), T

∗ = Hom(T,Zp(1))) and A∗ = Hom(T, µp∞). Then it
is easy to see that A∗ ∼= V ∗/T ∗.

Let kcyc denote the cyclotomic Zp-extension of k and set Γ := G(kcyc/k). For an
arbitrary number field L and a place ν of L we denote by Lν the completion of L
at ν. If L is an infinite extension of Q we write Lν for the limit of the completions
of the finite subextensions of L with respect to the induced valuations. Note that
the decomposition groups Γν := G(kcyc,ν/kν) have finite index in Γ.

7.1. Local Euler factors. In the context of the Selmer group of A over kcyc
the following local cohomology groups show up: H1(kcyc,v, A)∨ and its global
version IndΓν

Γ H1(kcyc,v, A)∨. They are finitely generated Λ(Γν)- and Λ(Γ)-modules,
respectively. For the rest of this section we shall assume that ν is not lying
above p. Then we will see that the above modules are torsion and the aim of
this subsection is to determine their characteristic ideals. I am very grateful
to Yoshitaka Hachimori for discussions on this problem and for pointing out to
me that Greenberg and Vatsal [18] have given a description of the characteristic
power series in a similar context. We follow closely their approach:

The structure of H1(kcyc,v, A)∨ is studied in [17, Prop 2] and also in [33], [45]. In
particular, it is known that their µ-invariant is zero and that there is a canonical
Galois equivariant isomorphism

H1(kcyc,ν , A)∨ ⊗Zp Qp
∼= V ∗(kcyc,ν) ⊆ (V ∗)Iν ,

where Iν denotes the inertia subgroup of Gkν .
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By Frobν ε G(knrν /k) we denote the (arithmetic) Frobenius automorphism where
knrν denotes the maximal unramified extension of kν , which contains kcyc,ν because
ν - p. Furthermore, we write γν for the image of Frobν in Γν .

Let α1, . . . , αeν denote the eigenvalues of Frobν (counting with multiplicities)
acting on on the maximal quotient VIν of V on which Iν acts trivially; i.e. eν =
dimQp VIν . Then the eigenvalues of Frobν acting on

(V ∗)Iν ∼= HomQp(VIν ,Qp(1))

are qνα
−1
1 , . . . , qνα

−1
eν
, where qν denotes the order of the residue class field of ν.

We shall apply the next lemma to W = (V ∗)Iν and F = Frobν .

Lemma 7.1. Let < F >= Ẑ → GL(W ) a continuous representation of the
free profinite group with topological generator F on a finite dimensional Qp-
vectorspace. Let F = FpFp′ the unique decomposition of F corresponding to

Ẑ ∼= Zp × Ẑ(p′), where Ẑ(p′) =
∏

l 6=p Zl. Then the eigenvalues of Fp (counting with

multiplicities) acting on W<Fp′> are precisely those eigenvalues of F (counting
with multiplicities) acting on W which are principal units (in some extension of
Qp).

For the proof just note that the image of < Fp′ > in GL(W ) is a finite group
of order prime to p such that W decomposes into the eigenspaces of Fp′ . Of
course, W<Fp′> is nothing else than the eigenspace with eigenvalue 1, i.e. the
eigenvalues of F and Fp coincide on this subspace while on the other eigenspaces
the eigenvalues of F have a non-trivial prime to p part.

Let

Pν(T ) = det(1−FrobνT |VIν ) = det(1−Frob−1
ν qνT |(V ∗)Iν ) =

eν∏
i=1

(1−αiT ) ε Zp[T ]

and put
Pν = Pν(A/k) = Pν(q

−1
ν γν) ε Λ(Γν) ⊆ Λ(Γ).

If one identifies Λ(Γν) and Λ(Γ) with the power series rings Zp[[Tν ]], Tν = γν − 1,
and Zp[[T ]], T = γ − 1, for a fixed generator γ of Γ, then Pν corresponds to

Pν(q
−1
ν (Tν + 1)) = Pν(q

−1
ν (T + 1)fν ),

where fν ε Zp is uniquely determined by the condition

qνω(q−1
ν ) = χcyc(γ)

fν .

Here ω : Zp
× → µp−1 ⊆ Zp

× and χcyc : Γ→ 1+pZp ⊆ Zp
× denote the Teichmüller

and cyclotomic character, respectively.

For a finitely generated Λ(G)-module M let charG(M) denote its characteristic
ideal in Λ(G), where we assume G ∼= Zp. From the above considerations one
obtains immediately the following

Proposition 7.2. (cf. [18, prop. 2.4])

(i) charΓν (H
1(kcyc,v, A)∨) = Λ(Γν)Pν,

(ii) charΓ(IndΓν
Γ H1(kcyc,v, A)∨) = Λ(Γ)Pν ,
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(iii) The µ-invariants of H1(kcyc,ν , A)∨ and IndΓν
Γ H1(kcyc,ν , A)∨ are zero.

(iv) The λ-invariant λ(IndΓν
Γ H1(kcyc,v, A)∨) is equal to sνdν , where sν = (Γ :

Γν) equals [(kcyc∩k(µt)) : k] with t the largest power of p dividing (qp−1
ν −1)

and dν = λ(H1(kcyc,v, A)∨) is the multiplicity of 1−q̃−1
ν T in P̃ν(T ) ε Fp[T ].

Here ·̃ means reduction modulo p.

7.2. The characteristic element of an elliptic curve over k∞. Now we come
to our arithmetic main results. Assume that E is an elliptic curve over k with
good ordinary reduction at all places Sp.

Throughout the whole paper we assume that E has good reduction at all places in
Sp.

As usual the p-Selmer group of E is defined as

Selp∞(E/L) := ker
(
H1(L,Ep∞)→

⊕
w

H1(Lw, E(Lw))p∞
)

∼= ker
(
H1(GS(L), Ep∞)→

⊕
w ε S(L)

H1(Lw, E(Lw))p∞
)
.

Here, L is a finite extension of k and, in the first line, w runs through all places
of L while, in the second line, S(L) denotes the set of all places of L lying
above some place of S. As usual, Lw denotes the completion of L at the place
w and for any field K we fix an algebraic closure K̄. For infinite extensions K
of k, Selp∞(E/K) is defined to be the direct limit of Selp∞(E/L) over all finite
intermediate extensions L.

Suppose now that k∞|k is an torsionfree pro-p p-adic Lie extension inside kS and
containing kcyc. Then its Galois group is isomorphic to the semidirect product
G := G(k∞/k) ∼= H o Γ where H denotes the Galois group of k∞|kcyc and
Γ = G(kcyc/k) as before.

The Selmer group Selp∞(E/k∞) bears a natural structure as an discrete (left)
G-module. For some purposes it is more convenient to deal with (left) compact
G-modules, thus we take the Pontryagin duals −∨ and set

X(k∞) := (Selp∞(E/k∞))∨.

7.3. The false Tate curve case. We first consider the case where G is 2-
dimensional, i.e. isomorphic to the semidirect product Zp o Zp. In this case The-
orem 4.2 tells us that T is an Ore set.

For simplicity we shall assume that k contains the pth roots of unity. Let
M0(k∞/k) be a set of all primes of k which are not lying above p and are ramified
for k∞/kcyc. We put

(7.16) M1(k∞/k, E) := {v ε M0(k∞/k)| E/k has

split multiplicative reduction at v},
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(7.17) M2(k∞/k, E) := {v ε M0(k∞/k)| E/k has good reduction

at v and E(kv)p∞ 6= 0.}
and M = M(k∞/k, E) := M1(k∞/k, E) ∪M2(k∞/k, E).

The following result, which relies heavily on the vanishing of higher H-homology
groups of X(k∞), generalizes partly the Euler characteristic formula [19, thm.
4.11]. More precisely the mentioned formula will be reobtained in the Corollary
below by “evaluating the characteristic power series AkG(H,X(k∞)) at 0” and
applying the p-adic valuation.

Theorem 7.3. Assume that X(kcyc) is a torsion Λ(Γ)-module with vanishing
µ-invariant. Then X(k∞) is finitely generated over Λ(H) and it holds modulo
Λ(Γ)× that

πH(charG(X(k∞))) ≡ AkG(H,X(k∞)) ≡ charΓ(X(kcyc)) ·
∏
ν ε M

Pν(E(p)/k),

where the local factors are those defined in section 7.1.

Before we evaluate at “0” we have to introduce some more notation. We define
the p-Birch-Swinnerton-Dyer constant as

ρp(E/k) :=
]X(E/k)p∞

(]E(k)p∞)2
∏

v |cv|p
×

∏
v|p

(]Ẽv(κv)p∞)2.

Here, X(E/k) is the Tate-Shafarevich group of E over k, κv is the residue field of
k at v and Ẽv is the reduction of E over κv. We denote by cv the local Tamagawa
factor at v, [E(kv) : E0(kv)], where E0(kv) is the subgroup of E(kv) consisting
from all of the points which maps to smooth points by reduction modulo v. | ∗ |p
denotes the p-adic valuation normalized such that |p|p = 1

p
. For any prime v of k,

let Lv(E, s) be the local L-factor of E at v. Let P0(k∞/k) be the set of all primes
of k which are not lying above p and ramified for k∞/Kcyc. As mentioned above
using Proposition 6.6) we (re)obtain

Corollary 7.4. In the situation of the theorem and assuming that the G-Euler
characteristic χ(G,X(k∞)) of X(k∞) is finite let FX(k∞) ε ΛT be a characteristic
element of X(k∞). Then FX(k∞)(0) is defined and non-zero, and it holds that

χ(G,X(k∞)) = |FX(k∞)(0)|−1
p = ρp(E/k)×

∏
v ε M

|Lv(E, 1)|p.

Before we give the proof of the theorem we introduce the modified Selmer group

Sel′p∞(E/Kcyc) := Ker(H1(kS/kcyc, Ep∞)→
⊕
S\M

Jν(kcyc)),

where Jν(kcyc)) is the Pontryagin dual of IndΓν
Γ H1(kcyc,ν , E(p))∨, see section 7.1.

Then we have the following exact sequence

(7.18) 0→ Selp∞(E/kcyc)→ Sel′p∞(E/kcyc)→
⊕
M

Jν(kcyc)→ 0.
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Proof. First note that Hi(H, Selp∞(E/k∞)) = 0 for i ≥ 1 by the proof of [19, thm.
4.11]. Thus AkG(H,X(k∞)) = charΓ(X(k∞)H). But since according to the proof
of (loc. cit.) the dual of the restriction map

res : Sel′p∞(E/kcyc)→ Selp∞(E/k∞)H

is a pseudo-isomorphism, the statement follows from the short exact sequence
7.18, the determination of the local factors in Proposition 7.2 and by proposition
6.1. �

Remark 7.5. If the rank of the Mordell-Weil group is positive we expect the
vanishing of FX(k∞)(0) by the Birch and Swinnerton-Dyer conjecture. In this
case one has to modify the Euler characteristic as is well known in the cyclotomic
situation ([35] or [37],[38]) and as was proposed in [8] in the GL2-case. For
simplicity we assume that M is a Λ(G)-module with Hi(H,M) = 0 for all i ≥ 1.
Let

φM : H1(G,M)→ H0(G,M)

be the following composition of maps

H1(G,M)
inf

∼=
// H1(Γ,H0(H,M) = (MH)Γ

ψM // (MH)Γ = H0(G,M),

where ψM : (MH)Γ → (MH)Γ is induced by the identity on MH . We say that M
has finite truncated G-Euler characteristic, if both coker(φM) and ker(φM) are
finite, and we define the truncated G-Euler characteristic of M by

χt(G,M) = #coker(φM)/# ker(φM).

Setting formally H = 1, e.g. G = Γ, in the above we reobtain the definition of
the generalized Γ-Euler characteristic χt(Γ, N) of a Λ(Γ)-module N. Recall from
[37, lem. 3] that if χt(Γ, N) is defined (“semi-simplicity at zero”), then it equals
|c(N)|−1

p where c(N) := c(fN) := [fN(t) · t−m(N)]t=0 ε O denotes the leading
coefficient of the characteristic power series fN of N (if the multiplicity of zero of
fN(t) at 0 is m(N)). Similarly, we introduce the leading coefficient c(F ) for any
F ε ΛT by

c(F ) := c(πH(F )).

Now under the assumptions of Theorem 7.3 we have the following: If χt(G,X(k∞))
is defined then

χt(G,X(k∞) = |c(FX(k∞))|p = χt(Γ, X(kcyc))×
∏
v ε M

|Lv(E, 1)|p.

This follows immediately from [19, thm. 4.10] and its proof.

Proposition 7.6. In the situation of the theorem let FX(k∞) ε ΛT be a charac-
teristic element of X(k∞). If ρG → Aut(V ) is a finite dimensional representa-
tion of G over a finite extension K of Qp such that the G-Euler characteristic
χ(G, V,X(k∞)) of X(k∞) is finite, then FX(k∞)(ρ) is defined and non-zero, and
it holds that

χ(G, V,X(k∞)) = |FX(k∞)(ρ)|−[K:Qp].
p
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7.4. The GL2-case. Now suppose that k∞ = k(E(p)) and hence G = H o Γ,
where H is an open subgroup of SL2(Zp) and thus of dimension 3. Assume that
H is uniform and that the semidirect-product is in fact direct, this can always
be achieved after a finite base change. Then by Theorem 4.2 the multiplicative
set T = Λ \ m(H) is an Ore set and we can apply the theory of characteristic
elements.

Theorem 7.7. Assume that X(kcyc) is a torsion Λ(Γ)-module with vanishing
µ-invariant. Then X(k∞) is finitely generated over Λ(H) and it holds that

πH(charG(X(k∞))) ≡ AkG(H,X(k∞)) ≡ charΓ(X(kcyc)) ·
∏
ν ε M

Pν(E(p)/k),

where M is the set of places of k with non-integral j-invariant and the local factors
are those defined in section 7.1.

This result generalizes partly [8, thm. 3.1]. Its proof is analogous to that of the-
orem 7.3, using now [8, rem. 2.6, lem. 3.3, lem. 3.6]. We leave it to the reader
to derive an analogue of Corollary 7.4 from this theorem. Also an analogue of
Remark 7.5 holds in this situation, see [8, prop. 2.9, thm. 3.1].
We expect similar results for other p-adic Lie extensions of dimension at least 2
and containing the cyclotomic Zp-extension and for other p-adic Galois represen-
tations.

8. Towards a main conjecture

Let L denote either the complex numbers C or a fixed algebraic closure Qp of Qp.
By an Artin representation ρ : G→ AutL(V ) over L we mean a finite dimensional
representation of G over L which factorizes through a finite quotient, say ∆, of G.
We fix embeddings of a fixed algebraic closure Q̄ of Q both into C and Qp. Since
an Artin representation over C is already defined over a finite extension K ⊆ Q̄
of Q we can also interpret it as a finite-dimensional Qp-representation, and vice-
versa. Using character theory one sees immediately that the equivalence classes
of (absolutely irreducible) Artin representations over C and Qp are naturally
equivalent. Let E be an elliptic curve over k. By L(E, ρ, 1) we denote the Hasse-
Weil L-series, twisted by an Artin representation ρ.

Suppose as before that k∞|k is an torsionfree pro-p p-adic Lie extension inside
kS and containing kcyc. Then its Galois group is isomorphic to the semidirect
product G := G(k∞/k) ∼= H o Γ where H denotes the Galois group of k∞|kcyc
and Γ = G(kcyc/k) as before.

As we have seen in subsection 4, any M ε Λ(G)-modH gives rise to an element
of K0(Λ(G),Λ(G)T ) and any element of the latter group be represented by some
g ε (Λ(G)T )×. Assume that T is an Ore-set (e.g. if H is uniform pro-p and
G = H × Γ). We are quite optimistic and make the following

Conjecture 8.1. Assume that T is an Ore-set. Let E be an elliptic curve over
k with good ordinary reduction at Sp and assume that X(kcyc) is a Λ(Γ)-torsion
module with vanishing µ-invariant. Then
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(i) (existence of distribution) there exist F ε Λ(G)×T such that for all irre-
ducible Artin-representations ρ of G such that L(E, ρ, 1) is defined, i.e.
L(E, ρ, s) has no pole at s = 1, F (ρ) is defined and

F (ρ) = C(ρ) ·
∏
M

Eulerν(E, ρ, 1) · L(E, ρ, 1)

ΩE(ρ)
,

where C(ρ) should be a generalization of Gauß-sums times a contribution
from the Euler factors of L(E, ρ, 1) at primes above p, Eulerν(E, ρ, 1) the
local Euler factors of L(E, ρ, 1) at primes in M and ΩE(ρ) a (Deligne)-
Period.

(ii) (main conjecture) F is a characteristic element of X(k∞).

Remark 8.2. If a distribution F with the interpolation property in (i) exists, then

F ι interpolates C(ρd) ·
∏

M Eulerν(E, ρ
d, 1) · L(E,ρd,1)

ΩE(ρd)
.

Of course, this is nothing but a proposal for the shape of a main conjecture and
it will only be complete once we have a good guess for the occurring (epsilon-
)factors, periods (depending on ρ). For the cyclotomic Zp-extension and motives
over Q this has been discussed by J. Coates [5]. We hope that his formalism can
be adapted to our situation and we will come back to this item in a subsequent
paper. Also we are aware that at moment our formalism applies only under
restrictions on the base field, in particular we cannot take Q as base field in all
our examples we are interested in. In order to illustrate a possible setting consider
the following example, already discussed in [7] and [9, example 8.7].

Example 8.3. Let E be the elliptic curve X1(11), given by E : y2 +y = x3−x2,
of conductor 11. Take p = 5, put k = Q(µ5), k∞ = k(E5∞) and G = G(k∞/k),
H = G(k∞/Q(µ5∞) as well as Γ = G(Q(µ5∞)/k). It is shown in [14] that G is
isomorphic to the congruence subgroup

Γ(5) := {g ε GL2(Z5)|g is congruent the identity modulo 5}.
We have G ∼= H × Γ where we have identified the center of G with the quotient
Γ and we point out that H is uniform. Thus, in this example T is known to
be an Ore-set. Since G(Q(E5∞)/Q)/H has the simple form Γ ×∆ where ∆ is a
finite group of order prime to 5 we expect that one can even localize the Iwasawa
algebra Λ(G(Q(E5∞)/Q)) of the non pro-5 group G(Q(E5∞)/Q) suitably. Then
it would be possible to formulate a main conjecture over the base field Q as one
would actually like.

A slightly stronger reformulation of the above conjecture reads as follows.
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Conjecture 8.4. Let E be an elliptic curve over k with good ordinary reduction at
Sp and assume that X(kcyc) is a Λ(Γ)-torsion module with vanishing µ-invariant.
Then

(i) (existence of distribution) there exist f, g ε T such that for all irreducible
Artin-representations ρ of G such that L(E, ρ, 1) is defined, i.e. L(E, ρ, s)
has no pole at s = 1, one has g(ρ) 6= 0 and

f(ρ)g(ρ)−1 = C(ρ) ·
∏
M

Eulerν(E, ρ, 1) · L(E, ρ, 1)

ΩE(ρ)
.

(ii) (main conjecture) we have the identity

[X(k∞)] = [Λ/Λf ]− [Λ/Λg]

in K0(Λ(G)-modH).

In view of Proposition 6.5 and Theorem 7.3 there should be a third equivalent
version of the above conjectures in the following style

Conjecture 8.5. Let E be an elliptic curve over k with good ordinary reduction at
Sp and assume that X(kcyc) is a Λ(Γ)-torsion module with vanishing µ-invariant.
Then

(i) (existence of distribution) there exist F ε Λ(G)×T such that for all irre-
ducible Artin-representations ρ of G one has

detQO(Γ)(πH(twρ(F )) = L(E ⊗ ρ) ·
∏
ν ε M

Pν(E ⊗ ρ/k),

where L(E ⊗ ρ) denotes the (conjectural) cyclotomic p-adic L-function
associated with E⊗ρ and Pν(E⊗ρ/k) are the corresponding Euler factors.

(ii) (main conjecture) F is a characteristic element of X(k∞).

A. Huber and G. Kings propose in [23] an (non-commutative) Iwasawa main con-
jecture for motives from the point of view of the equivariant Tamagawa number
(TNC) conjecture. Indeed, the validity of their main conjecture is equivalent to
the validity of the equivariant TNC at each level of the tower of number fields.
We are convinced that our Conjecture is coherent with their main conjecture
(in cases where both conjectures are “defined”, also Huber-Kings consider the
TNC specialized to the motive associated with E only “away from the critical
point” and thus one has to consider an analogous version of their conjecture at
this point). After a first version of this article was finished, T. Fukaya and K.
Kato [15] formulated a slightly different main conjecture as Huber-Kings, though
in a similar spirit. Their approach could be considered as an intermediate ver-
sion between that of Huber-Kings and ours because on the one hand they derive
their main conjecture also from Tamagawa number conjectures, using conjectural
ε-elements with non-commutative coefficient rings, and on the other hand they
also construct a localized K1. But instead of localizing the ring Λ they localize in
some sense a certain category of bounded complexes of Λ-modules, a construction
which works in full generality but which is less explicit. The comparison of both
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approaches with ours could also lead to the determination of the precise constants
C(ρ) etc. in the above formulation.
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