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Abstract

We prove a version of the conjecture of Fukaya and Kato concerning
the existence of p-adic L-functions for motives in the case of certain Hida
families of modular forms and for commutative towers of fields, the novelty
being the exact accordance with the conjectural interpolation formula. To
do so, we first calculate the expressions in their conjectural formula as
explicitly as possible and compare the result to the interpolation formula
of the p-adic L-function constructed by Kitagawa. Here we use Eichler-
Shimura isomorphisms to relate the periods appearing in Fukaya’s and
Kato’s formula to the error terms appearing in Kitagawa’s formula, which
are defined in terms of modular symbols. Under a technical hypothesis on
the Hida family we show that the conjectural interpolation formula differs
from Kitagawa’s one only by a unit in the Iwasawa algebra, so we find a
p-adic L-function having the interpolation behaviour predicted by Fukaya
and Kato (up to a non-constant sign).

Zusammenfassung

Wir beweisen eine Version der Vermutung von Fukaya und Kato tiber
die Existenz p-adischer L-Funktionen fiir Motive im Falle gewisser Hida-
Familien von Modulformen und fiir kommutative Korpertiirme, wobei die
wesentliche Neuerung in der exakten Ubereinstimmung mit der vermute-
ten Interpolationsformel liegt. Dazu berechnen wir zunéchst die Terme
aus dieser vermuteten Formel so explizit wie moglich und vergleichen
das Ergebnis mit der Interpolationsformel der von Kitagawa konstruier-
ten p-adischen L-Funktion. Dieser Vergleich beruht auf Eichler-Shimura-
Isomorphismen, die es uns erlauben, die bei Fukaya und Kato auftretenden
Perioden in Beziehung zu den Fehlertermen aus Kitagawas Formel zu
setzen, welche mittels modularer Symbole definiert sind. Unter einer tech-
nischen Annahme an die Hida-Familie zeigen wir, dass sich die vermutete
und die von Kitagawa gefundene tatsédchliche Interpolationsformel nur
um eine Einheit in der Iwasawa-Algebra unterscheiden und finden so eine
p-adische L-Funktion, die (bis auf ein nichtkonstantes Vorzeichen) das von
Fukaya und Kato vorhergesagte Verhalten zeigt.
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Preface

Introduction

A major theme in modern number theory and arithmetic geometry is the connection between
special values of L-functions and purely algebraic invariants, and this surprising yet undeni-
able liaison is one of the most fascinating phenomena in the subject. Prominent examples of
results or conjectures in this spirit include the analytic class number formula, the conjecture
of Birch and Swinnerton-Dyer (BSD) or Kummer’s criterion for irregular primes. A very
promising approach for studying (some aspects of) such links is Iwasawa Theory, where the
so-called Main Conjectures relate L-functions to groups of an arithmetic origin. One of the
central actors in this story is a p-adic L-function (where p can be any prime), which lives
somehow in-between the complex analytic and the algebraic world. These p-adic L-functions
are thus of utmost interest since they allow to build a bridge between these seemingly distant
worlds and to formulate precise statements connecting them.

The rough picture is as follows. The p-adic L-function is a function on a p-adic domain
taking p-adic values, such that at certain special evaluation points its values are closely related
to special values of complex L-functions, in a way to be described below — the slogan is that
“p-adic L-functions interpolate complex L-values p-adically”. As such, the p-adic L-function is
an element of a certain ring, the Iwasawa algebra. On the other hand, the groups of arithmetic
origin mentioned above (more precisely, their p-parts) are in a canonical way modules over
the Iwasawa algebra, and the theory of such modules attaches to each a characteristic ideal
in the Iwasawa algebra. The Main Conjecture then asserts that this characteristic ideal can
be generated by the p-adic L-function. In this way, the p-adic L-function is related to both
the complex analytic and the arithmetic-algebraic side of the picture.

These conjectures can be formulated for a very general class of objects of interest (more
precisely, motives), and some special cases have been proven. However, in general not only
the Main Conjecture is open, already the existence of the p-adic L-function is not clear.

Since the discovery of the first p-adic L-function by Kubota and Leopoldt in the 1960s
(interpolating special values of Dirichlet L-functions), many other p-adic L-functions have
been found, interpolating the complex L-functions of a variety of objects such as arithmetic
Hecke characters, modular forms (thus also elliptic curves over @), by modularity), and some
more general automorphic representations. However, there is no universal method to do this,
rather one needs new ideas for each object. As a result the p-adic L-functions often have some
ambiguity in that the interpolation formulas describing their relation to complex L-values
contain expressions of a non-canonical nature. These expressions are rather artefacts of the
construction and do not have much of a conceptual meaning.

From a modern point of view, Iwasawa Theory appears as a consequence of the Equivariant
Tamagawa Number Conjecture (ETNC). This collection of conjectures, due to Burns and
Flach building on work of Deligne, Beilison, Bloch, Kato, Perrin-Riou, Fontaine and others,
is by design a common vast generalisations of the analytic class number formula and the
BSD conjecture (which are statements not directly related to Iwasawa Theory). It describes
in a satisfactory way the meaning of values of L-functions attached to motives at integer
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evaluation points in terms of cohomological invariants of the motive. Later it became clear
that the ETNC is in fact strong enough to imply also Iwasawa Theory. More precisely, Fukaya
and Kato show in [FKo6] that the ETNC implies the existence of a p-adic L-function for a
certain class of motives and moreover that the Main Conjecture holds. So the ETNC is very
powerful indeed, but in return only very few cases are known.

Coming back to p-adic L-functions, these ideas provide us with a precise interpolation
formula that these functions should conjecturally satisfy. There were also earlier efforts to
conjecture how a general interpolation formula should look like, due to Coates and Perrin-
Riou [CP89; Coa89; Coa88], but the formula obtained by Fukaya and Kato has the attractive
feature of being a consequence of the ETNC, which gives it some deeper explanation. This
result raises the question whether the interpolation formulas produced by particular known
constructions of p-adic L-functions are in accordance with the conjectural one.

Let us give a flavour of Fukaya’s and Kato’s formula. Arguably, the most interesting
expressions in their interpolation formulas are complex and p-adic periods defined via
comparison isomorphisms between different cohomologies of the motive in consideration
(coming from complex de Rham theory and p-adic Hodge theory). Roughly speaking, the
conjecture predicts an interpolation behaviour of the form

value of p-adic L-function value of complex L-function

<« » .
= (some “easy” correction factors)-

p-adic period complex period

at certain evaluation points (see conjecture 1.3.41 for the precise formula). The above should
be an equality of elements of @, which means that the periods describe the transcendental
parts of the L-values (as the correction factors are always algebraic). This underlines the
significance of the periods. Unfortunately their rather abstract definition makes them difficult
to compute. It is therefore a delicate task to check whether a particular p-adic L-function has
exactly the conceptual interpolation behaviour predicted by Fukaya and Kato.

Our results for families of modular forms

Our purpose is to provide some evidence for Fukaya’s and Kato’s interpolation formula. We
focus on elliptic modular forms and families of such, which are in some sense the easiest
non-trivial example (in that they are “non-abelian”, i. e. of rank greater than one, but still
rather accessible). For a newform f, by constructions of Deligne and Scholl [Del69; Schgo]
we have a motive M(f) whose complex L-function is the L-function of f and for which
Fukaya’s and Kato’s theory predicts a p-adic L-function. The methods of Fukaya and Kato
can also be applied to (suitably defined) families of motives and yield then a conjectural
p-adic L-function for the whole family interpolating the p-adic L-functions of the individual
motives, as Barth showed in his thesis [Bari1]. Families of modular forms provide a natural
example to which this framework applies.

For Hida families of modular forms there is a construction of a p-adic L-function due to
Kitagawa [Kitg4] whose interpolation formula at a first glance looks similar to the conjectural
one. However, instead of actual periods, his formula contains expressions we want to call
“error terms”, as they depend on non-canonical choices and a priori have no conceptual
meaning. It is therefore natural to ask whether Kitagawa’s function matches with Fukaya’s
and Kato’s conjecture.

To illustrate the conjectures in this particular case, we aim to compute the expressions
in its interpolation formula, most notably the periods, and to express these in terms of
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Kitagawa’s error terms. We find the following results.

Theorem: (a) The complex period is essentially equal to Kitagawa’s complex error term.

(b) Impose a technical condition on the Hida family. Then the p-adic period differs from
Kitagawa’s p-adic error term essentially just by a unit which is global for the whole
family (i. e. comes from a unit U in the whole Iwasawa algebra).

Here, “essentially” means: up to a Gaufl sum and a power of 271 in the complex case, and up
to a Gaufl sum and an e-factor in the p-adic case. These differences are expected and desirable.
The technical condition is satisfied if the image of the Galois representation attached to the
Hida family contains SL;. See theorems 1v.4.1, 1v.4.9 and 1v.4.10 for the precise statements
and condition 1v.4.4 for the precise condition. From a technical point of view, these are the
main results of this work.

We continue and compute the other expressions in the interpolation formula, which turn
out to be in good analogy to the expressions in Kitagawa’s formula. The idea is then to
alter Kitagawa’s p-adic L-function by the unit U from the above theorem to obtain a p-adic
L-function which matches nicely with the formula by Fukaya and Kato. At this point it
turns out that unfortunately their conjectures seem to be slightly wrong. In fact, the final
interpolation formula we obtain differs from the conjectural one by a non-constant sign
that cannot be interpolated.’ Thus it seems that Fukaya’s and Kato’s conjectures should be
modified slightly in order to remedy this. While there are some suggestions, it lies beyond
the scope of this work to study systematically how this could be resolved in the general
setting of Fukaya and Kato.

To conclude, the main result we obtain in the end is the following:

Theorem: Continue to impose the aforementioned technical condition. Then there exists a
p-adic L-function for the Hida family whose interpolation behaviour is as predicted by Fukaya
and Kato, up to the problematic sign mentioned above.

See theorem 1v.5.10 for the precise statement.

We now give a short overview of the content of this work and briefly explain our method
of proof; see below for a more detailed account.

To compute the complex period, we give a precise description of the de Rham and Betti
realisations of the motive M(f) and the complex comparison isomorphism. We find that the
de Rham realisation is related to the space of cusp forms and that the Betti realisation is an
Eichler-Shimura type cohomology group. The comparison isomorphism between them is
essentially given by the (classical) Eichler-Shimura isomorphism, which has a rather explicit
description. This allows us to compute the complex period.

In the p-adic case, Faltings [Fal87; Fal88] constructed an analogue of the Eichler-Shimura
isomorphism between the de Rham and the p-adic realisation which is again essentially
the comparison isomorphism. To study how this behaves in families, we use as the most
important ingredient to our work the rather recent result that Faltings’ p-adic Eichler-Shimura
isomorphisms can be interpolated in families. This was conjectured by Ohta [Ohtgs] and
proved by Kings, Loeffler and Zerbes [KLZ17] (building on work of Kato [Kato4]) for Hida
families and Andreatta, Iovita and Stevens [AIS15] for overconvergent families. With this
result at hand, we can define the constant U and express the p-adic period in terms of U and
Kitagawa’s p-adic error term.

! This problem was discovered independently by Y. Zaehringer. We describe it in section 1v.3.
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Chapter I contains some loosely connected preliminaries, most importantly an overview
of the theory of motives and the work of Fukaya and Kato. In chapter Il we provide a detailed
description of modular curves and the motive M(f) attached to a modular form. Chapter III
is the technical heart of this work: we introduce modular symbols and error terms and
explain our most important ingredient, the p-adic Eichler-Shimura isomorphism in families.
In the final chapter IV we put our previous work together, compute the periods and find the
p-adic L-function we want.

Some remarks about our result should be given. The idea of using p-adic Eichler-Shimura
isomorphisms to prove such a result was already mentioned by Ohta in [Ohtgs]. Ohta
himself could not follow this strategy — while he constructed a p-adic Eichler-Shimura map
in families, he was unable to prove that it indeed interpolates Faltings’ maps. The author
wants to remark that he was not aware of Ohta’s article when the idea occurred to him.

A result similar to ours appears in Ochiai’s unpublished work [Ochos]. However, there
are several differences. First, Ochiai uses a different definition of the p-adic period (although
it is related to the one we use). Second, he does not work with the formula by Fukaya and
Kato, but with yet another conjectural interpolation formula formulated by himself (which
is not deduced from the ETNC and has a different shape in general). Third, his constant U
lies a priori in a much larger ring than ours. Finally, the proof is only sketched there and
an important point is omitted. It seems that Ochiai does not use p-adic Eichler-Shimura
isomorphisms, so in any case our proof is different.

An advantage of our technique is that it is likely to work in more general situations. Here
we indicate some possible generalisations, which we explain in more detail in the very last
section 1v.6.

The same methods should also apply to overconvergent families. For these, Bellaiche
[Bel11] has constructed a p-adic L-function which has properties very similar to Kitagawa’s,
Zaehringer [Zae17] extended the work of Fukaya and Kato to cover the non-ordinary case and
Andreatta, Iovita and Stevens [AIS15] provided the interpolation of the p-adic Eichler-Shimura
isomorphism in families. Due to technical limitations, we only sketch the proof in this case,
but nonetheless it should become clear how it will work. The author hopes to write down a
complete proof in a future work. This in some sense completes the study of (commutative)
p-adic L-functions for elliptic modular forms over Q). As further generalisations it should
be possible to extend these ideas to more general automorphic representations over larger
fields, such as Hilbert modular forms. In some cases the necessary preliminary results are
already known.

Outline of our methods and proofs

We give an overview of our construction, which will hopefully serve as a guideline to this
work. For the sake of readability we will occasionally omit some details such as twists or
unimportant factors here, at the cost of being slightly imprecise; also we assume that p # 2.

The main task is to “compute” the complex and p-adic motivic periods, as defined by
Deligne, Fukaya and Kato, of the motive attached to a modular form. In the known con-
structions of p-adic L-functions for modular forms, there are expressions which we call
“error terms” in the interpolation formulas, playing the role of the periods, and our aim is to
compare the motivic periods to these error terms. Hence “compute” in this context should
be understood as expressing them as explicitly as possible in terms of the error terms.

The motivic periods are defined essentially as determinants of comparison isomorphisms.
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If M is a motive, we consider its Betti, de Rham and p-adic realisations, which we denote
by Mg, Mgr and M, respectively. Between these realisations we have the comparison
isomorphisms

CPe: M ® C —— Mar ® C,
cpe: M ® Qp —— M,,
CPgr: Mp ® Bar —— Mgr ® Bgr,

where Bgg is Fontaine’s field of p-adic periods. On the Betti side, we look at the subspace M
fixed by complex conjugation and on the de Rham side we look at the quotient Mag /fil® Myr
and fix bases of these vector spaces. The complex period is then defined as the determinant
of cp,,, while the p-adic period is defined as the determinant of cpy © cp;, (up to some
factor which we ignore here), both maps viewed as going from M to Mgr/ fil® Mgg with
appropriately extended coeflicients, and both determinants calculated with respect to the
same fixed bases. We explain this in sections 1.3.1, 1.3.3 and 1.3.5.

We want to compute these periods for the motive M(f) attached to a newform f of weight
k > 2 and level N > 4.> This motive is a submotive of a motive called JZ"W; more precisely,
on the realisations of IZ(W we have an action of the Hecke algebra, and the realisations of
M(f) are the subspaces cut out by the Hecke eigenvalues of f. It turns out that it is more
convenient to work with NkW and later specialise to these subspaces. We hence need to
study the realisations and comparison isomorphisms of JZ(VV For simplicity, we assume in
this introduction that f has Fourier coefficients in Z.

Let X(N), Y(N), X1(N), Y1(N) be the modular curves (over Q) classifying elliptic curves
with level N structure (see section 11.1.1). Over each of these we have a universal elliptic
curve, and we denote the maps from the latter to the modular curves by f. We then get for
the Betti realisation (see theorem 11.5.6)

TWs = HY(Y(N)™, Sym" *R'£.Q).
Using monodromy, we can write this more concretely as
YWs = HY(T(N), Sym* ™2 Q).
For the de Rham realisation, we find an exact sequence (see propositions 11.5.9 and I1.5.10)
0—— Sk(X(N), Q) — War — Sk (X(N), Q)Y — 0

coming from the Hodge filtration; here the subspace of cusp forms Si(X(N), Q) is precisely
fil° JZ(WdR- For the p-adic realisation we find

W, = H, ((Y(N) X Q. Sym" " R'£.Q,).

A central tool for our calculations is a canonical perfect pairing on the motive IZ’VV

¢y YW x Tw — q,

2 More precisely, we want to compute them for the critical twists of M(f), which gives us some extra factors
which we ignore here. Also, the same methods should work for level less than 4, see remark 11.1.6.
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which we study in section 11.8. The Hecke operators are self-adjoint with respect to this
pairing. It induces a pairing on each realisation, and the various comparison isomorphisms
respect this pairing. Moreover, it induces a perfect pairing

M) X M(f)— Q
and on the Betti side a perfect pairing
M(f)g X M(f)g — Q,
while the restriction
M(f)g X M(f)z — Q

vanishes identically. On the de Rham side it induces the canonical pairing
SKX(N), Q)" x S(X(N), Q) — Q.
Let us first take a closer look at the complex period. We have the comparison isomorphism
Pt tWE®C —— T Wg ® C.
On the other hand, a classical result is the Eichler-Shimura isomorphism (theorem 11.6.3)
ES: HL(T(N), Sym* ™ C?) —~ Sx(X(N), €) & S¢(X(N), C).

A crucial step in our calculation of the complex period is the observation that these are
compatible in the following sense (see theorem 11.6.7): we have a commutative diagram

Sk(X(N), €)

HOV &
cp

]Z(WdR ®C = k(WB ®C

where the left map comes from the Hodge filtration of A,f’WdR, the right map is the Eichler-
Shimura map and the bottom map is the comparison isomorphism. Since the Eichler-Shi-
mura map admits a concrete description in terms of cocycles, this makes the comparison
isomorphism a lot more explicit.

At this point we need to look at the definition of the complex error term. For this
we need modular symbols, which are certain cohomology classes on modular curves (see
section 111.2 for their definition; they are closely related to the above group cohomology
groups). We denote them by MSi(N, R), where R is some coefficient ring. They carry an
action of complex conjugation and a Hecke action, and the eigenspaces MSi(N, Q)*[f],
where the complex conjugation acts as +1 and the Hecke algebra acts via the eigenvalues
of f, are one-dimensional. Over C, we have a canonical element & € MSy(N, C) attached
to f, defined in terms of an explicit cocycle, which we can decompose as & = 5; + §j§
with 5]2—' € MSi (N, C)*[f]. If we now fix bases 77;—; € MSi(N, Q)*[f] then, since modular
symbols behave well with respect to base change, we find elements E.(f, ry}%) € C* such
that f}?’ = Ew(f, 77;*2)17?. These are the complex error terms.
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The important observations to compare these to the complex motivic periods are: first
there is a canonical map (see (111.2.1))

MSk(N, Q) — TWs (0.1)

which is Hecke equivariant and respects complex conjugation, and second, over C this map
sends & € MSy(N, C) to ES(f) € ]Z(WB ® C, where ES is the Eichler-Shimura map (see
lemma 111.2.6).

In section 1v.4.1 we choose bases of the Betti and de Rham side. By the above descrip-
tions, the quotient M(f)qr/fil° M(f)qr is the one-dimensional subspace of Si(X(N), Q)"
generated by a linear form dual to f (i.e. sending f to 1 and all other vectors of a basis
of Sk (X(N), K) containing f to 0). We fix such a linear form and call it §. It thus satisfies
(3, fYar = 1. On the Betti side, we can use the images of 77;? in Nk”WBi under the above map

(0.1) as a basis of IZ(WBi Without loss of generality we assume that (17}, ry})B =1

In section 1v.4.2 we then compute the complex periods with respect to these bases. From
the definition of Ec(f, 77;—;) and the fact that the pairing vanishes on M(f)* x M(f)*, we
first see that

Eeo(fo17) = <,7;, §f>B-

Transferring this to the de Rham side, writing p* for the image of 57 under the comparison
isomorphism and using that £ becomes f on the de Rham side, we obtain

(P™. f)ar = Eeo(f175).

This implies p* = Ex(f, 17]%)5 and we see that the complex period equals the error term.
We now turn to the p-adic side. If we consider the comparison isomorphism for NkW over
Byt and look at its degree 0 part, we obtain (see theorem 11.6.9)
NW, ® €, —— Sk(X(N),Cp) ® H'(X(N), a)f{_(’;\,)) ® C,. (0.2)
This was proved by Faltings and can be seen as a p-adic analogue of the Eichler-Shimura
isomorphism. Note that from (0.1) and the comparison isomorphism cp,, we have a canonical
map
MSk(N, Zp) — YW, (0.3)

In his construction of the two-variable p-adic L-function for a Hida family F, Kitagawa
interpolates the modular symbols MS,(Np”, Z,) for varying k > 2 and r > 1. He obtains
a large module MS$*"4(Np>, A) of A-adic ordinary modular symbols (here A = Z,[T] with
I' = 1+ pZ, is the Iwasawa algebra) such that the reduction of MS$4(Np>, A) modulo
special prime ideals in A is the module of modular symbols of fixed level and weight (see
sections I11.4.1 and 111.4.3). More precisely, if Py . is the kernel of the morphism A — Z,
induced by ex*, where ¢ is a character of T of order p” and x: I —— Z; is the canonical
inclusion, then

ord 00 r
MS(Np ’A)/Pk’g = MS(Np",Z,)|¢]

(see theorem 111.4.10 (a)).
Due to his technique, Kitagawa’s two-variable p-adic L-function contains a p-adic error
term in its interpolation formula which is defined as follows. On IM$*™4(Np™, A) we have
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again a Hecke action and a complex conjugation, and IM$*™4(Np®, A)*[F] is free of rank 1
over A. If we fix a basis Z*, then the image of Z* in MS,(Np", Z,) may be written as

E*mod Py = Ey(E", i M.,
with some &, (E* ,nk ) € Zy if ny , € MSK(NP", Zyp)*[ fk.e] is a basis as before. We want to
compare this error term to the p-adic period of M(f ).

Now our most important ingredient, namely the fact that the p-adic Eichler-Shimura
isomorphism can be interpolated in families, comes into play. This means that there is a

canonical Hecke equivariant map
MSord(Npoo,A) Sord(Npoo’A)

(the right side being the module of A-adic cusp forms) such that its reduction modulo Py .
coincides with the map

MSk(N, Zp) — YW, ® C, — Si(X(N),C,)

obtained from (0.3) and the projection to the first factor in (0.2). This was proved by Ohta,
Kings, Loeffler and Zerbes (theorem 111.5.11). Using this and the fact that $74(Np™, A)[F] is
free of rank 1 and generated by F, we define a constant U € A as the unique U such that E
is mapped to UF. Write Uy, . € Z,, for the reduction of U modulo Py ,.

In section 1v.4.3 we compute the p-adic period. Reducing the equation defining U, we see
that

Er e = SP(E_’ ’72,5)’7;,8 Uk,afk,s

under the p-adic comparison isomorphism. Hence if we again write p; _for the image of
n; . under the comparison isomorphism, we can perform a similar computation as in the
complex case:

+ 81’(“ ’ Uk e) - 81’(“ > ”k e)
T Uk,s T.e - Uk,s
p

and therefore
(ot fice) _DE )
koe? I8 [ R Uk, e

It turns out that this works also with reversed signs, i. e. we also have

b 2
Pr.er Jhoe dR Uk, ¢ '

_ SP(:i Tic.e)
Uk, e
term only by the constant Uy .

The constant U is global for the Hida family and we can moreover show that U is even a
unit. This means that if we multiply Kitagawa’s two-variable p-adic L-function by U™, the
error term in his interpolation formula is transformed into the p-adic period, proving our
main theorem.

This shows pk 6 and we conclude that the p-adic period differs from the error
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Notations and conventions

General conventions

We denote by IN the natural numbers beginning with 1 and set INo := IN U {0}. The symbol p
without further explanation denotes a prime number. Unless we explicitly state the contrary,
a prime called p will assumed to be odd, for technical reasons.

All rings are supposed to have a unit and homomorphisms of rings are always unitary.

Numbers and Galois groups

We fix algebraic closures Q of @, @p of Qp and C of R and write C,, for the p-adic completion

of @p. We further use the period rings Byr, Bgr, Bst and Beyis from p-adic Hodge theory.
The Frobenius map on Bjs will be denoted by ¢cis, and we use the same symbol for the
Frobenius map on similar objects (such as Bgy, Dyis, Dst)-

We fix throughout the work a square root i € C of —1. By a pair of embeddings of Q, we
mean a pair (i, 1) of embeddings ic: Q—— Cand Ip: Q— @p C C,. We provisionally
fix such a pair of embeddings. This fixes a choice of a compatible system of p-power roots of
unity & = (&n)n>0 with &, € Q,(pp~) by saying that the pair of embeddings should identify
£ with the system (e??"),, 5, of p-power roots of unity in C. Our choice of (tco, 1p) is only
provisional, we may change it at some point in this work. When we do so we thus also have
to change £.

Our fixed choice of a compatible system of p-power roots of unity ¢ = (&,),>0 determines
a uniformiser of B:{R, see [FOo08, §4.2.2, §5.2.3]. We denote it by tgg. .

A number field is a finite extension of (). We do not view number fields as subfields of Q)
a priori, so if we want to do so we have to choose an embedding K —— Q. If K is a number
field and w is a place of K, then we denote by K, the completion of K at w. If v is a place of
Q, we put Ky, == [],,|,, Kw, where the product runs over all places w of K lying above v. In
particular, we then have K, = K ®q Q. If L is a finite extension of QQ,, we denote by L™ the
maximal unramified extension of L and by L™ its p-adic completion.

We put Geye = Gal(Q(pp~)/Q) and write keye: Geye —— Z; for the cyclotomic character.

For any field k we denote its absolute Galois group by Gi. We denote the nontrivial
element of Gy by Frobs. For a module M with an action of G, we denote by M* the
submodule where Frob., acts by multiplication with +1, respectively.

Note that our choice of a pair of embeddings of Q induces various other choices. First,
via restriction, it induces embeddings of local into global Galois groups, namely embeddings
Gr — Gq and Gg, —— Gq. This then fixes a well-defined inertia subgroup at p of
Ggq, which we denote by I,. We denote by Frob, a geometric Frobenius element in Gq at
p. It is only well-defined up to conjugation and multiplication by elements of I, but this

! One says that the choice of i is like choosing an orientation of C, while the choice of ¢ is like choosing an
orientation of C,. We thus require that C and C,, are oriented compatibly, in the above sense; this notion of
compatibility depends on the pair of embeddings (i, Lp)-
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will not be important in the where situations we use it. Further the inertia group fixes an
embedding Q" — Q,, by identifying Q; with the subfield of Q,, fixed by I, and thus also
Q' — Cp. _

If we have a number field K a&d fix further an embedding E —— @, then t}is fixes
embeddings K —— C and K —— Q,,, since we already fixed 1o: Q — Cand 1,: Q —

Qp, and a place p | p of K as the kernel of
O — Og, — 9% [ (p)

Moreover, it fixes embeddings Gal(Q/K) — Gq and Gal(@p /Kp) — Gq,. The latter
G
2 Ky with By,
Burt. Further, as above we get embeddings K" —— Q, and K" —— C,.

We normalise the reciprocity map from class field theory such that it maps prime elements
to arithmetic Frobenii. This is particularly important when we view Dirichlet characters as
Galois characters.

also fixes an embedding K, —— Bgr by identifying K, with B and analogously with

Categories

We use the following categories:

Sets category of sets

Top category of nice” topological spaces

R-Mod, Mod -R category of left resp. right modules over a ring R

Schys category of schemes over a fixed base scheme S; if S = SpecR
is affine we write Schp

Sch = Schyz, category of schemes

Repr(G) linear representations of a group G on finitely generated

projective R-modules; continuous representations if R and
G come with a topology

We denote limits (projective limits) by “{iLn” and colimits (direct limits, inductive limits)

by “colim”.
Schemes and group schemes
If X and T are S-schemes, we sometimes write X7 := X Xg T for the base change of X to T.

If S is a scheme and G is a group, we sometimes write G ¢ for the constant group scheme.
We write p, for the group scheme over Z of roots of unity of order dividing n.

2 General topological spaces do not play an important role in this work. Therefore, we assume for simplicity
that any topological space we consider is locally contractible, locally path-connected and semi-locally simply
connected. Note that this implies that sheaf cohomology with constant coefficients agrees with singular
cohomology, see [Voioz2, Thm. 4.47].
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Filtrations, gradings and Hodge-Tate weights

Let i € Z. If M is some decreasingly filtered module over some ring, we write fil' M for the
i-th filtration step, and we denote the graded pieces by gri M := fil' M/fil""! M and write

gr(M) = @ gr' M
i€Z
for the associated graded module. If M is some graded module, we write gr’ M for the
submodule of degree i, or sometimes just M;.

If M is a filtered or graded module, we define its Hodge-Tate weights to be those i € Z
such that gr' M # 0. If M is a vector space over a field K, then we define the multiplicity of
the Hodge-Tate weight as dimg gr’ M for such an i.

The above convention implies in particular that the cyclotomic character has Hodge-Tate
weight —1 (see fact 1.3.6).

If K is a field and V is a finite-dimensional decreasingly filtered K-vector space, then we
define its Hodge invariant ti (V) € Z as the sum of the Hodge-Tate weights with multiplicities

tu(V) = ) idimg gr' V.
i€Z
In particular, if dimg V = 1, then ty(V) = max{i € Z : fil' V = V}. By [FOo8, §6.4.2], if

dimg V = n, then
n

tg(V) =ty ( /\V)

IfW = P,., W is a finite-dimensional graded K-vector space, we view it as a filtered
K-vector space in the tautological way and write

t(W) = Z i dimg W;.
i€eZ
In particular, if dimg W = 1, then ty(W) is the unique i € Z such that W; # 0.

Homological algebra

Whenever we write “complex” without further specification, we will mean a cochain complex
in some abelian category A. If C* is some complex in A, we denote by C[i]* the complex
with C[i]" = C"*!, for i € Z, with the same differentials as the original one.> We denote the
bounded below derived category of A by D*(A). The image of some object A € A in D*(A)
will be denoted by A[0]. More generally, the class of the complex having 0 everywhere except
in degree n and having A in degree n will be denoted by A[—n]. We denote the class of some
complex C* in D (A) just by the same symbol. If we want to emphasise the grading of a
complex, we write something like

E G

o—M

to indicate that F is in degree 0.
We denote hypercohomology resp. hyper-derived functors with H* resp. R* as opposed
to H* resp. R*.

3 Note that there are several different conventions about how to define the differentials on C[i]; for example
[GMos3] defines it at (—1)* times the original one.

Xix



Notations and conventions

Cosets

To fix the notion of cosets, let G be a group and U a subgroup. If we let U act on G from
the left by left multiplication (u, g) —— ug, then the orbit of g € G is Ug and we call this a
left coset. If we let U act on G from the right by right multiplication (g, u) —— gu, then the
orbit of a g € G is gU and we call this a right coset. We denote the set of left cosets by U\G
and the set of right cosets by G/U. In parts of the literature, the notions of left and right
cosets are interchanged.

Matrices

Let R be a ring and n € IN. We denote the ring of n X n quadratic matrices with coefficients in
R by M, (R) and its unit group by GL,(R). If R is an ordered ring (e. g. a subring of R), then
M; (R) denotes the submonoid of the multiplicative monoid of M(R) consisting of matrices
A € M,(R) with det A > 0 and GL;,(R) := GL,(R) N M}, (R).

If in a matrix some entry is left empty, this stands for a 0, while a “+” stands for an
arbitrary element of R.

For n = 2, we define the main involution i of GL,(R) by

a' = (deta)a™?, a € GLy(R).

£ 8- )

Congruence subgroups and submonoids

Hence if ¢ = (‘C‘Z),then

We define some standard congruence subgroups of SLy(Z) and congruence submonoids of
M,(Z). Let N,M € IN,
We define

5= (_1 1) € GLy(Z)

and write G, for the subgroup of GL,(Z) consisting of o and the identity. Note that this
matrix is often denoted by ¢, but since ¢ may be used for various other things in this work,
we denote it by o and use this symbol exclusively for this matrix.

Define groups

T(N) = {yeSLZ(Z):yE (1) (1)) (modN)}

L(N) = {yeSL2(Z):yE (1) j) (modN)}

T,(N) = {yeSLz(Z):yE ; :) (modN)}
Iy o(N, M) = {yeSLg(Z):yE (1) j) (mod N), yz(z ) (modM)}
TON, M) = {yeSLz(Z):yE (1) j) (mod N), y_( 2) (modM)}
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and monoids
MM = {a € My(Z) : deta # 0, (detar, N) = 1}

Ai(N) = {a eEM;(Z):y = ((1) :) (modN)}

Ao(N) = {a = (‘j z) eM(Z):y = (: :) (mod N), (a,N) = 1}.

We note that in the notation of [Shi71, §3.3], if we choose ) = (Z/N)* and ¢t = 1 we obtain
I = TH(N), A" = Ag(N) and A}, = Ag(N) N MgN), whereas if we choose ) = {1} and t = 1
we obtain I'” = I}(N), A’ = Aj(N) and A}, = Ai(N) N M(ZN) there. Further the Ay there is
MM M ().

All the groups defined above are normalised by a. If A is any submonoid of My(Z), we
write A® for the submonoid of M;(Z) generated by A and 5. For example, we have

Ag(N) = {a = (Z Z) eEMy(Z):y = (Z :) (modN), (a,N) =1, deta # 0} .

This monoid is denoted Sy(N) in [PS11, §2.1], [PS13, §2.1], [Stegq, (0.6)].

Gauf sums

Let y: (Z/N)* — K*bea Dirichlet character with values in some number field K. If we
fix an embedding 1x: K —— @, we can define its Gaufy sum as

Glru) = ), wlx(@)e™ N e ¢,
ae(Z/N)*

using our fixed embedding_@ —— C. If L is the completion of K at the place induced by ix
and our fixed embedding Q — Q,, then 1x induces i1 : L —— Q,. If N = p™ is a prime

power, then G(y, ix) corresponds via our fixed embedding Q— @p to

Gruw) = ), ulx(@)is €Q,

ae(Z/N)*

where &, is from our fixed compatible system of p-power roots of unity. In this way, we
always view Gaufl sums as elements of C and Q,. We will often drop ik or i, from the
notation, but one should keep in mind that Gaul sums depend on these embeddings.

Miscellaneous

If D is an integer coprime to a prime p, we put Z, p = h;n N Z./Dp™.
n
We denote by ) = {r € C : Im7 > 0} the complex upper half plane and by h* =
hUPYQ) = bhU QU {co} the completed upper half plane with the usual topology, see e. g.

[DSos, §2.4].
If X is any topological space and A is an abelian group, then A denotes the constant

sheaf defined by A. If ¥ is some sheaf X, then we denote by H;(X , ) the i-th parabolic
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cohomology, which is defined as the image of cohomology with compact support H.(X, )
in H{(X, F), for any i > 0.

If V is a vector space over some field K, we denote by V" its K-linear dual. The field K
will usually be clear from the context.

If V or p is some representation of some group, we write V* resp. p* for the contragredient
(i. e. dual) representation.

We denote the symmetric group on n letters by S,,.

We denote the conductor of a Dirichlet character y by cond y.

For a prime p and N € IN we denote by ord, N the p-adic valuation of N, i. e. the maximal
r € INy such that p” | N.
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Chapter I.

Preliminaries

1. Abstract Hecke theory

“Hecke operators” act on a variety of objects. Unfortunately there are quite some slightly
different conventions to define them in the literature, and comparing these can be quite messy
in explicit situations. We therefore first standardise the notion of Hecke operators using the
abstract Hecke algebra for a Hecke pair of a monoid and a subgroup, which was introduced
by Shimura in [Shi59], see also [Shi71, §3.1]. We repeat this construction following closely
the original sources; most of what we do here is also covered in [Miy89, §2.7].

Having defined the abstract Hecke algebra, we can give many groups a canonical module
structure over it just by abstract nonsense. We develop this abstract theory to some extent
and show Hecke equivariance statements for maps between these groups, whose proofs
are mostly trivial in our abstract setting, so there is no need to do lengthy calculations. To
connect our theory to more classical situations, we prove that the Hecke actions we define
abstractly indeed become the actions defined in some texts in an ad-hoc way if one specialises
to concrete situations. This provides a clean way to compare different definitions of Hecke
operators.

In the applications we mentioned, the resulting statements are mostly clear or well-known
to the experts, but nonetheless it seemed reasonable to give proofs for them, and the abstract
setting we develop seemed to be the most elegant way to do this.

Traditionally, Hecke operators act from the right (i. e. we get right modules over the
abstract Hecke algebra). We follow this convention, although in our applications the Hecke
algebra will be commutative anyway. However, for group or monoid actions needed to
get our machinery off the ground, there is no common convention in the literature: some
authors use left actions and some use right actions. We chose to incorporate both conventions
into one category, assuming that we have a fixed involution on the surrounding group, so
that we get functors from things with left or right actions to right modules over the Hecke
algebra. This makes the machinery somewhat unwieldy occasionally, but we think that in
the applications we will benefit from that viewpoint.

1.1. Monoids with involution, actions and representations

Definition 1.1: A monoid with involution (2, %) consists of a monoid ¥ with cancellation
property (so that it lies in a group) and a map x: ¥ —— ¥ (denoted &« —— a*) which is an
involution, that is, it fulfils a** = « and (af)* = f*a* for all @, f € X (in particular, it is
bijective).

Example 1.2: Of course, any group with the inversion map as involution provides an
example. The most important example to have in mind will be ¥ = GLy(Q) N My(Z) or
¥ = GL; (Q) N M3(Z) with the main involution ¢ (see page xx).
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Definition 1.3: Let (2, x) be a monoid with involution, C be a category and C € C an object.
(@) A left action of (2, %) on C is a homomorphism of monoids ¢: ¥ —— End(C).

(b) A right action of (X, ) on C is a map ¢: ¥ —— End(C) such that the composition

R A End(C) is a homomorphism of monoids.

(c) Let X be the set of left and right actions of (%, ) on C. We define an equivalence
relation ~ on X by

P~y : = @o=yYorp=yox
An action of (2, %) on C is an equivalence class from the set X above. Obviously each

equivalence class has two elements: one left action and one right action. We call
these the left resp. right representative.

(d) Denote by C, «) the following category: objects are pairs (C, A) where C € C is
an object and A is an action on C. A morphism f: (C, A)—— (D, B) is a morphism
f: C—— Din C such that the following equivalent conditions hold:

(i) For the actions A and B, choose representatives ¢ and ¢ such that they are
both a left action resp. both a right action. Then for any « € X, the diagram

commutes.

(ii) For the actions A and B, choose representatives ¢ and ¢ such that ¢ is a left
action and ¢ is a right action, or such that ¢ is a right action and ¢ is a left
action. Then for any « € %, the diagram

commutes.

In fact, the category C(s, x) is obviously equivalent to either just the category of objects C € C
with left actions or with right actions of X. We freely use this equivalence without further
comments, thus regarding objects of C with either just a left or a right action as elements in
Cs -

One could give a similar definition if we have a subsemigroup A of ¥ which may not be
stable under %; an action should then be a right action of A or a left action of A* with the
equivalence relation defined in the same way. For simplicity, we restrict to the case of a
*-stable semigroup, but in remark 1.25 (a) we will once consider this more general situation.
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For a commutative ring R, we will work a lot with the category R-Mod (5, +), whose objects
we call R-linear representations of (2, x). Such a representation is then an R-module M with
an R-linear action of ¥ either from the left or from the right. We will typically denote left
actions by

ISXM—M, (a,m)——aem

and right actions by
MXY—M, (ma)—— m[a]

(in the applications, a will often be a matrix, and then we write m[ s ] instead of m[(* %)]).
It is clear that R-Mod (5, 4 is an abelian category: it is equivalent to both the category of left
or right R[¥]-modules.

Sometimes the ring R will be a topological ring, and the modules should be topological
modules. Everything we do can be extended to this situation. How to do this will be clear, and
we will ignore the topological case, working just with abstract rings, so to not over-complicate
matters.

Remark 1.4: The category R-Mod (5, ) admits an internal hom. To explain this, take two
M, N € R-Mod (5, +). Choose the left representative for the action on M and the right repre-
sentative for the action on N and put for ¢ € Homg(M, N) and a € X

dlal(m) = ¢p(ax e m)[a], form e M.

Then ¢[a] € Homg(M, N) and this defines a right action of A on Homg(M, N). Via this
action, we view Homg(M, N) as an element of R-Mod (5, ).

Of course, we could have chosen other representatives for the actions, and it is clear how
the formula defining the action on Homg (M, N) should look like for the other representatives.
We chose these representatives because this often occurs in the literature discussing the main
application we have in mind (see section 111.1).

In particular, this defines a notion of duals in R-Mod (5, 4 if we take N = R (with the trivial
action of (X, x)).

1.2. Hecke spaces and Hecke sheaves

Throughout the whole section, fix a monoid with involution (3, x) and a commutative ring R.

Definition 1.5: Let X € T0p(s, 4 $0 X isa topological space’ with an action of (2, x). View
X as aringed space by defining the structure sheaf to be the constant sheaf R. Due to technical
reasons assume further that ¥ acts by automorphisms on X. Then we call X a Hecke space.

We define the notion of a Hecke sheaf which morally can be seen as a sheaf of R-modules
on X with an action of (2, x). This generalises the notion of “G-sheaves”, as they are called
in [Gros7, chap. 5], or “sheaves with group action”, as they are called in [Fu11, §9.1]: if we
specialise to the case of the trivial Hecke pair (G, 1), we get this notion back. We follow these
texts closely and refer to them for details.

If we choose a representative for the action of (X, ) on X, then for each & € X we get a
map X —— X given by the action of @. To make things clearer, we often denote this map by
La resp. aR for the left resp. right representative instead of just . Note that by definition
of the equivalence relation on actions, we have La* = aR for all « € X, and moreover
LaoLf =Lap, aR o R = faR.

! Recall that we work only with “nice” topological spaces, see page xviii.
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Definition 1.6: Let # be a sheaf of R-modules on X. Choose a representative for the action
of (2, %) on X.

(a) For the left representative, define a left Hecke sheaf structure on ¥ to be a collection
(¢ ) of isomorphisms ¢, : F —— La.F for every a € %, such that ¢; = id¢# and
for all a, B € X the left diagram below commutes, or equivalently (by adjointness), a
collection of isomorphisms ¢* : La*# —— ¥ such that ¢' = id¢and forall @, f € =
the right diagram below commutes:

o

Pa ¢

F La.F La*F F
‘pd/”l le((ﬂﬁ) La*((pﬁ)T W{pﬁ“
(Laf).F — La.(LB.F) La*(LB*F) — (Lap)*F.

(b) For the right representative, define a right Hecke sheaf structure on ¥ to be a col-
lection of isomorphisms ¢, : ¥ —— aR.F for every a € X, such that ¢; = id# and
for all a, f € ¥ the left diagram below commutes, or equivalently, a collection of
isomorphisms ¢%: aR*F —~— F such that ¢' = id# and for all @, € ¥ the right
diagram below commutes:

F i aR.F aR*F Y F
Ppa J laR*(fﬂﬁ) aR*(q)ﬁ)w [q)"‘ﬁ
(BaR).F — aR.(BR.F) aR*(fR*F) — (BaR)"F .

Similarly as we did in definition 1.3 (c), we want to define an equivalence relation on
Hecke sheaf structures to unify them in a single category. Take a sheaf of R-modules ¥ on
X. Choose the left representative for the action on X and take left Hecke sheaf structure
(¢a)o on F. Putting a* for @ € 3 and f* for € 3 in the left diagram in definition 1.6 (a)
and using a* f* = (fa)*, we arrive at a commutative diagram

Poa*

F LafF
P(pay* l lLa:(‘Pﬁ*)

L(Ba)rF — LaX(LBrF),

for all @, p € 3. Because we have La* = R, this diagram says that the collection of the ¢,
for all « € ¥ is a right Hecke sheaf structure on ¥ for the right representative for the action
on X. Similarly, if we start with a right Hecke sheaf G, we obtain a left Hecke sheaf structure
on it.

Definition 1.7: Define an equivalence relation on the set of left and right Hecke sheaf
structures on a sheaf ¥ by saying that two Hecke sheaf structures are equivalent if and only
if they are either the same or one can be transformed into the other by the process we just
described. Define a Hecke sheaf on X to be a sheaf of R-modules together with an equivalence
class for this relation.
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It is then clear that for each Hecke sheaf there is a unique representative which is a left
Hecke sheaf and a unique one which is a right Hecke sheaf. We call them left and right
representative, respectively.

Definition 1.8: Let SHg’*)(X ) be the category whose objects are Hecke sheaves on X and
in which a morphism f: ¥ —— G between two Hecke sheaves is a morphism of sheaves
¥ —— G such that for all « € X the diagram

F—G a'f — a'G
l l or equivalently l l
O(*T — O(*Q T —_— g

commutes, if we choose the right (or left) representative for the action on X for both sheaves
and the « in the diagram refers to aR resp. La. If we choose mixed representatives, one has
to draw diagrams with “x” on one of the sides; we don’t write this down.

Proposition 1.9 (Grothendieck): The category Sﬁg’*) (X) is an abelian category with enough
injectives.

Proof: If we specialise to the right representative and forget the left one, the category of
Hecke sheaves is equivalent to the category of 3-sheaves. The analogous statement for
G-sheaves for a group G is proved in [Gros7, Prop. 5.1.1 and Thm. 1.10.1]. Investigating the
proof there, one sees that it does not use anything special about groups and still works with
monoids. (]

Now choose the left representative, say, for the action on X, let p € X be a point, « € ¥ and
¥ a Hecke sheaf on X. By applying the “stalk at p” functor to the morphism La*F —— F
and using the identification of stalks (La*F), = F1.4(p), We see that we get an induced map

Frap) — T (1.1)

for each a € X. Similarly, if we choose the right representative, we get a map For(p) —
for each a € 3.

Construction 1.10: We want to have a notion of constant Hecke sheaves. Therefore, let M
be an R-linear representation of (2, %).

Choose the left representative for the action of (2, %) on both X and M. Then for any
open U C X and any « € ¥, La induces a map between the set of connected components

mo(La ' (U)) — mo(U).

Define a map

M(U) = Maps(ro(U), M) — > Maps(ro(La™(U)), M)
—2 Maps(my(La™'(U)), M) = MLa™'(U)) = LauM(U)

where (1) is induced by the above map on connected components and (2) is given by pointwise
application of a* on M (in both cases, “left” and “right”!). Then one can check that the
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collection of morphisms of sheaves ¢, : M —— La, M defined that way satisfies the necessary
relations for a left Hecke sheaf structure on M. One also easily checks that if we choose the
right representative for the action, then the analogous construction defines a right Hecke
sheaf structure which is equivalent to the previous left Hecke sheaf structure in the sense of
definition 1.7. Therefore, we get a well-defined Hecke sheaf on X, which we denote by M
and call the constant Hecke sheaf-

Going into the explicit proof of the fact that La, and La™ are adjoint functors, one sees
that the morphism La*A —— A corresponding to ¢, is explicitly given by

La" A(U) = A(La(U)) = Maps(ro(La(U)), A)

9, Maps(mo(U), 4) —L Maps(ry(U), 4) = AU)

where again (1) is induced by the map on connected components and (2) is given by pointwise
application of a* on A, if we chose the left representative, and analogously for the right
representative.

Using this, we can see that for any point p € X and « € %, if we identify stalks with A in
the usual way, the map (1.1) is just given by multiplication with a*, for either representative.

Construction 1.11: Now we consider the situation where X and Y are Hecke spaces and
f: X—— Y is a morphism in Top 5, , ). We look at pushforwards and pullbacks of Hecke
sheaves.

(a) Choose again the left representative, say, for the action of (2, %) on both X and Y.
If ¥ is a Hecke sheaf on X, then we have La, f.¥ = fiLa.F for each a € ¥ (where
the first La is the action on Y, while the second is the action on X), so applying the
functor f; to the morphism ¢, gives a morphism f,¥ — La. f.F, and one easily
checks that this makes f.% a Hecke sheaf on X.

(b) Similarly, if G is a Hecke sheaf on Y, then applying the functor f* to the morphism
@“ (the p* now being part of the Hecke sheaf structure of G) and using a similar
argument as before gives a morphism La* f*G —— G, and one checks that this makes
f*G a Hecke sheaf on X. This does not depend on the choice of the representative
for the action.

(c) Since Hecke sheaves form an abelian category, we automatically get Hecke sheaf
structures on all the higher direct images R?f.#. More explicitly: The family of
functors (R?f£.(-))4>0 is a -functor from the category of sheaves of abelian groups
on X to the category of sheaves of abelian groups on Y, and as a derived functor
it is universal. Since a. (again « is an abbreviation for either La or aR) is exact
(recall that we required that X acts by automorphisms on X!), (a.R? f.(:))4>0 is also a
d-functor. The morphism f.¥ —— a.f.F from before is a morphism between the
degree 0 parts of these §-functors and hence, by universality, induces a morphism of
d-functors

RIfu(-)gz0 — (@R fi(-))g>o-

For each fixed degree q > 0, the degree g part of this morphism gives the Hecke
sheaf structure on RYf. .
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1.3. (Co)homology of Hecke spaces

We first look at singular homology of a Hecke space X € T0p(s, 4y A singular simplex is a
continuous map from a standard simplex to X, and composing such a map with La or aR
for @ € ¥ produces a new singular simplex. In this way we view the R-modules of singular
chains (i. e. the free R-modules over singular simplices) C,(X, R) as an element in R-Mod 5, 4.
It is clear that this is compatible with restriction to boundaries of simplices, so the action of
¥ on singular chains defined that way induces an action of (%, x) on the homology groups
H;(X, R). Thus, the homology of Hecke spaces has values in R-Mod (s, ). It is also clear that
if we have a Hecke subspace A C X, then its chains are stable under (2, %), so the long exact
singular homology sequence of a pair of Hecke spaces is a sequence in R-Mod 5, ). Finally,
under the usual identification of Hy(X, R) with the free R-module over the path-connected
components of X, the action of (2, x) on Hy(X, R) is the one induced by the canonical action
on path-connected components.

For M € R-Mod (5, ) we can define the singular cochains C"(X, M) = Homg(C,(X, R), M)
by taking the internal hom in R-Mod 5, ,). This makes the singular cohomology groups
H'(X, M) also elements of R-Mod (5, +), and the long exact singular cohomology sequence is
a sequence in R-Mod (5, 4).

Now we look at cohomology of Hecke sheaves. Let # be a Hecke sheaf on X, and choose
the left representative, say. For each a € X, we have a map

T(X, F) = F(X) —% Lau F(X) = F(La '(X)) = F(X) = I(X, F) (1.2)

and it is easily verified that this defines a left action of (£, %) on I'(X, ). Analogously, starting
with the right representative, we get a right action of (2, %) equivalent to the previous left
action. So we have seen:

Proposition 1.12: Taking global sections defines a functor
SEZ*(X) — R-Mod (5, 5.

In particular, all cohomology groups of Hecke sheaves are elements of R-Mod (5, 4).

There is also another way to see this (again using the left representative): functoriality of
cohomology for La: X —— X (for « € 3) gives us a morphism HY(X, ¥) — HY(X, La*¥F),
and ¢“ induces an isomorphism H?(X,La*F) —— H4(X, ¥). The composition of these
gives an endomorphism of HY(X, ), and in this way we get an action of ¥ on H(X, 7). To
see that this describes the same action as before, it suffices to check this in degree 0, because
sheaf cohomology, being a derived functor, is a universal §-functor. Explicitly, because =
acts by automorphisms, we have La(X) = La”(X) = X, so La. ¥ (X) = F(La (X)) = F(X)
and La*F(X) = F (La(X)) = F(X). We then have to check that the map (1.2) coincides with
the map

FX) = FLa(X)) = La*F(X) — o FX).

This can be seen by going into the explicit proof of the adjointness of La, and La*. We do
not go further into detail.

The identification of sheaf cohomology with singular cohomology H(X, M) = H (X, M)
is an isomorphism in R-Mod 5, +). Checking this in degree i = 0 is an easy calculation using
the definition of the action of (2, %) on both sides, and by universality it extends to any i > 0.
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Lemma 1.13: LetX,Y € Topy be Hecke spaces, f: X —— Y a morphism, and let  be a
Hecke sheaf on X. For the actions of ¥ on X and Y as well as for the Hecke sheaf structure on ¥,
choose either the left or right representative for all of them. For each pointp € Y, let X, = f~'(p)
be the fibre at p, and for each q > 0 identify the stalk (R f. ), with the cohomology group
HY(X,, F|x,) in the usual way.

Then for each o € 3, the map on stalks

RIfFap) — RILF)p  resp. RILF )arp) — RILF)p
as in (1.1) is the map
HYXLa(p)s F [Xpap) — HIXp, Flx,)  resp. HU(Xarp)s F X pny) — H1Xp, Flx,)
induced by functoriality of cohomology for the map X, —— Xpqa(p) (resp. Xp —— Xar(p)) iven

by the action of a on X and the map La*F |x,,,,, — Flx, (resp. aR*F|x
coming from the Hecke sheaf structure.

aR(p) ¢|Xp)

Sketch of proof: We work with the left representative.

Let  be the presheaf on Y mapping an open U to H(f~'(U), ¥ |f-1(v)). Its sheafification
is R1f.F [Har77, Prop. 111.8.1]. We define a morphism of presheaves ¥ —— La,.® such that
for an open U the map HY(f~'(U), ¥ |f-1y)) — HI(La ' (f'(U)), F |Lo-1(r1vy)) is induced
by functoriality of cohomology from the map f~(U) — La~'(f~!(U)) given by the action
of a and the map La™F | o-1(f-1(v)) — F |f-1(v) coming from the Hecke sheaf structure.

After sheafification, this induces a morphism R? f,¥ —— Lo, R £, F.
To finish the proof, by construction 1.11 (c) it suffices to check that this construction,
done for any i and any ¥, defines a morphism of §-functors

R fi())gz0 — (LRI fi(-))g20
and that in degree 0 it gives back the original morphism f.¥ —— La, f.F, because then

the claim follows from the universality of (R f.(-))¢>0. This is a straightforward calculation
which we omit here. O

Corollary 1.14: Let X, Y, f,p, X, as in lemma 1.13. Let further A be an R-module which we
consider as a trivial representation of (2, %). Identify the stalk (R' f.A), with the dual space of
the singular homology group Hy(X,, A). Then for each a € 3., the map on stalks

(le*é)La(p) — (Rlﬁé)p resp. (le:ké)aR(p) — (Rlﬁké)p

as in (1.1) is identified with the dual of the map on singular homology
Hi(Xp, A) — Hi(X1a(p). A)  resp. Hi(Xp, A) — Hi(Xqr(p), A)

induced by the map X;, —— Xpqa(p) (resp. Xp —— Xqr(p)) given by the action of a on X.



1. Abstract Hecke theory

1.4. Hecke pairs and the abstract Hecke algebra

Throughout the whole section, fix a monoid with involution (Z, %).

Definition 1.15: A Hecke pair* (A,T') for (2, %) consists of a submonoid A € X and a
subgroup I' C A subject to the following conditions:

(a) If G is the smallest group containing ¥, then A is contained in the commensurator T
of T in G, which is the subgroup

I'={g€G:glg " andT are commensurable},

where two subgroups of a group are said to be commensurable if their intersection
has finite index in both of them;

b) The restriction of % to I is the inversion ma —— v~ (so in particular T* =T).
pYy Y p

We call the Hecke pair (A, T) central if a*a = aa* for all @ € A and a* @ commutes with
ally eT.

Example 1.16: (a) Any group G carries an involution given by inversion. Then (G, 1) is
a Hecke pair for the monoid with involution (G, (-)™!) which we call the trivial Hecke
pair3 It is obviously central.

(b) In the most important type of example, we will consider one of the groups G =
GL;(Q) or G = GLy(Q) with the main involution  given by a' = det(«)a™" and the
submonoid X = G N My(Z). Then G is the smallest group containing X. If A is a
any submonoid of ¥ and I C A is a congruence subgroup of SLy(Z), then (A,T) is
a Hecke pair: If @ € G, then al'a™! N SL,(Z) is again a congruence subgroup (see
[DSos, Lem. 5.1.1], where a € GL; (Q), but the case of @ € GL2(Q) obviously follows
from this), and any two congruence subgroups are commensurable [DSos, Ex. 5.1.2],
soT' = G in this case, and obviously the restriction of i to SLy(Z) is the inversion
map. This Hecke pair is always central.

(c) One can find similar examples related to automorphic forms on other algebraic
groups.

We now introduce the abstract Hecke algebra.

Definition 1.17: For a Hecke pair (A,T') and a commutative ring R, we define the abstract
Hecke algebra to be the R-algebra generated over R by the double cosets I'al for all a € A,
and the product of two double cosets I'aT and I'fT" defined as follows: decompose the double
cosets as a disjoint union of left cosets

Tal =| |Ta;, TPr=| |Tp;
i

J

with a;, f; € A and define their product by

Tl -TT = > m TET, (1.3)

2 There are various definitions of this notion in the literature. For our purposes, this will be the adequate one.
3 Of course, (G, G) is also a Hecke pair which we could call the trivial one. But this one is even “too trivial”: its
abstract Hecke algebra we will define later will be trivial and the whole theory will loose its content then.
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where the sum runs over all double cosets I'¢éT' C T'al'fI" and
mg = #{(l,]) : FO{,',BJ' = F§}
We denote this R-algebra by Hg(A,T') and call it the abstract Hecke algebra.

Proposition 1.18 (Shimura): The above disjoint unions are finite, and Hg(A,T) is a well-
defined R-algebra.

Proof: [Shi7i, §3.1] [l

The abstract Hecke algebra is a generalisation of the concept of a group or monoid ring:
if (A,T) = (G, 1) is the trivial Hecke pair as in example 1.16 (a), then Hg(G, 1) is just R[G].
The following observation will sometimes be useful.

Remark 1.19: Fix a € A and decompose again

e
Tal = I_I la;, a; €A.
i=1
Foreachy e T'and eachi € {1, ..., e}, the element a;y lies in a unique left coset in the above
decomposition, i. e. there are unique j € {1,...,e} and y’ € T such that a;y = y’a;. Then for
fixed y, the map i —— j is a permutation of the set {1, ..., e} which we denote by o, and
for fixed i, we have amap p;: ' — I given by y +—— y’. So we have

aiy = pi(y)ao, i)-

We now study relations between Hecke pairs and Hecke algebras.

Definition 1.20: Let (A,I') and (A’,I”) be Hecke pairs. We write (A,I') < (A’,T”) if the
following conditions hold:

() TCTI',ACA,
(b) TVal” =T’al for all a € A,
(c) ’anA=Taforall a € A.
If in addition the condition
(d A" =T’A
holds, then we write (A,T) Z (A',T”).

A basic example for Hecke pairs (A,T) and (A’,T”) with (A,T) < (A’,T”) is the case that
I' =T"and A € A’. We will see more examples in section 1.8.

Proposition 1.21: Let (A, T) and (A’,T”) be Hecke pairs. If (A,T) < (A’,T’), then the map
Hr(A,T) — Hg(A",T’), Tal — 'al’

is a well-defined injective homomorphism of R-algebras. If (A,T) 3 (A’,T”), then the above
map is an isomorphism. In this case any double coset I''al'’ can be represented by an o € A and

Hr(A',T") — Hg(A,T), T'al'’——Tal (a€A)
is a well-defined inverse.

Proof: See [Miy89, Thm. 2.7.6 (1)]. The statement is formulated there slightly less general,
but this is what is really proved there. O

10
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1.5. Group cohomology of representations of Hecke pairs

Continue to fix a commutative ring R, a monoid with involution (3, x) and a Hecke pair
(A,T). We will now work with the category R-Mod (5, 4 of representations of (3, x). For a
representation M € R-Mod (5, «), we choose a representative for the action and can then form
the R-submodule of T'-invariants M. Since we required I'* =T in definition 1.15, this is a
well-defined subset not depending on the choice of the representative for the action. We
wish to make M! a right Hg(A, T')-module.

Definition 1.22: For @ € A, we define an endomorphism [['al'] of M' which we call a
double coset operator. Decompose again

Iall = I_Il"ai, a; €A
i

and choose a representative for the action of (A,T’) on M.

(a) If the chosen representative is a left action, then define for m € M*

m[Tal] = Z al em.
i

(b) If the chosen representative is a right action, then define for m € M"

m[Tal] = Z mla;].

i

It is obvious that this definition does not depend on the choice of the representative for the
action (if it is at all well-defined). Thus, it suffices to prove the well-definedness in one of the
two cases.

Lemma 1.23 (Shimura): The above is well-defined and makes M' a right Hr(A,T)-module.
If M’ is another representation of (X, %) and f: M —— M’ is a morphism, then the restricted
morphism MY —— (M")' is Hg(A, T)-linear.

Proof: [Miy89, Lem. 2.7.2, Lem. 2.7.4] O
Of course, in the case of a trivial Hecke pair (G, 1), this defines just the canonical R[G]-module

structure.

Example 1.24: Let (2, %) and (A, T) be as in example 1.16 (b) (with G = GL} (Q)), let k € IN,
and denote by M the C-vector space of meromorphic functions on the upper half plane. Let
3 act on M from the right by saying that for f € Mand « = (¢ 4) € =, the function f[a]k
on the upper half plane is given by*

flalk(r) = (deta) (et + d) ™ f(ar).

Then M! is just the space A () of classical meromorphic modular forms for the group T
The action of a double coset [Tal'] for &« € A as defined in definition 1.22 in this case is

4 Note that many texts, such as [Shi71], use a slightly different normalisation for this action in that the factor
(det (x)k/ 2 instead of det a*~! is used. Our normalisation is used e. g. in [DSos; HidLFE]. Both normalisations
give the same spaces of modular forms.

11
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precisely the usual one.> So the resulting right Hg(A, I')-module structure on A (T) is the
classical one defined e. g. in [Shi71, §3.4].

Remark 1.25: (a) As is visible from the definition, to make the I'-invariants a right

(b)

Hr(A,T)-module we do not need an action of the full semigroup X. It would suffice to
have either a right action of A or a left action of A*. The Hg(A, T)-linearity statement
from lemma 1.23 then just needs equivariance for this action.

Much of what we do could also be developed in this more general setting. However,
some statements do need that the action comes from an action of the whole X (or at
least of the subsemigroup of ¥ generated by A and A*). For reasons of clarity we
therefore decided to fully develop the theory only in this case. Nevertheless, at one
minor point, we will need the more general situation; see part (b) below.

Let e: A* —— R* be a character. Then we can twist the Hg(A, I')-module structure
by ¢ as follows. Decompose again

Tall = I_Il"ai, a; €A
i

and choose a representative for the action of (A,T') on M.

(i) If the chosen representative is a left action, then define for m € M"

m[Tal] = Z e(af) - a em.

i
(ii) If the chosen representative is a right action, then define for m € M"

m[TaTl] = Z e(al) - mla;].

i

Then one easily checks that this defines a right Hg(A, T')-module structure on M'.
We denote this new Hg(A, T')-module by M (¢).

Of course, if we view M as a left A- resp. A*-module (according to if we use the right
or left representative), then we can twist the action of A resp. A* on M itself by ¢ o x
resp. €. If we then apply the previous construction to the twisted module M(¢e), we
end up with the same Hg(A, I')-module M* ().

Thus if N is another R-linear representation of (%, %) and f is an R-linear map
M —— N or N—— M, then f will induce an Hg(A,T')-linear map M (¢) —— NT
or N' —— M (¢) if and only if it is equivariant for the action of A resp. A*, using
the e-twisted action on M.

This construction will occur only at one minor point in this work (namely in sec-
tion 111.4.2), and there we do not use any results from our abstract Hecke theory other
then just the definition. Therefore we do not study these twisted modules further.

5 In [DSos], the action of a double coset is defined by the same formula as in definition 1.22, whereas in [Shi71]
there is an extra factor (det a)k/ 2=1in front of the sum. This cancels out the different normalisations in the
definition of the A-action.

12
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We have shown that we can consider taking I-invariants as a functor
R'M(Jl{(z’*) — Matf-?‘(R(A, F). (1.4)

It is obviously left exact and its derived functors are the usual group cohomology groups, so
we automatically get a right Hg(A, I')-module structure on the cohomology groups HY(T', M)
for all ¢ > 0 and all M. In particular, all maps in a long exact cohomology sequence attached
to a short exact sequence of R-linear representations of (2, x) are Hg(A, I')-linear.

The Hgr (A, T')-module structure on cohomology can be made very explicit. To state this,
we use the representation of cohomology groups by homogeneous standard cochains.

Lemma 1.26 (Rhie/Whaples): Let¢: T9"' —— M be a homogeneous cocycle representing a
cohomology class c € H4(T', M), and for « € A decompose

e
Tal = u Ta;.
i=1

Then the cohomology class c[T'aT] is represented by the cocycle ¢[Tal'| given by

Z ai @ &(pi(yo) - - .. pi(yq)) for the left representative,
i=1

c[TaT(yo, ... yq) =

e

Z c(pi(yo)s - - -» pilyg)lai]l  for the right representative.

i=1

Proof: Of course, it suffices to prove this in one of the two cases. We prove it in the case of a
left action.

The Hg(A,T')-module structure we have has the property that in degree 0 it is the one
defined in definition 1.22 and all maps in a long exact cohomology sequence attached to a
short exact sequence of representations of (X, x) are Hg(A, T')-linear. The latter means that
multiplication by any T € Hg(A,T') is an endomorphism of the §-functor H*(T', —). Hence the
Hgr(A,T)-module structure is unique with the above property since H*(T', —) is a universal
d-functor.

Thus to prove that the Hg(A, T)-action has the form claimed in the lemma, it suffices
to show that if we define a right Hg(A,T')-action on each HY(T, M) for all i and all M by
these formulas, then we get back the original action in degree 0 and all maps in a long exact
cohomology sequence attached to a short exact sequence of representations of (2, %) are
Hg(A,T)-linear.

First, for ¢ = 0, the class ¢ corresponds to an m € M via the relation m = (1), and
one sees immediately that p;(1) = 1 for all i, so ¢[TaT'] (as defined by the above formula)
corresponds to

drel)() = 3 af épiV) = ) af om,

which shows that we get back the original action in degree 0.

The second property is proved in [RW70] in the case of a left action. More precisely,
in §11.1 they define a right action of double cosets on a different kind of cochain complex
resolving M by some formula and prove that for this definition, all maps in a long exact
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cohomology sequence are Hg(A,T')-linear [RW70, Prop. 2.2, 2.3]. Then in [RW7o, §11.2,
Prop. 2.4] they prove that in the representation using homogeneous standard cochains, their
formula becomes what we stated above. They work in the special case where X is a group G
and the involution * is the inversion map § —— §~! on G, but investigating their calculations
shows that they really use this only for elements of T', so their calculations remain valid in
our setting because of the requirement in definition 1.15 (b). (Il

Since in many situations inhomogeneous cochains are preferred to homogeneous ones, it
is useful to have an explicit description of the action of Hg(A,T) also on inhomogeneous
cochains. For simplicity, we state this only in degree 1, which will suffice for our purposes.

Corollary 1.27: Let ¢: I' —— M be an inhomogeneous 1-cocyle representing a cohomology
class c € H\(T', M), and for a € A decompose

Tal = I:I Ta;.
i=1

Then the cohomology class c[Tal’] is represented by the cocycle ¢c[T'al'] given by

Z a) @ &(pi(y)) for the left representative,
i=1
¢[Tal](y) =

e

Z c(pi(y)lai]l  for the right representative.

i=1

Proof: The explicit isomorphism between the homogeneous and inhomogeneous standard
resolutions is given in degree 1 by

Homr(Z[T'?], M) Maps(T, M)
cl [y (1, y)]
(v — fO ') ———— f.

Using this and lemma 1.26, one obtains the claim by an easy calculation. ]

Example 1.28: In the situation when (Z, x) and (A, T') are again as in example 1.16 (b) and
M is an R-linear representation of (2, x), some texts define an action of Hg(A,T') on HY(T, M)
(or just HY(T', M)) in an ad-hoc manner using the formulas from lemma 1.26 or corollary 1.27:
see [Shi71, §8.3, (8.3.2)], [Hid86a, §4, p. 563], [HidLFE, §6.3]. So the actions defined there are
the same as the one we defined abstractly.

Remark 1.29: In some situations one wants to consider parabolic group cohomology. We
will need this only in degree 1. It can then be defined very explicitly: fix a subset P C T" and
define

ZL([T,M) = {c € Z\(T,M) : Vz € P: ¢(n) € (x — )M},

14
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where Z!(T', M) denotes inhomogeneous 1-cocycles on T with values in M. If we denote by
BY(T', M) the corresponding coboundaries, then B'(I', M) C Z,(T, M), and one defines then
the first parabolic cohomology group with respect to P as

HL(T, M) = Zp(T, M)/Bl(r, M) -

Of course one will need some conditions on P to guarantee that the subgroup HL(T', M) C
HY(T', M) is stable under the action of Hg(A,T).

Instead of writing down such conditions in full generality, we just state that in our main
application these will be satisfied. This main application is the case where T is a congruence
subgroup of SLy(Z) and P is the subset of all parabolic elements. In this case the parabolic
cohomology subgroup is indeed Hg(A, T')-stable. This is shown in [Shi71, §8.3].

There is yet another way to describe the action of double cosets on group cohomology.
We need a preliminary lemma.

Lemma 1.30: Leta € A and put ®, = T N a~'Ta, which is a subgroup of finite index of T; let
e be this index. Let

e
I= \_|<1>ac,-, ¢; el
i=0

be a decomposition of I' into left cosets and put a; == ac; fori =1,...,e. Then

Tal = IJ Ta;
i=1

is a disjoint decomposition of T'aT into left cosets.

Proof: First, assume I'ac; = T'ac;j fori,j € {1,...,e}. Then we can write ¢; = a‘lyacj with
some y € I, and since ¢;,¢; € T, we must have a”'ya € T, so a'ya € @, and thus i = j.
This proves that the union in the statement is indeed disjoint.

Since a; = ac; € al' foralli =1,...,e, we obviously have | J; T'a; C T'aT.

Without loss of generality, assume that ¢; is the representative for the trivial left coset
(i.e. ¢; € ®y). We then have ac;'a™ € T, so a = ac;'a 'ac; € Tac; = T, so we have
Fa € U;Ta;.

Finally, for eachy e T and eachi € {1,...,e} thereisac € &, andaj € {1,...,e} such
that c;y = oc;. We have aca™ € T. Using this, we calculate for any y,y’ € T

y'aciy = y'aocj = y'acalac;j € Tac;,
so lac;I' C Tac; and hence I'al’ € |J; Tac;I' € U;Tac; = U; Ta;. O

Lemma 1.31: Let @ € A and put &, = a TanT, d* = ad o

of T and we have the restriction and corestriction maps

. Then &,, ®* are subgroups

resjpe : H(T, =) — HY(®%,-),  corrj,, : HY(®q, ) — HI(T, ) (g 2 0)

for cohomology of (left or right) T-modules.®

¢ The corestriction map is also called “transfer”. For the definition of these maps, see e. g. [NSW13, §1.5 (3), (4)]
or [Lang6, §11.1 (b), (e)]. There, only the case of left I'-modules is treated. For the restriction map, this definition
still works in the case of right I'-modules. However, for the corestriction map, there is one subtlety, namely,
one must sum over representatives of left cosets instead of right ones, otherwise the map is not well-defined.
Note also that unfortunately the text [Lang6] calls left cosets what we call right cosets and vice versa.
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(a) Choose the right representative for the action of (£, %) on M. Define a map

b HI(@%, M) —— HI(Dy, M)

1

to be induced by the map &, — &%, 0 —— aca™ and the map M —— M given by

the action of a.

(b) Choose the left representative for the action of (2, %) on M, and assume in addition that
(A,T) is central. Define a map

b HI(@%, M) —— HIY(Dy, M)

1

to be induced by the map &, — &%, 0 —— aca™ and the map M —— M given by

the action of a*.

Then in both cases everything is well-defined and we have an equality
[Tal'] = corre, oab o resr|g«
of endomorphisms of H4(T', M) for any q > 0.

Proof: In the case of the right representative, it is a straightforward calculation to check that
the maps &, —— ®* and M —— M are compatible in the sense of [NSW13, §1.5] and induce
Con cohomology. Seeing this in the case of the left representative
1 *
=oa

a well-defined map «
essentially amounts to the same; note that since (A, T) is central, we have a*aca™
for all o € ®,, which one needs to make the calculation work in this case.

A statement similar to what we want to show is proved in [Lang6, Prop. 11.1.14]. There, a
dimension shifting argument is applied to reduce the proof to degree ¢ = 0. An analogous
dimension shifting argument also works in our case. To see this, one needs that all three
maps corr|e,, @ and resrjp« are functorial in the respective modules and commute with
boundary homomorphisms. For this, see [NSW13, Prop. 1.5.2], whose proof works for all
three maps; note that our ab is essentially the same as the map called conjugation there
(which is the reason why we use the notation “(-)E”). We omit the details of this dimension
shifting.

So we are left to check the statement in degree 0. We first work with the right representa-
tive. The corestriction map is in this case induced by

e
M — MY, mr—s Z m[ci],
i=1
where cy, . . ., c. are a complete set of representatives for the left cosets I'\®,,. The composite
map

MF Ie bea Mcpa MF

then sends an m € M' to }; m[ac;]. Thus by definition of the endomorphism [['al] in
definition 1.22 (b), the claim follows from lemma 1.30.

To check the statement in degree 0 for the left representative, note that if ¢y, . . ., ¢, are
representatives for the left cosets I'\®,, then ¢ 1o, c;l are representatives for the right
cosets @, /T. Hence the corestriction map is in this case induced by

e
MP — M, mi—s Zci_lom
i=1
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and the composite map

M" — M™ s MO —— MT

sends an m € M' to };(c;'a*)  m. Since c;'a* = (ac;)*, again by definition of the
endomorphism [T'al] in definition 1.22 (a) the claim follows from lemma 1.30.

Finally, since [T'aT] does not depend on the choice of the representative «, we have
shown in particular that also corr|g, oal o resr|pa is independent of the choice of @ and the
representative for the action. (]

We end this section by coming back to the relations between Hecke pairs we discussed
at the end of the previous section. If (A,T') and (A’,T”) are Hecke pairs such that (A,T') <
(N, T7), then forgetting the module structure along the map Hg(A,T') — Hg(A’,T’) from
proposition 1.21 induces a functor

MOL[-?‘{R(A,, F’) — Mocf-WR(A, F)

Proposition 1.32: If(A,T') < (A’,T”) then the diagram of functors

R'MOL{(Z, *)

Mod “Hg(N,T") Mod -Hg(A,T)

commutes.

Proof: See [Miy89, Thm. 2.7.6 (2)]. The statement is proved there in slightly different situation,
but the proof still works in our setting. O

1.6. Atkin-Lehner elements and adjoint Hecke algebras

In this short section, we define an abstract prototype of what is known classically as the
Atkin-Lehner involution. Special elements of £ which we call Atkin-Lehner elements give
rise to extra endomorphisms of the I'-invariants we studied that interact nicely with double
coset operators. In our applications, a particular choice of such an element will define the
Atkin-Lehner involution (note that in general the endomorphisms defined that way need not
be involutions).

Fix a commutative ring R, a monoid with involution (2, x) and a Hecke pair (A, T). Further
let M be an R-linear representation of (2, ).

We first start with the following obvious observation.

Remark 1.33: If 0 € ¥ is an element normalising I' (note that we use here that ¥ lies in
some group), then m —— m[o] gives a well-defined R-linear endomorphism of M.

Definition 1.34: (a) We call an element w € ¥ an Atkin-Lehner element for (A, T) if
wiTw =T and w'Aw = A*.

(b) We call Hgr(A*,T) the adjoint abstract Hecke algebra for the pair (A, T) or the Hecke
algebra adjoint to Hgr(A,T).

17
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Lemma 1.35: Fix an Atkin-Lehner element w € X.

(a)

(b)

Proof:

Let a € A. If we have a decomposition

e
Tal = |_| Ta; (a; €A),

i=1
then

e
Tw lawl = I_I Twla;w.
i=1

The map
HR(A,T) — Hp(A*,T), Tal — T'wlawl

is a well-defined isomorphism of R-algebras. We denote it T —— T™.

(a) First, if i, j are such that Tw'a;w N Tw™'a;w # &, then there existsay € T
with wa;w = ywlayw = wlwyw™lajw, so a; = wyw™la;. Since wyw™! € T, it
follows i = j, so the union is indeed disjoint.

Of course | |{_, Twa;w € Tw'awI. Take an element yw 'aw$ in the right hand
side with y,5 € T. Then wyw 'awdw™ € TaT, so write wyw lawdw™ = eq; for
some i with ¢ € I'. Then yw lawd = wlewwla;w € Tw™la;w.

To see that the map is well-defined and bijective is easy and we omit this. We have
to check that it is compatible with the multiplication of double cosets as defined in
(1.3). To see this, it suffices to check

[T CTalfT & Tw 'éwl C Twlawl'w™ ! fwl

and
Ta;fi =T¢ & Twlaww ' fiw = TwEw.

The second statement is easy to see: just conjugate the left side of the equivalence
with w and use wI'w™ = T. So let us prove the first statement.

Assume the left side of the equivalence and take yw™'éwé € Tw™1éwr. Takey’,8’ € T
with wy = y’w and Sw™! = w™15. Write y’£8” = y” awew 15" with y”,5”,¢ € T,
using the left side of the equivalence, and choose y””’, 8" € T with w™ly” = y"’w™,
8"w = ws". Then yw 1éws = y""wlawew  fws”” € TwlawT'w™ fwr.

For the other implication, assume the right side of the equivalence and take y¢5 €
[¢T. Write wly = y’w! and Sw = wd’ with y’, 8’ € T. Using the right side of
the equivalence, write y'wéws’ = y”’wlawew ™ fws” with y”,5”,¢ € T. Then
yES = wy”"wlawew Bws”’w! € TaT BT. O

Let w € ¥ an Atkin-Lehner element. The we have the endomorphism m —— m[w] of
M". By universality of group cohomology, this extends to endomorphisms of H(T', M) for
all i > 0, which we denote by the same symbol. On the other hand, M has a right Hg(A, T)-
as well as a right Hg(A*, T)-module structure.
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Lemma 1.36: We have
[w]TY = T[w]

as endomorphisms of H'(T, M) for T € Hg(A,T) and all i > 0.7

Proof: It suffices to check this for i = 0, and this follows easily from the definition of the
Hgr(A,T)-module structure, using lemma 1.35 (a). O

1.7. Coverings and monodromy

Throughout the section, fix a commutative ring R, a monoid with involution (3, x), a Hecke
pair (A,T) and a Hecke space X € TP (5. 4)-

Because * is the inversion map on T, the left and right quotients I'\ X and X /T are the same
space, so there is a well-defined quotient independently of the choice of the representative for
the action on X. We denote this quotient by % (when we want to explicitly use the left or right
quotient, we still use the earlier notation). We write 7: X — % for the canonical projection.
Note that since I' may not be normal in %, the quotient space % does not necessarily have an
induced action of (X, %), so it is not an element of ‘Tap(z, e

Definition 1.37: If ¥ is a Hecke sheaf on X, then 7,.¥ is a sheaf on % Moreover, for each
openU C % and each y € T, using the left representative for all actions gives us a map

nF(U) = Fr\U) —5 Ly, F(x(U))
=FLy (=" U) = F(x7'(U)) = mF(U), (1.5)

and it is easily verified that this defines an action of I' on 7.7 (U) independently of the choice
of the representative. For U C % open, we write L 7 (U) for the I'-invariant sections. This
defines a sheaf of R-modules 7z} 7 on %, and this construction is clearly functorial in F.

In the special case that ¥ is the constant Hecke sheaf M for some representation M of
(2, %), as in construction 1.10, the sheaf 7' M has an explicit description.

Lemma 1.38: The sheaf ' M is canonically isomorphic to the sheaf of continuous sections of
the projection

XXM X
r r’
where I acts diagonally on X X M and M is endowed with the discrete topology.
Sketch of proof: For (x, a) € X X M, we write [x, a] for the class in the quotient (X?M), and

analogously [x] for the class of some x € X. We work with the left representative of all
actions.
Let U C T\ X be open. By definition, the action of an @ € ¥ on an s € 7. M(U) is given by

(e - $)(C) = a* o s(La(C))

« _»

for C being a connected component of 77}(U) (the “o” denotes the action of £ on M). So s is
I'-invariant if and only if y @ s(C) = s(Ly(C)), and such s are in one-to-one correspondence

7 The notation here is for elements acting from the right, since we used this notation for the endomorphism
[w] and our modules are right Hg(A, T')-modules. If we view the endomorphisms as self-maps that can be
composed, then the relation reads T% o [w] = [w] o T.
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with continuous maps s: 77}(U) —— M satisfying s(Ly(x)) = y e s(x) for any y € T and
x € n7}(U). For such a continuous map s, we define a section I'\X — I'\(X x M) by
[x] —— [x, s(x)].

On the other hand, take a section t: T'\X —— I'\(X X M). We have to define a continuous
maps: 771 (U) —— M satisfying s(Ly(x)) = yes(x). Sotake x € 7~ (U) and let [y, b] := t([x]),
i.e. (y,b) is a representative for the image of [x] under ¢. That ¢ is a section means that there
exists a y € T such that y = Ly(x). We then define s(x) = y~'b.

One can now check that all this is well defined and gives mutually inverse bijections. We
omit these calculations. O

Using the lemma (or just the definition), it is easy to see that the stalk of 71 M at any point
in %{ is M (and not M™!).
From now on, we impose the following condition on the action of " on X:

Condition 1.39: Fach x € X has a neighbourhood U such that yU N U # & implies y = 1.

This condition implies in particular that I" acts freely on X, i. e. without fixed points. It is the
same as condition () in [Hatoz, §1.3, p. 72], or condition (D) in [Gros7, §5.3] together with
the additional requirement that I" acts freely. It is obviously independent of the choice of the
representative for the action. The condition is satisfied if X is a Hausdorff space and I' acts
freely and properly discontinuously [Hato2, §1.3, Ex. 23].

Proposition 1.40: In the special case ¥ = A = T, the functors t* and 1l are quasi-inverse
equivalences between the categories of Hecke sheaves on X (which are then just I'-sheaves) and

sheaves of R-modules on %

Proof: This is proved in [Gros7, p. 198/199] using condition 1.39. O

Construction 1.41: Let ¥ be a Hecke sheaf on X. Although 7! # is not a Hecke sheaf (not
even %{ € Top(z, *)), we have a canonical Hg(A, T')-module structure on its cohomology, as
we now explain. The global sections of 7. F on )T( are by definition the global sections of
¥ on X, which comprise an R-linear representation of (Z, x), as we saw in proposition 1.12.
Hence all HY(X, ¥) are in R-Mod (5, «), and therefore H?(I', HY(X, 7)) carries a natural right
Hg(A, T)-module structure for p, g > 0. In particular, the global sections of 7. F on %, which
are H(T, H'(X, %)), are a right Hg(A, I')-module. By universality of the 5-functor HI(, —)
this extends to a right Hg(A, I')-module structure on Hq(%, 7l F) for all ¢ > 0.

It is easy to see from the definitions that the above construction also works for coho-
mology with compact support since HX(F, 7l ) can be identified with the subgroup of
H°(T,H°(X, ¥)) consisting of T'-invariant global sections in H°(X, ¥) which give compactly
supported sections on %( It is clear that this subgroup is stable under the action of Hg(A,T).

Proposition 1.42: For each Hecke sheaf ¥ on X there is a convergent spectral sequence in the
category of right Hr(A,T')-modules

EPY = HP(I,HI(X, F)) = HP*9($, 2l ).
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Proof: Let A = SHg’*)(X), B = R-Mod (5, ) and C = Mod -Hgr(A,T), all of which are abelian
categories. Let F: A —— B be the global sections functor and G: 8 —— C be the functor
of T'-invariants. We have seen that they are well-defined in this way, and of course they are
left exact.

Let further D be the category of sheaves of R-modules on % Then x! is a functor
A —— D, and it is exact since it is the composition of the forgetful functor from A to the
category of I'-sheaves on X (which is exact) and the functor 7! from I'-sheaves on X to
D, which is exact because it is an equivalence of categories by proposition 1.40. Therefore
if U: © —— C is the global sections functor, then (R*U) o z! is a §-functor on A which
coincides in degree 0 with R*(GoF). Since the latter §-functor is universal, the two §-functors
agree, which proves

R (G o F) =H'(f, 7/ (-)).

Using this, the claimed spectral sequence is just the Grothendieck spectral sequence for
the composition of functors G o F. O

Corollary 1.43: IfF is a Hecke sheaf on X such that H (X, F) vanishes for i > 0, then there
are canonical Hg(A,T')-linear isomorphisms

HY(T,H (X, F)) = HY(X, 2l F)

forallg > 0.

Proof: The spectral sequence from proposition 1.42 is then a spectral sequence with only
two rows (in fact, only one), so by [NSW13, Lem. 2.1.3 (i)] there is an exact sequence of right
Hr(A,T)-modules

. — HIYE, 2ZI'F) — HI (T, HY(X, F)) —
— HY(I,H'(X, 7)) — HY(X, 2l F) — ...

and the second term vanishes by assumption. O

From now on we further assume that X is connected, path connected and simply connected.
Then the condition on H!(X, ) in corollary 1.43 holds for any F. Moreover, T is then the
fundamental group of % and X is the universal cover of )T(

Consider again the special case that ¥ is the constant Hecke sheaf M on X for some
representation M of (X, x). Similarly as in the group cohomology situation, the action of
Hg(A,T) on the cohomology H?(X, 7L M) has a rather explicit description if we assume in
addition the following:

Condition 1.44: Assume that aa™ acts trivially on X for all « € 3 and that (A, T) is central.®

Assume from now on that condition 1.44 is satisfied.

The description uses the trace map for coverings, which can be explained in a general
setting, so let 7: E—— F be a finite covering of degree e of topological spaces. We describe
a natural transformation z.7* —— id of endofunctors of the category of sheaves on F, so
let ¥ be a sheaf on F and U C F an open set small enough that 77'(U) is a disjoint unit
of e open sets of E homeomorphic to U via z. Then m.7x*F(U) = €P F(U), where the

8 Strictly speaking, the centrality is only required in the description given below using the left representative.
Since it will be satisfied anyway for all our examples, we assume it for simplicity.
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sum runs over these e sets. We define the morphism 7, 7*F (U) —— F to be the sum map.
This defines our natural transformation. Further, in this situation there are canonical §-
functorial isomorphisms H*(E, —) = H*(F, 7.(—)), which can be proved similarly as [Conog,
Lem. 2.3.1.1]. Therefore we get induced §-functorial maps

trgjp: H'(E, n°(-)) —— H'(F, 2" (=) — H(F, -)

called trace maps.

We now consider the following special covering: let X, I" and so on be as before and let
® C T be a subgroup of finite index. Then we have a finite covering of topological spaces
% — % and we denote the maps between the various spaces as indicated in the diagram

[o]

~—

N

[>

X

s

We will need the following technical statement.

Lemma 1.45: There is a canonical isomorphism s*nl M —— o®M of sheaves on %.
Proof: We prove only the case of the left representative, it is clear that the same proof also
works for the right representative.

The sheaf s,@®M on T'\X resp. X /T has as sections the ®-invariant sections of .M, so
there is a natural morphism from 7' M into it. This defines a morphism s*7. M —— o*M
by adjointness. We want to prove that it is an isomorphism. To do so, we look at the stalks.
Since the stalks of a presheaf and the stalks of its associated sheaf coincide, we can work
with the presheaf s;,. whose associated sheaf is s*. We know that all stalks are canonically
isomorphic to M.

We use the proof of the adjointness of s, and s
of presheaves comes from the composition

*

pre>

see [Stacks, Tag 008N]. The morphism

* T * 0] (0]
Spre e M —— SpreS: @, M —— @, M.

If we choose an open set U C ®\X small enough that s: U —— s(U) is a homeomorphism,
then for this U, the sections of the left sheaf over U are M(~'(s(U)))", while the sections of
both the middle and the right sheaf over U are M((@)~}(U))®, and both can be canonically
identified with M. Since any neighbourhood of any point in ®\X contains such a U, we see
that the canonical map between these sections induces the identity on M. ]

Remark 1.46: In this situation, composing the trace map we explained before with the
inverse of the isomorphism from lemma 1.45 gives a morphism

trrjg: HY(, @f M) —— HI(g, "2 M) — HU(F, 1/ M)
which we also call trace map. If we use the isomorphisms from corollary 1.43, we get a map
HY(®, M) — HY(T, M),

and it is easy to see that this map is just the corestriction map (it suffices to check this for
q =0).

22



1. Abstract Hecke theory

Now we look at the following special situation. Let « € A and put ®, = a 'Ta N T,
®% := a®, a2 We then have the following configurations of spaces and maps (for the left
and right representative)

4 \X AN qﬂ\% G/d) SN X/d)“ 4
\X I'\X X/T X/

r r

where all vertical arrows are canonical projections which we denote as indicated in the
diagrams, and where the middle horizontal arrows are induced by La resp. a*R and both
denoted by ¢, (we use the same symbols in the left and right situation to keep the notation
“simple”). These diagrams commute, but keep in mind that they live in the category Zop, not
‘Top@’ *)!

By lemma 1.45 we have a canonical isomorphism (s%)* 7L M —— (@%)®“ M of sheaves on
d*\X resp. X/®*, and analogously with @, instead of ®“.

We need to introduce some further maps. First, the map s, is a finite covering map, so
we have the trace map as described above.

Next, the map X X M —— X X M given by (x, m) —— (La*(x), a* e m) for the left resp.
(x, m) —— (aR(x), m[a]) for the right representative induces a well-defined map ®*\(X x
M) — O, \(X X M) resp. (X X M)/®* — (X X M)/®, which fits into a commutative
diagram

Dy \(X X M) — D\(X x M) (X X M)/ ®q — (X x M)/D*
P, \X cgj,’ P\ X X/®, 04;» X /P,

To check this, one has to do some calculations using the additional assumptions from above.
Therefore, using the description in lemma 1.38, it induces a map of sheaves on ®,\X resp.
X/ ®q
@ (@) M —— (@0)7“ M.
Finally, composing the isomorphism from lemma 1.45 with the map induced by s* gives a
morphism

resripe HY( T\ X 2T M) 0 B @\ X 59 nT M) = HY( @\ X, (2%)2" M)

and analogously also for the right quotient spaces, which we call restriction map.
Proposition 1.47: We have an equality
[TaTl] = trrig, © atocl o resr|pa

of endomorphisms of H(X, 2L M) for all ¢ > 0, for either choice of representative for the action.
The same also works in cohomology with compact support.

9 Note that due to the requirement in the definition of a Hecke pair that A be contained in the commensurator
of T (see definition 1.15 (a), we have indeed that both ®, and ®* have finite index in T.
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*

Proof: Since all of the maps trrp,,, al, [
degree q = 0, by definition of the Hg(A, I')-module structure. By construction, it is then clear
that this will work for cohomology with compact support if it works for usual cohomology.

By the corresponding description for group cohomology in lemma 1.31, it suffices to check
the commutativity of the three diagrams

resr|pa are S-functorial, it suffices to check this in

resrjpa

H(T, M) ————— H(®%, M)

J’ reSr|q>a J’

HO(T\X, 7L M) HO(@*\X, (0%)2“ M)

o

HO(®%, M)

J, T *
a OCa

HO(@%\X, (@) M) ——5 HY(®\X, (04)7“ M)

HO(CDCZ7 M)

COI’r@a

H(®,, M) H(T', M)

|

HO(®,\X, (04)7* M) ——— HOT\X, 7' M)

and the corresponding diagrams for the right representative, where the vertical maps are the
canonical identifications described before.

We omit the detailed calculations necessary to prove the commutativity of these diagrams
(for the third one, we mentioned it already in remark 1.46). One has to write out carefully
the definitions of all sheaves and maps above and check the commutativity. O

Remark 1.48: If X =1 is the upper half plane and T' is a congruence subgroup of SL3(Z),
we considered parabolic group cohomology in remark 1.29. On the other hand, in sheaf
cohomology we have parabolic cohomology defined as the image of cohomology with
compact support in usual cohomology. In this case, if we assume that condition 1.39 holds, the
two notions of parabolic cohomology are identified by the isomorphism from corollary 1.43.
This is proved in [Hid81, Prop. 1.1].*°

1.8. Standard Hecke algebras for GL;

In this section, we connect the theory we developed so far to more classical situations, giving
important examples for our theory.

We first define abstract standard Hecke algebras. For this we use the (semi-)groups of
matrices whose definitions were given on page xx.

Definition 1.49: For N € IN and a commutative ring R, define the abstract standard Hecke
algebras of level N to be

H.(N)r = Hr(Ao(N), To(N)),  H(N)r = Hr(Ao(N)’, To(N)).

19 In [Hid81, Prop. 1.1] there are two conditions on I' which are denoted there (1.2,},). These conditions are
implied by condition 1.39.
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Let M € IN. We define the abstract standard Hecke algebras of level N away from M to be
HM(N)r = Hr(Bo(N) N My To(N)), - HD(N)g 1= Hr(Ao(N) 0 MG, Ty (V).

We define the abstract standard Hecke algebras of level N away from the level, also called
restricted abstract standard Hecke algebras of level N to be

H.(N)g = HYN)g,  H'(N)g = HN(N)g.

We will often consider the case R = Z. In this case, or if the ring R is clear from the context,
we omit the subscript “R” from the notation.

Obviously (A¢(N), To(N)) < (Ao(N)?, TH(N)), so the map H,(N) —— H(N) sending a double
coset to itself is an injective ring homomorphism via which we view H,(N) as a subring
of H(N). Similarly, ?(JEM)(N ) is a subring of HM)(N), ?(J(rM)(N ) is a subring of H,(N) and
HM)(N) is a subring of H(N).

We define some important elements of (N). First, put for each prime p

T, = (N) (1 p) L(N) € H,(N).

More generally, we may define T,, for each n € IN to be the sum over all double cosets
I[H(N)aIp(N) where a runs over the elements of Ay(N) of determinant n, but we will not use
these very often.

Then for each prime € 1 N define

S0 = To(N) (‘) f) L(N) € HIN).

Finally we define the “Hecke operator at co”
& =TH(N)aLL(N) € H'(N). (1.6)

From the definition of the multiplication, it is obvious that £2 = 1in H’(N).

Lemma 1.50: For each a € Ay(N), we have
F()(N)ar()(N) -E=¢E- F()(N)ar()(N) = FO(N)aaFO(N) = FO(N)aaFO(N)
In particular, each T € H,(N) commutes with €.

Proof: In this proof, write I' = Ij(N) for abbreviation. We can assume that « is a diagonal
matrix by [Miy89, Lem. 4.5.2], and for such a we have o = aa. This proves the last equality.
We prove & - Tal' = I'aaT, the equality TaT - & = T'aal is proved similarly. Since 3 = 27! and
2 normalises I', we have I'eT'al’ = I'aT'aaal’ = I'aal, so for a double coset I'éT', we have that
I'éT C Tolal' ifand only if T'ET = Taal, and further I'aI" = I'a. So the sum (1.3) used to define
the multiplication in H has only one summand. To finish the proof, note that for a disjoint
decomposition I'al’ = L;Ta;, we have I'oar C T'oal’ = ol'al’ = o(U;Ta;) = U;aTe; = LiTaa;,
so there has to be a unique i such that I'sa = I'aq;, hence the coefficient m¢ in the sum (1.3)
is 1. U
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Proposition 1.51 (Shimura): (a) H,(N) is commutative and generated as a ring by the
T, for all primes p and S¢ for all primes € { N, and all these elements are algebraically
independent.

(b) The Hecke algebra WJ(FM)(N) away from M € IN is the subring of H.(N) generated by
the T, for all primes p { M and the S¢ for all primes € { MN.

(c) We have isomorphisms
HIOWNIX [ (x2) = HOON),  HNIXT [ (x2) = H(N)

viaX —— E.

(d) We have T,,T,, = Tyup, for coprime integers m,n € IN and a recursive relation
Ter = T[Tgr—l —pS[T[r—Z
forr > 1and all primes € t N.

Proof: Statement (a) is proved in [Shi71, Thm. 3.34 (1)]. The elements denoted T’(p) or
T'(1,p) there are just our T, and the T’(¢, £) there are our S, as can be easily seen from their
definition.

To prove statement (b), we introduce an auxiliary map

det: H(N) — Div*(Z),

where by Div*(Z) we mean the monoid of ideals in Z, by mapping

n
Z TFapl —— (detay, ..., detay)
k=1

(and 0 —— Z = (1)). It is then easy to check that this map is well-defined and has the
properties

det(A+ B) = A+ B, det(AB) = det(A)det(B) forall A,B € H(N).

Clearly all Ty and S for all primes ¢ 1 M lie in 7-{JEM)(N ). If 7—(J(rM)(N ) contained a monomial
F in which a T, with p | M occurred, then since det(T,) = p, the above properties imply
det(F)+(M) < (p). Butsince (deta, M) = 1foralla € AO(N)OMEM), we have det(T)+(M) = Z
forall T € ﬂJ(rM)(N ) again by the above properties, so 7—(J(FM)(N) cannot contain such a
monomial.

For an a € A¢(N)® with deta < 0, we can write To(N)al(N) = € - [H(N)saly(N) by
lemma 1.50, so € together with the T, and S, generate H(N), and again by lemma 1.50 there
are no relations other than &2 = 1 (and commutativity). This proves statement (c).

Statement (d) is proved in [Shi71, Thm. 3.34 (3), Thm. 3.24 (4), Thm. 3.35]. O

Lemma 1.52: Let N € IN and T be a congruence subgroup with IJ(N) € T C I(N). Put
A = A(N)T € Ap(N). Then (A,T) T (Ao(N),Io(N)). In particular, (A1(N),Ti(N)) <
(Ag(N), To(N)).
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Proof: See the proof of [Miy89, Thm. 4.5.18] and the comment after it. (|

From now on we will identify the Hecke algebras which are isomorphic by the above
lemma.

Remark 1.53: By the above lemma we know that the abstract standard Hecke algebra
is isomorphic to Hz(A;(N)*,T1(N)). This is very important since we will often look at
[1(N)-invariants of modules. We denote the images of the standard elements T, S¢ and €
in Hz(A{(N)’,I1(N)) by the same symbols. It is worth thinking about how they may be
represented as double coset operators in Hz(A(N)*,T1(N)). For T, and € this is clear: the
matrices (1 p) and 5 used to represent them still lie in A;(N)*. But the matrix ( ¢ f) used
for Sy does not. Instead, for a prime ¢ { N choose a o, € SLy(Z) with o, = ("_1 f) mod N
(where we view £ € (Z/N)*). Then we have S; = I)(N)fo/Ty(N) in Hz(Ao(N)?, Tp(N)) since
o¢ € Ty(N), but the matrix {o, now lies in A{(N), so in Hz(A(N)?,T1(N)) we have also

S[ = Fl(N)KO'gI](N)

The double coset I1(N){oI1(N) is independent of the choice of o, because another choice
will differ by an element in T'(N) C I3(N).

In some later proofs it will be useful to know an explicit decomposition of the double
coset of ( 1 » ) , so we list this result.

Lemma 1.54: ForT =T,(N) orT = I3(N) and any prime p, there is a decomposition

p-1 1 .

rf ifp | N,
1 j=0 p
-
p -1
1 m. n\p ifpt N, formn € Z such

T ur

=0 p N p 1 thatmp — Nn = 1.

Of course the factor (N p) can be omitted if T = Io(N) since it lies in To(N).

Proof: [DSos, (5.2)], [Miy89, Lem. 4.5.6] O
Lemma 1.55: Let M € IN and p be a prime with p { M.
(a) Forallr > s > 1 we have
(A(Mp"), Ti(Mp")) Z (M(Mp*), Ty(Mp?*)).
(b) We have

(M(Mp) N MP Ti(Mp)) B (As(M) 0 MP), Ty (M).

Proof: In both cases the condition in definition 1.20 (a) is obvious, and condition (c) is also
easy to see.
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28

(a)

(b)

The proof of this part is a modification of the proof of [Shi71, Prop. 3.32], which we
follow very closely. We start with some preliminary matrix calculations.

Let @ € A{(Mp®) and write det @ = mq with (g, Mp) = 1 and m having only prime
factors that occur in Mp. For a prime ¢, write E; = GLy(Z¢). Define

X(a) = {B € A(Mp®) : det B = deta, V€ | q: E(BE¢ = EcaEq}.

Let f = (%) € X(a). Then since f € A(Mp*) we have (a,mMp") = 1, so there
is an e € Z with ae = 1modmMp”™ and e = 1modMp®. Choose y € SL,(Z)
withy = (§ %) modmMp’, then y € T(Mp*) and yff = (fA,}ps ’) mod mMp" with
b,f € Z.Puté = (_f]%,fps 1), then§ € Ty(Mp*) and §yf = (§ ,,l,’q) mod mMp", where
the lower right entry here comes from the fact det = mq. Putnow n = ({ %),
e=(4?%) and & = SyPe'n . Thendeté = gand & = (4 ¢) mod Mp'.

Now put £ = an~!. Then deté’ = q and E¢é'Ep = E¢aEg for all € | g, so £’ can be
chosen as the element ¢ in the proof of [Shi71, Prop. 3.32]. The argument there then
shows that there exist o € T'(Mp®) and § € T(Mp") such that @ = ¢£’67L. Our o is
¢w for the ¢ and w defined there, and in the construction of 0 there, it is easy to see
that we can in fact choose 6 € T'(Mp") and not just 6 € T'(Mp®).

Let « € A{(Mp") C Ay(Mp*). We first prove the condition in definition 1.20 (b),
i.e. T(Mp®)ali(Mp®) = Ti(Mp®)ali(Mp"). The inclusion “2” is clear. Moreover, we

obviously have I;(Mp®*)al;(Mp®) € X(a). To prove the other inclusion we show
X(a) € i(Mp®)ali(Mp"), so take f € X (o). We use our previous calculations to see

B =y '8 Ene € T(Mp®)EnLi(Mp”) = Ti(Mp®)oénd ™' Tu(Mp") = Tu(Mp®)aly(Mp").

We now prove the condition in definition 1.20 (d), i. e. Aj(Mp®) = LI(Mp®)A(Mp").
The inclusion “2” is again clear. For the other inclusion, we use again the previous

calculations to see that we can write any a € A;(Mp®) as
a =océnd™" € L(Mp*)A(Mp").

We first verify the condition in definition 1.20 (b). Let y1,y, € Ii(M) and @ €
A (M) N Mgp) be given, and write y; = (‘C’ Z) Then we must have ¢ # 0 ord # 0
(mod p), and also ¢ # 0 or a # 0 (mod p). Distinguishing these cases, we can find
integers x, y, z, w € Z such that

x=0
ifcz0: y=c!
=a

. a?

ifa#0: 0

ifd#0: x=0

lfC$0 :_1

y=c

w=d'(1+be)
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and in any case z = —c, where every “="is to be understood modulo p. Put§ := (} ¥ ).
Then a direct calculation shows that 8y, = (} ;) and det§ = 1 (mod p). Using the
Chinese Remainder Theorem we can moreover demand that § = ({9) modulo
C := M det a, because by assumption p { C. Using the surjectivity of the reduction
map SLy(Z) — SLy(Z/C), we may take § € SLy(Z) without loss of generality.

Then we have in GL,(Q)
nay, = pna(d e ad)y;, = (nad~'a Ha(dyz)

and by construction 8y, € T1(Mp). It remains to check that yjad~'a™! € I}(M), for
which it suffices to see that the matrix a§~'a™! has integral entries, because the
congruence property is clear by construction. Let £ be a prime. If ¢ | det @, then
§=($9) (mod?) by construction, so ad'a™' = (} 9) (mod ). If ¢ { det , then a is
invertible modulo ¢, so a8 'a™! € GL,y(IF¢). So the denominators of the entries of
a5~ 'a~! are not divisible by any prime ¢, hence are integral.

Now we check the condition in definition 1.20 (d). Let @ € A{(M) N Mgp) . Then since
p 1 deta we have a™(! 4., ) € SL2(E,), and we can find a preimage y € SL,(Z)
whose reduction modulo p is this matrix. By the Chinese Remainder Theorem we
may take y € [(M). Put 8 := y'a. Then by construction € A;(Mp) N MP, and

a = yp € L(M)(A(Mp) N MP). O

Lemma 1.56: Let (I', A) and (I", A’) such thatT and T’ are normalised by 3.
(a) If(T,A) < (I",A), then (T, A°) < (I', A”).

(b) If(T,A) S (I, A), then (T, A°) S (I, A”).

Proof: We can assume that A, A’ C M (Z), otherwise we have A = A® and A’ = A” and the
claim is trivial.

Assume (T, A) < (I”, A’). We have to look at the conditions in definition 1.20. Clearly, if
A € A’ then A° € A", so condition (a) holds. We can write any o € A’ \\ A as (a9)s with
a9 € A. We have for any such «

INal’ =T qoal’ =T"aal’a =T"aal's = IVaaal =TaT,

so condition (b) also holds. Now takeay’ e I and @ € A’ N A. If y’a € I'a N A®, then
dety’as > 0,s0 y’as € I'aaNA = Tas and thus y’a = y’ass € T'aas = T'e, hence condition
(c) holds. Now assume (T,A) S (I",A’), so A’ = I'A. Then A” = I'"A° and (d) is also
satisfied. (]

Corollary 1.57: For any M € N, any prime p with p { M, any r > 1 and any congruence
subgroup T with I;(Mp"™) C T C I,(Mp") and A = Ay(Mp")T', we have canonically

Hy(AT) = Ho(Mp), Hyz(A°,T) = H(Mp).

IfA’ 2 Ais a larger submonoid, then H..(Mp) is canonically contained in Hz(A’,T) and H(Mp)
is canonically contained in Hz(A”,T). All this is compatible with the module structures over
the various Hecke algebras defined in the preceding sections.
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Remark 1.58: Let N € IN, let M | N be a proper divisor and put q := N/M. Further let
M be an R-linear representation of (A;(N),[1(N)) for some ring R. Then [}(N) C (M)
is a subgroup, so we have an inclusion of R-modules M) ¢ M) By lemma 1.55
and proposition 1.21 we have an isomorphism of R-algebras ?{iq)(N )R —— Wiq)(M) r and
by proposition 1.32 the inclusion MTM) ¢ MTN) js compatible with this isomorphism. More
concretely, this inclusion respects the actions of the Hecke operators Ty and S, for all primes
¢ 1 q. By lemma 1.55 (a), if M and N have the same prime divisors, then the inclusion is
compatible with all Hecke operators. If not, then we can see from lemma 1.54 that the T, for
p | g will in general act differently.

By lemma 1.56 the same holds if we replace A;(N) by A{(N)°, i.e. ‘HJ(rq)(N)R by H'D(N)g.

Definition 1.59: Fix the Hecke pair (A{(N)?,I1(N)) and an R-linear representation M of
(Z,1). Since I3(N) is normal in Ij(N), any element ¢ € I(N) induces an endomorphism
m —— m|o] of MHN) ag in remark 1.33 called a diamond operator. Since there is an isomor-
phism

FO(N)/H(N) — (Z/N)X’ (‘CI Z) e

this gives an action of (Z/N)* on ME™) and we denote it by m —— m(d) for d € (Z/N)*
(sometimes also by m —— (d)m if there is no need to distinguish between left and right
actions, which we can do since (Z/N)* is abelian).

Obviously the matrix o, from remark 1.53 normalises I3(N), and the automorphism of
M) it defines is just the diamond operator (£).

On the other hand, the diagonal matrix ( g 9) for some ¢ € Z ~ {0} lies in the centre of 3,
so it induces endomorphism m —— m[ g 2,] of ME™N) ag in remark 1.33. It is then obvious

that we have

m[S¢] = m{€) [g g] for m € MBIV (1.7)

for any prime ¢ { N. In particular, if the endomorphism defined by (§ 9) is invertible, then
the diamond operators commute with all elements of the Hecke algebra H(N).
We end this section by defining the Atkin-Lehner endomorphism.

Definition 1.60: Let N € IN and put

WN:(N _1)'

It is easy to verify that wy is an Atkin-Lehner element in the sense of definition 1.34 for
I' =TH(N) and A = Ag(N) or for T = [3(N) and A = Ay(N). Further we note that for any
A € My(Q) we have

w;,lAwN = WNAWX]I. (1.8)

Definition 1.61: We call the endomorphism [wy] attached to wy the Atkin-Lehner endo-
morphism of level N (see section 1.6).

The Atkin-Lehner endomorphism is often called Atkin-Lehner involution since in some
applications the submonoid Z(} 9) C = acts trivially on the module under consideration, in
which case [wy] is in fact an involution since wi, lies in this submonoid. Since for a general

module it may not be an involution, we call it Atkin-Lehner endomorphism.
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Definition 1.62: (a) The adjoint abstract standard Hecke algebra of level N is the Hecke
algebra adjoint to H(N), so H(N)' = Hz((Ao(N)°)",I,(N)). Define H,(N)" etc.
analogously.

(b) Denote the images of T,, S¢ and € under the isomorphism H(N) —~— H(N)' from
lemma 1.35 (b) by T}, S, and &', respectively.

Of course, H(N)' is isomorphic to Hz((A1(N)*)", T1(N)) and other Hecke algebras, analo-
gous to corollary 1.57. Hereafter we again identify all these adjoint Hecke algebras.
It is easy to see that

Ty = Ty(N) (p 1) Lo(N)
and €' = —€. For the diamond operators, it follows from the definition that

[w(d) = (d"")[w] (1.9)

for d € (Z/N)*. From this it is easy to see that Sy = [ g 2] (€)1, So from lemma 1.36 together
with (1.8), we get the following:

Corollary 1.63: If M € R-Mod (5, ,), then we have the following relations'!

Tplwl = [WIT,, T,[w]=[wlT,, [w]€=(=E)[w]

of endomorphisms of M*.

1.9. Eigenalgebras

We define the notion of a Hecke eigenalgebra. This is a special case of the general definition
of an eigenalgebra given in [Bel1o, §1.2].
Let R be a commutative ring, (2, %) a monoid with involution and (A, T') a Hecke pair.

Definition 1.64: For a right Hg(A,T')-module M, denote by T%A’r) (M) the image of the
canonical R-algebra morphism

(}‘{R(A, F) — EndR(M).
We call it the Hecke eigenalgebra of M.

The notation for Hecke algebras is not standard. Some texts use H or f, some use T or T.
We follow the convention that we use H for abstract Hecke algebras, whereas we use T and
similar symbols for Hecke eigenalgebras. When some of the parameters R, (A,T') or M are
clear, we may drop them from the notation. For important choices of M, we will introduce a
special notation.

In [Belio, §1.3-5], basic ring-theoretic properties of eigenalgebras are proved, for example
the following:

1 The parentheses in the last relation are important! This is because —I, if I is the identity matrix, does not
necessarily act as —1, it can also act trivially.
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Lemma 1.65: Let R be noetherian and let S be a commutative flat noetherian R-algebra. Then
there is a canonical isomorphism

T (M) ®5 - TS (M ®5).

Proof: [Bel1o, Prop. 1.4.1] g

If these eigenalgebras are commutative, their geometry is related to systems of eigenvalues,
as we now explain.

Definition 1.66: A system of Hecke eigenvalues is an R-algebra morphism A: Hg(A,T) —
R. If M is a right Hg(A, T)-module and A is a system of Hecke eigenvalues, then an m € M is
called an eigenvector for A if m[T] = A(T)m for all T € Hg(A,T). These eigenvectors comprise
an R-submodule of M which we denote by M[A]. If m € M[A] we will also write M[m] for
M[A]. We say that a system of eigenvalues A appears in M if M[A] # 0.

Proposition 1.67: Let R = K be a field, let M be a right Hx(A,T')-module and assume that
TEKA’F)(M) is commutative. Then for each extension field K’ of K there is a canonical bijection
between Spec(Tg(A’r)(M))(K) = HomK(T%’F)(M), K’) and systems of Hecke eigenvalues that
appear in M ®k K.

Proof: [Bel1o, Cor. 1.5.10] O

We now consider again the special case of the abstract standard Hecke algebra. The
following observation is elementary but crucial.

Lemma 1.68: Let 3 = My(Z) N GL;(Q), T’ = ;(N), A = A(N) and let M be an R-linear
representation of (,1). Assume that there exists n € INo such that the element (¢ ;) acts on M
as multiplication by €™ for all primes € { N. Then the following R-algebras are equal:

(i) The eigenalgebra T = TEQA’F)(M),

(ii) the subalgebra T;) of Endr(M) generated by T, for all primes p and S¢ for all primes
(N,

(iii) the subalgebra Ty of Endr(M) generated by T, for all primes p and ({) for all primes
(N,

(iv) the subalgebra T ;) of Endgr(M) generated by T,, forn € IN.
g (iv) g y

Analogous statements hold for eigenalgebras away from the level. In particular, in this
situation, any element of M* which is an eigenvector of all T,, for alln € IN with (n, N) = 1 is
automatically an eigenvector of all diamond operators.

Proof: We follow the proof of [DIgs, Prop. 3.5.1]. By (1.7) and our assumption we have
S¢ = ("{{), so we have inclusions Ty € Ty From the relations in proposition 1.51 (d)
we see that we also have an inclusion T,y € T;). Further the equality T = Ty is clear by
proposition 1.51 (a). It thus remains to show (£) € Ty for all £ { N.

We use the relation £"**(£) = £S; = T} — T2, which is a special case of proposition 1.51 (d).
By Dirichlet’s theorem on primes in arithmetic progressions we can find another prime
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q # € such that £ = g (modN) (i.e. ({) = (q)) and further integers a,b € Z such that
al™? + bg"*? = 1. Then we have

(€) = (@™ + bq"**)(t) = a(T} = Tp2) + b(T; = Tpp) € Tiiy). a

Definition 1.69: For a right H(N)g-module M we write
M*={me M :m[E] = +m},

which is a right H,(N)g-module. Note that if A: H,(N)g —— R is a system of Hecke
eigenvalues, M*[1] is a well-defined R-module.

2. Miscellaneous

2.1. Determinants

In this section, we very briefly recall the formalism of determinant functors as introduced
in [FKo6, §1.2]. There, determinant functors for modules over (non-commutative) rings
are studied, but we will need this theory mostly just over fields, which simplifies matters
considerably. We first introduce the general setting, but later we will specialise to the case of
a field.

In this section, modules over rings should always be left modules.

Definition 2.1: Let A be a ring.

(a) Define a category Detp as follows. Objects are pairs (P, Q) of finitely generated
projective A-modules. The set Homg,;, (P, Q), (P’, Q")) for two such pairs (P, Q) and
(P’,Q’) is empty unless [P] — [Q] = [P’] — [Q’] in K((A). In this case, take a finitely
generated projective A-module R such that P® Q" @ R = P’ @ Q @ R and define

_ (K (A)xIsom(P® Q" ® R, P’ ® Q ® R))

Homa,, (P, Q), (P, Q")) = Aut(P’ ® Q ® R) ’

where a g € Aut(P’ @ Q ® R) acts on an (x,y) € Ky(A) X Isom(P® Q' ®R,P’®Q®R)
by g(x,y) = (x4, g"'y) (with g being the image of g in K;(A)). This does not depend
on the choice of R.

(b) For a finitely generated projective A-module P, define
Detp(P) := (P, 0) € Dety.

An isomorphism ¢: P —— Q of finitely generated projective A-modules induces
a morphism Deta(¢): Dety(P) — Dets(Q) whose class is represented by (1, ¢),
and this defines a functor Det, from the category of finitely generated projective
A-modules with isomorphisms to Detx.

(c) Let (P,Q),(P’,Q’) € Dety. Define (P,Q) - (P',Q") = (P®P',Q & Q') € Detn. We
identify the objects (P, Q) - (P’,Q’) and (P’,Q’) - (P, Q) of Detp using the obvious
canonical isomorphism. If we have isomorphisms ¢: P—— Q and ¢: P — Q’,
then this defines a morphism

Deta(¢) - Deta(y)): Deta(P) - Deta(P’) — Deta(Q) - Dets(Q”)

whose class is represented by (1, ¢ @ ).
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Let P be a finitely generated projective A-module. Then one has
Endp, (Deta(P) = (Ki(4) X Isom(P. P) [ ay(p)

which can be canonically identified with K;(A).
Definition 2.2: For a finitely generated projective A-module P and a ¢ € Auty(P), let

det3(p) € Ki(A)

be the image of Dets(¢) € Endg,:, (Deta(P)) in K;j(A). It is just the canonical image of ¢ in
Ki(A).

»

For the rest of the section, we fix a field K and specialise to the case A = K. Any “Det
from now on should mean “Detg”, any “det*” should mean “dety” and any vector space
should be a K-vector space. If V is some finite-dimensional vector space and ¢ € End(V), we
sometimes write det(¢, V) for the determinant of ¢ if we want to make clear on which space
¢ acts when this may not be clear from the context. If we moreover want to make clear that
V is a K-vector space, then we write detg(¢).

Definition 2.3: Let V, W be finite-dimensional vector spaces of equal dimension. Choose
bases y of V and 6 of W.

(a) We write is 5: V —— W for the isomorphism between V and W that identifies the
bases y and 6. Note that 15;15 = iss,y.

(b) Let ¢: V—— W be a morphism. Then we say that
de5t(qo) = det(iss,, 0@, V) = det(p o iss ,, W)
Ys

is the determinant of ¢ with respect to y and .

Definition 2.4: Letn > 2and V3,. ..,V be vector spaces of equal finite dimension together

with isomorphisms

o 2 Pn1 Pn
Vi Va e Va Vi

Applying the determinant functor to these and multiplying, we get a morphism
Det(¢1) - - - Det(¢,): Det(V;) - - - Det(V;,) —— Det(V3) - - - Det(V;,) Det(V4)

which, after identifying source an target, can be seen as an element in K;(K) = K* as in
definition 2.2. We denote this element by

det*(¢1, ..., 0n) € K*.

Lemma 2.5: Assume we are in the situation of definition 2.4. Then

det™ (g1, . .., n) = (-1)"*' det(pn 0 -+ 0 @1, V).

In particular, choosing bases y of Vi and 6 of V, and putting ¢, = iss,,, one has

det*(oy, .. ., Pn-1,185,y) = (-1)"*! ?eg((/)"—l o---0q).
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Proof: Spelling out explicitly what happens here, one sees that the morphism

Det(¢;) - - - Det(¢,) € Hom(Det(V;) - - - Det(V},), Det(V5) - - - Det(V;,) Det(V}))
- (K* ><Isom(Vlea---€BV,,,V2@---@Vn@VO)/Aut(Vz@...Vn@Vl)

is represented by (1, ¢; @ - - - ® ¢,). If we choose bases of all V; to get matrices A; describing
the ¢;, the isomorphism ¢; ® - - - @ ¢, is represented by

0o .- 0 A,
A 0
A1 0

with respect to the combined basis and the resulting identification Vi@ --- @V, =V, @ --- @
V, ® V4, while ¢, o - - - o ¢y is represented by A, - - - A; with respect to the basis chosen on V;.
By Laplace expansion, the claim follows. (]

Definition 2.6: Let V, W be finite-dimensional K-vector spaces,
f € Hom(Det(V), Det(W)) = (K* X Isom(V, W)) / Aut(W)

a morphism whose class is represented by (a, f ), and ¢ € K*. Then
¢ - f € Hom(Det(V), Det(W))
is defined to be the morphism represented by (ca, f ). See also [FKo6, p. 43].

Lemma 2.7: Let V,W be finite-dimensional K -vector spaces, let o: V— W, ¢y: W — V
be isomorphisms, and let a € K*. Then

det*(a- @,¢) = det*(p,a - ) = adet™ (¢, ¥).

Proof: This follows directly from the definition of how to view an endomorphism of some
determinant object as an element in K*. O

Lemma 2.8: Let V, W be K-vector spaces of equal finite dimension and let B be a K-algebra.
Any ‘®” below means “®k ”. Then there is a natural bijection

(Isom(V & B,W ® B) BX)/Aut(W ®B) = (((Isom(V, W) x KX)/Aut(W)) X BX) /KX i

Here, K* acts on ((Isom(V, W) x K*)/Aut(W)) x B* by

1-([{,a],b) = ([¢,1"al,Ib) forl € K*,y € Isom(V,W),a € K*,b € B
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Sketch of proof: We first define a map from the left hand side to the right hand side. Let [/, c]
be some class in the left hand side. Choose some isomorphism ® € Isom(V, W). Then there
exists an s € Aut(W ® B) such that s o y = ®. We then map

[.cl — [[s o ¥, 1], cdet(s)™] .
In the other direction, let [[¢, a], b] be in the right hand side. Then we map
[¢ ®1,ab] — [[g,al.b].
It is now a long and tedious, but essentially trivial calculation to check that
« the action of K* on ((Isom(V, W) x K*)/Aut(W)) x B* is well-defined,

« both maps above are well-defined, in particular the first map depends neither on the
choice of ® nor on the choice of class representatives,

« and the two maps are inverse to each other.

Since nothing interesting happens in this calculation, we omit it here. O

2.2. Actions of semidirect products

In this section we give a basic construction concerning actions of semidirect products of
groups. This is mainly to fix notation and for future reference. In this subsection, every
action occurring is a left action. Of course, similar statements are true also for right actions.

Let G be a group and ¥ a monoid. For a homomorphism ¢: G—— End(Z), we define
the semidirect product X x G to be the set X X G with multiplication (my, g;)(ms, g2) =
(m1g,(m2), 9192) (Where we wrote ¢4 for ¢(g), for g € G). It is a monoid, and if ¥ is a group
it is the usual semidirect product of groups.

Lemma 2.9: Let X be a topological space on which both G and ¥ act continuously from the
left in such a way that

g(m(g~'x)) = pg(m)x (2.1)
foreveryge G,me X andx € X.

(a) Putting
(m, g)x = m(gx)

gives a well-defined left action of ¥ x G on X.

(b) Assume that X is a group. Writing [x] for the orbit of x € X under X, we get a
well-defined action of G on the quotient space \X by defining its left representative by

glx] = [gx].

Proof: This is an easy calculation using the relation (2.1). O
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Example 2.10: An important application of this is the following. Here G is the group G,.
Let ¥ = GL; (R) act from the left on the complex upper half plane b by fractional linear
transformations, that is, by

_az+b _[a b +
YZ'_cz+d fory—(c d)EGLZ(R),zeb.

(a) Observe that we can write GL,(R) as the semidirect product
GLy(R) = GL; (R) % G,

with G, acting by conjugation on GL; (R). If we let o € G, act on the upper half plane
has T —— — T, where the bar means complex conjugation, it is an easy calculation
to verify the relation (2.1). So by lemma 2.9 (a) we get an action of GL,(RR) on .

(b) If we replace GL; (R) by GL;(Q) in (a), then we can extend the action of GL;(Q)
by linear fractional transformations to the set P1(Q) = Q U {oo} using exactly the
same formula as above (and the evident calculation rules for handling co, for example
dividing by 0 should result in co and so on), and similarly also for G,, so we get an
action of GL,(Q) on IP}(Q) and thus on h* = h U PY(Q).

(c) We can of course replace GL; (Q) by any submonoid A C GL; (Q) which is normalised
by 2. Then we have A’ = A x G, and get an action of A® on b, P'(Q) and b*.

(d) Further replacing GL; (Q) by SLy(Z) in the above and writing
GLy(Z) = SLa(Z) x G,

we similarly get actions of GL,(Z) on b, P}(Q) and b*. Furthermore, if T C SL,(%Z) is
a subgroup which is normalised by 3, we can form I' X G,. By lemma 2.9 (b) with
3 =T, we then get an action of G, on the quotients I'\h and I'\h*.

The motivation behind defining the action of @ on the upper half plane as 7 —— — T is
the following. Since SLy(R) acts transitively on f) with the stabiliser of i € f) being SO, there
is an isomorphism of smooth manifolds

SLy(R) [0, —=—b, yS0; — 1,

and one can check that the inclusion SLy(R) —— GL;(R) induces an isomorphism

with inverse mapping the class of a y € GLy(RR) to the class of (y/dety)~!y if dety > 0 and

to the class of (1/— dety) loy if dety < 0. Now on GL3(IR)/SO, R* we have a natural action
of GLy(RR) by left multiplication, and an easy calculation shows that under the bijection

GL2(R) / SO, RX = b

this action becomes exactly the action defined in example 2.10 (a).*
There is another example that will be important later.

12 In some texts, the matrix —s instead of 3 is used. The same easy calculation shows that this gives the same
actions of GLz(RR), GL2(Q) resp. GL2(Z) on all sets considered above.
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Example 2.11: Let A C M,(Z) N GL;(Q) be any submonoid which is normalised by .
Define an action of A on C X § by

y(z,7) = (det(y)(ct + d) 'z, y7) fory = (CCI Z) eENzeC, T€e) (2.2)

and let 5 act on C X b as a(z, 1) := (z,97) = (z,—7). Then it is again an easy calculation to
check the relation (2.1), so that we get a well-defined action of A°> = A x G, on C x 1. On the
second factor b, this is just the action we defined in example 2.10 (c), so that the projection
C x ) — b is equivariant.

2.3. Some homological algebra

Here we collect some facts from homological algebra that we will need later on.

For simplicity of notation, we will denote every differential in every degree in every
complex simply by d. For a morphism f: C* —— D*® of complexes, we define the mapping
cone following the convention in [GMo3] to be the complex cone(f)®* = C[1]* & D* with
differential given by the matrix'3

—d
74

0 R® s*

Let A be an abelian category and

T* 0

an exact sequence of complexes in A.

Lemma 2.12: The map
(f,0): R[1]* —— cone(g) = S[1]* & T*

is a quasi-isomorphism.

Proof: We prove this by showing that the kernel and cokernel have vanishing cohomology.
For the kernel this is obvious: it is even zero itself, since f is a monomorphism. The cokernel
is isomorphic to T[1]* @ T* with the differential given by the matrix

[ )

as one easily checks. We prove that this complex has zero cohomology by showing that
its identity is nullhomotopic, using an argument inspired from [GMo3, top of p. 158]. A
contracting homotopy for it is given by

s Tn+1 eT"—T'g Tn—l, (tn+1’ tn) _ (tn’ 0)’

as can be seen by a simple calculation. ]

13 Note that in [GMos, §111.3.2], the differential of the shifted complex C[i]® is defined to be (1)’ times the
original one, which is why their matrix does not contain the sign. Note also that we use a different sign
convention as [Weigq, §1.5].
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Lemma 2.13: Let
(0,id): T* —— cone(g) = S[1]* @ T*

be the inclusion into the second factor. Identifying H" (cone(g)) with H*(R[1]*) = H"*!(R®)
using the quasi-isomorphism from lemma 2.12, the map

Hn(TO) Hn+1(Ro)
induced by the above inclusion is the boundary map from the long exact cohomology sequence.

Proof: Note the similarity to [Weig4, Ex. 1.5.6].
We draw the snake lemma diagram used to construct the connecting homomorphism,
together with an additional column for the mapping cone:

0 0
oy
H™(T*) H"(cone(g))
R™ f sn g 'Iln O Sn+l®Tn
dRn1 dsn-1 dTn1 d(SreTn 1)

J J |

0 — zmI(Re) L Zmeise) L zni(re) 2" (cone(9))

0

l

Hn+1(R0) [ Hn+1(R0)

J |

Rn+1
0 dR™

Zn+2(R.),

Here, (1) is induced by the inclusion into the second factor, as in the statement, and (2) comes
from the quasi-isomorphism from lemma 2.12.

We argue by a diagram chase, i.e. using elements of the objects in the diagram. Following
the proof of the snake lemma, start with a cohomology class in H*(T*) and take a t € T"
representing it. Let s € S be a preimage, i.e. g(s) = t, map it to Z"*1(S*) with the differential,
and then take a preimage r € R""!, i.e. f(r) = d(s). This r then represents the image in
H"*(R®) of the class from H"(T*) we started with under the boundary map.

The image under the map (1) of the class in H*(T*) represented by t in H"(cone(g)) is
represented by (0, t), whereas the image under the map (2) of the class in H**!(R®) represented
by r in H"(cone(g)) is represented by (f(r), 0). The difference between these two elements
of S"*1 @ T" is (—d(s), g(s)) and is thus the image of (s, 0) € S & T"! under the differential
of the mapping cone. Hence the (0, t) and (f(r), 0) represent the same cohomology class in
H"(cone(g)). Since (2) is an isomorphism, the claim follows. O

Now consider the following situation: let

0 A B C 0
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be a short exact sequence in an abelian category A and let ¥ : A —— B be a left exact
functor. This gives us a connecting homomorphism

d: R°F(C) — R'F(A).
On the other hand, in the derived category D*(A)

All=(A—0) and (B—0)

0 0

define isomorphic objects, and we have an obvious morphism in D*(A)

Clo] — (B—©)
0

Applying the total derived functor R to this and then taking cohomology in degree zero,
this gives a morphism

R"F(C) = H'(RF(C[0])) — H'(RF(B— 9 = H'(RF (A[1])) = R'F(A). (2.3)
0

Lemma 2.14: In the situation described above, the morphism (2.3) coincides with the boundary
homomorphism

9: R°F(C) — R'F(A).

Proof: Choose injective resolutions B— I* and C — J*® of B and C, respectively, and write
f:I* —— J* for the map between them induced by the map B—— C. By lemma 2.12,
cone(f) is then an injective resolution of A[1] and hence also of the complex

B—

o—)O

The map
H(RF(C[0])) — H'(RF (B — 9)
0

is induced by the inclusion into the second factor

J* —— cone(f).

Therefore, the claim follows from lemma 2.13. [l
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2.4. Some p-adic Hodge theory

We fix a finite extension L of QQ, and an extension F of Q, which is either finite or the
maximal unramified extension of a finite extension of Q,. Let Fy denote the maximal subfield
of F which is unramified over Q, and F resp. F, the completions of F and F,, respectively.
Note that then F is a p-adic field in the sense of [BCog, Def. 1.3.1] and we have Gr = G; by
[BCo9, Ex. 1.4.4 (2)], and likewise for F.

Central to the study of representations of Gr on L-vector spaces via p-adic Hodge theory
is the formalism of B-admissible representations, where B is some regular period ring.
This formalism is developed in an abstract setting e.g. in [BCog, §1.5] or [FOo08, §2.1.2].
Unfortunately, the setting there only considers the case L = Q, (but see [BCog, Exerc. 6.4.3,
8.4.3]), but it is clear that the statements there hold analogously in this more general situation.

We use the period rings Byr, Bgr, Bst and Beis, see [FO08, §5.1, §5.2.2, §6.1.4, §6.1.1].
The formalism of admissible representations provides us with functors from Kep, (Gr) to
categories of “linear algebra objects”. Let Fy be the maximal subfield of F which is unramified
over Q,. We summarise the relevant statements:

Theorem 2.15: Let? be “HT”, “dR”, “st” or “cris” and for V € Rep, (Gr) let

Dy r(V) = (B, ®V)°F,
Qp

where G acts diagonally on the tensor product. Then D,  defines a functor as follows:

(1) Durt,F goes from Rep, (Gr) to the category of graded F ®q, L-modules of finite rank.
(2) Dar, F goes from Rep, (Gr) to the category of filtered F ®q, L-modules of finite rank.

(3) Dst,F goes from Rep, (Gr) to the category of Fo ®q, L-modules of finite rank with an L-
linear and Fy-semilinear (with respect to the arithmetic Frobenius on F,) automorphism
Qcris, a nilpotent endomorphism N such that N¢eis = p@eisN and a filtration on
F®F0 Dst,F(_)-

(4) Deris, F goes from Rep, (Gr) to the category ofﬁo ®Q, L-modules of finite rank with an
automorphism ¢is and a filtration as in the previous case.

Here each filtration is decreasing, separated and exhaustive.
Let
ay: B @D?’F(V)% B- @(B? ®V)=(B, ®B?) ®V— B oV
F

F p F Qp Qp

be the canonical map, where Fy is F if 7 € {HT, dR} and Fy if 7 € {st,cris}. Then ay is
injective and we denote by Rep?L(G ) the subcategory of such 'V for which ay is an isomorphism,
called Hodge-Tate-, de Rham-, semistable and crystalline representations, respectively. Then the
following hold:

(a) Rgpi(GF) is closed under subrepresentations, duals, quotients and tensor products.

(b) Restricted to ﬂ{epz(Gp), the functor Do r is an exact and faithful tensor functor. To be
precise, there are canonical isomorphisms

Dy p(Vi)  ® Do p(V2) = Drp(V1® V),
F7®QPL L
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D p(Homy (V. 1)) = Hompg, 1 (D2, (V). F2 © L.
) 74

Proof: All this is well-known and in the special case L = Q, this is proven in [BCog, Thm.
5.2.1]. One can check that the same proof still works in this more general setting (using that
B?GF = F,). See also [FOo08, Thm. 2.13]. O

Remark 2.16: The statement about tensor products in theorem 2.15 (b) can be refined. If
V1, Vo € Rep,(GF) are any representations (not necessarily in Q{epZ(Gp)), then we always
have an injective map

Dy r(V)) ® Dy p(Vz) — Do p(V1 ® V),
ﬁ7®QpL L

and the map is an isomorphism if and only if both V; and V; are in Q{gp?L(GF). This is shown
during the proof of the statement in the above references.

We will often consider only the case where F = Q,, in which we write D; instead of
D2 q,- The D, are then L-vector spaces for any “?” and the automorphism ¢is of Dg and
Dgyis is L-linear.

»

Proposition 2.17: Let ? be any of the properties “Hodge-Tate”, “de Rham”, “semistable” or
‘crystalline” and V € Rep,(Gr). Let F> = F if? € HT,dR and F; = Fy if ? € {st, cris}. Then
there is a canonical isomorphism

E7* @ Dy p(V) —>= Dy (V).

In particular, V has the property ? if and only if the restriction of V to Gpn has the property P.
Proof: [BCog, Prop. 6.3.8, Prop. 9.3.1] [l

Lemma 2.18: LetV € Rep; (Gr) be unramified. ThenV is crystalline and we have a canonical
isomorphism
Dcris,F(V) = (ﬁnr ® V)Gal(F‘“/F)‘
Qp
The action of @is on the left hand side corresponds on the right hand side to the action of an
arithmetic Frobenius Frobl;1 on the first tensor factor.

Proof: Let n = dimq,, V. That V is crystalline is clear from proposition 2.17. Let I = Gpnr.
We have a canonical injection

ﬁnr RV = BI ® VI — (Bcris g V)I = Dcris,F“’(V)~
14 P

cris
Qp

Again by proposition 2.17 and the definition of “crystalline” the right hand side is an n-
dimensional F™-vector space, as is the left hand side, so the above map is in fact an isomor-
phism. We conclude

Dcris,F(V) = (Bcris g V)GF = ((Bcris ﬂ? V)I)Gal(F“’/F) = (ﬁnr (]? V)Gal(Fm/F).
P P

»

The last statement is clear from the definition of @i on Beys. O

42



2. Miscellaneous

Lemma 2.19: (a) Lety: Gq, — L* be a continuous character. Then the following are
equivalent:

(i) ¥ is de Rham.
(ii) ¢ is Hodge-Tate.

(iii) ¢ is a product of a finitely ramified character and a crystalline character.

(b) Lety: Gq, —— L™ be a continuous character. Then the following are equivalent:
(i) ¢ is crystalline.
(ii) ¥ is semistable.

(iii) ¢ is a Tate twist of an unramified character.

Proof: [BCog, Ex. 6.3.9, Cor. 9.3.2] O

Lemma 2.20: Let : Gq, —— L™ be a crystalline character and write {y = Ynrkye with

n € 7 and yn, unramified. Then @c.is acts on Deis(Y) as multiplication by Y (Frob, )p™.
Proof: Since Djs commutes with tensor products, it suffices to show independently that ¢yis
acts on Deis(keye) as multiplication by P~ and on Deyis (V) by multiplication with Ynr(Froby).

We first consider Deris(Keye) = (Beris ®q, Qp(l))GQP. Let ¢ be any nonzero element of
Qp(1) and consider tqr € BY ;.. Then o € Gq, acts on both ¢ and tgr as multiplication by
Keye(0) (see [BCoo, top of p. 62] for tqr). Hence & ® tgfll lies in Deyis(keyc), and since the latter
is a 1-dimensional Q,-vector space, it is a basis. Now @5 acts on tqr as multiplication by p
by [BCoo, top of p. 133] and it acts trivially on £, so the claim follows.

Now let V be a one-dimensional L-vector space on which Gq,, acts via ¢, By lemma 2.18,
we have then

p

and @5 acts as the arithmetic Frobenius Frob;,1 on the first tensor factor Qgr. Put u =
Unr(Frob,) and take an element

x = b; ® v; € (QF @ V)Gl /Qp),
2uheue @iy
Then ux is also Gal((Ql‘,}r / Qp)-invariant, so

wx = Frob!(ux) = uFrob,'(x) = u( D vecis(b) © Frob,(v1)) = D 0uss(bi) ® 04 = o).
1 1 D

We now recall the important functor Dp;.

Definition 2.21: For V € Rep, (Gq, ), put

Dypst(V) = colim (Bst ® V)7 = colim Dyt r(V)
F2Q, P F2Q,

where F ranges over all finite extensions of ), inside @p.
Itisa Q)" ®q, L-module endowed with an L-linear and Q}'-semilinear (with respect to
the arithmetic Frobenius) automorphism ¢is. We call V' potentially semistable if Dps (V) is

free of rank dim; V over Q' ®q, L.
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On Dps(V) we have a (diagonal) action of Gg, which is L-linear and Q}'-semilinear
(explicitly: o(ax) = o(a)o(x) for a € Qgr, x € Dpst(V) and 0 € Gq,). The functor Dy
commutes with tensor products, which follows from the fact that Dy does so.

One of the most important results in p-adic Hodge theory is Berger’s p-adic monodromy
theorem:

Theorem 2.22 (Berger): Any de Rham representation is potentially semistable.

Proof: [Beroz, Thm. 0.7] O

Remark 2.23: The above result can be used to describe D5t more explicitly. Let V be a de
Rham representation and fix a finite Galois extension F/Q, that V|g,. is semistable. Then for
each finite extension F’/F the canonical map

F; ® Dy p(V)=F, ® Bst ® V)" «— F; @By ®V —— By @V
Fo Fy Qp Fo o Qp Qp

is injective since it is a restriction of the map ay, and moreover its image is Gp/-invariant, so
it induces an isomorphism Fj ®f, Ds;, r(V) —— Dg, (V). Consequently, we get Dysi(V) =
Qgr ®r, Dst,r(V). Note that the action of Gg, on Dyt(V) corresponds to the diagonal action
on the right hand side, where Gq, acts as usual via is quotient Gal(Q,'/Q,) on Q" and via
its quotient Gal(F/Q,) on Dy p(V). Further ¢;s also acts diagonally, not only on Dy ¢(V)!
This is because Q;r has to be considered as a subring of By here, and thus ¢.s acts as an

arithmetic Frobenius Frobl;1 on this factor.

2.5. Galois representations and families

We fix a profinite group G (in the applications, it will mostly be either Gq or Gg,).

Definition 2.24: Let R be a commutative ring. A representation of G with coefficients in R
is a finitely generated projective R-module M together with a (continuous'4) homomorphism

p: G—— Autg(M).

The category of such representations will be denoted by Rep(G). We say that a representation
has rank n € N if the module M has constant rank n.

Definition 2.25: Let M be a representation as above and assume that M has finite length as
an R[G]-module. Then the semisimplification of M is defined as the semisimplification as an
R[G]-module, i. e. as the direct sum of the composition factors in a composition series of M as
an R[G]-module. By the Jordan-Hoélder theorem this is well-defined up to isomorphism. We
will mostly use this only when R is a field, in which case M has automatically finite length.

Theorem 2.26 (Brauer/Nesbitt): Let M and N be k-linear representations of G, wherek is a
perfect field. Then the semisimplifications of M and N are isomorphic if and only if we have an
equality of characteristic polynomials

det(1 — gT, M) = det(1 — ¢gT,N)

ink[T] forallg € G.

4 In the applications, M will usually have some natural topology.
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Proof: The “only if” statement means that the above characteristic polynomials depend only
on the semisimplification of a representation. This is clear because if we have a composition
series

0CMCM; G-~ CMy=M

of M and we write p; for the homomorphism describing the action on the quotients M;/M;_4,
then the action on M may be described by a matrix of the form

p1oF ... %

Pn

hence the characteristic polynomials coincide with the corresponding ones where only the
diagonal entries are present.

For the other direction see [CR62, Thm. 30.16]. The statement is formulated there for a
finite group G, and the proof contains an argument incorporating the finitely many isomor-
phism classes of irreducible representations of G. But inspecting the proof and its ingredients
one sees that the argument still goes through if we replace these finitely many isomorphism
classes by the isomorphism classes of irreducible representations occurring as subquotients
of M or N, which are of course still finitely many since M and N are finite-dimensional over

k. (]

In general, any representation G —— Autg(M) can be viewed as a whole family of repre-
sentations: each ring homomorphism R —— S to some other ring S induces a representation
G —— Auts(M ®r S), and we get a family of representations parametrised by such ring
homomorphisms. Of particular interest are the ring homomorphisms obtained by reducing R
modulo some prime ideal, so we get for instance a family of representations parametrised by
Spec R. Therefore, in some situations we call a representation also a family of representations
and speak of a representation in the strict sense only if R is a field; we hope this does not
lead to confusions.

Of course, one could define this notion also more geometrically: we can see M as a locally
free sheaf on Spec R, and we can then define not only affine families of Galois representations,
but also such parametrised by general schemes. One can also work in other geometric
contexts, for example one can use affinoid algebras instead of just commutative rings and
then consider families of representations parametrised by rigid analytic spaces. The rigid
analytic setting seems to be a very natural context for questions related to p-adic L-functions,
but in some situations the algebraic language is also important, and we study some relations
between the two notions. For simplicity, we restrict to the affine resp. affinoid case.

We will be interested in two particular types of rings and ideals. For both we need to fix
a finite extension L of Q, with ring of integers O. The two situations we consider are as
follows:

« Let K be a finite extension of Quot(O[T]]) and 7 the integral closure of O[T] in K.
We consider the case R = 7. Then I is 2-dimensional, it is finite and flat over O[T] by
[BGR84, §4.2, Thm. 1] and [Bou89, chap. 111, §3.4 Cor.], and it is moreover noetherian.
Further 7 is a local ring, as can be seen using [Bou89, chap. V, §2.1, Prop. 1, Thm.
1]. Let mz be is its maximal ideal. We endow 7 with the mz-adic topology. Then it
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is complete and Hausdorff by [Bou89, chap. 111, §2.12 Cor. 1, §2.2 Prop. 6], and also
compact since it is a finitely generated O[T]]-module. So in particular, I is a profinite
ring by [RZoo, Prop. 5.2.1]. We further endow any finitely generated 7 -module 7 also
with the mz-adic topology. This defines a topology on Aut7(7") such that we have an
isomorphism of profinite groups Autz(7) —— ¥i1_nn€]N Autr (7/m7 7).

+ Let A be an affinoid algebra over L. We consider the case R = A.

In the following we denote the Tate algebra over L in n indeterminates by L{Xy, . .., X,).

Definition 2.27: In the first case, we call a representation with coefficients in 1 also an
algebraic (p-adic) family of Galois representations. In the second case we call a representation
with coefficients in A also an analytic (p-adic) family of Galois representations. We will mostly
omit the word “p-adic” here.

We call each O-algebra morphism ¢: 7 —— @p a specialisation of I and each L-algebra

morphism ¢: A— @p a specialisation of A.

Algebraic families of Galois representations are studied in [Bar11, §2.2]. There, specialisa-
tions are defined as maps L[T]] — @p. But since L[[T] is a discrete valuation ring, it has a
unique prime ideal, so there is only one such map. This must have been overlooked in this
work since otherwise the theory is not interesting. A p-adic family of Galois representations
is defined there as a representation into GL, (L[ T]). Later in [Bar11, Cor. 2.11] it is proved
that any such representation contains a free Gg-stable O[T ]-lattice. This proof is also not
correct since it uses that there is a canonical map from L[[T] into the quotient field of O[TT],
which is not true. Anyways, later in [Bar11], Barth always chooses such a lattice and works
with specialisations O[[T] — @p, so the later results are not affected by this problem.
This situation is covered by our definition by choosing 7 = O[T]],*5 so this seems to be a
reasonable generalisation.

The algebraic families of Galois representations we defined should more precisely be called
“one-parameter families of Galois representations”, since we work over integral extensions of
the one-variable power series ring O[T]. In this work we just call them “families” because
we will not consider multi-parameter families. Working with multiple variables instead gives
an analogous notion of multi-parameter families. Such an approach is followed for example
in [Hidg6].

Lemma 2.28: Let¢: I — @p be a specialisation, let R be its image and F be the quotient
field of R. Then R is an integral ring extension of O and F is a finite extension of L.

Proof: We first prove this in the special case 7 = O[T]. The kernel of ¢ is a prime ideal of
height 1, so by [NSW13, Lem. 5.3.7] it is of the form (f) where f € O[T] is an irreducible
Weierstral polynomial. Let d = deg f. By the Division Lemma [NSW13, Lem. 5.3.1],
OIT]/(f) = Ris a free O-module of rank d. Then F is canonically isomorphic to L ®¢
OIlTI1/(f), which is an L-vector space of dimension d, so F/L is a finite extension.

Now let 7 be as in the general case, let P be the kernel of ¢ and let (f) be the kernel of
Ployr)> as above. Since I is a finitely generated O[[T]-module, by base change I/(f) is a
finitely generated O[T]/(f)-module and thus a finitely generated O-module. Then so is
I /P = Rsince it is a quotient of 7 /(f). The field F can be identified with L ®» R, so itis a
finite-dimensional L-vector space. O

!5 In [Bar11] there is the additional assumption that 7 be free, but since O[T] is a local ring and we required 7~
to be projective, this is automatically fulfilled.
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Definition 2.29: (a) The field of coefficients of an algebraic specialisation ¢ is the sub-
field Ly of Qp generated by the image of ¢, which is a finite extension of L by
lemma 2.28. We write Oy for its ring of integers. Note that we can view ¢ also as
amap ¢: I —— Oy since the image of ¢ is a subring of Oy, again by lemma 2.28.
In this situation we put further Ky = Ly N Q, which is a finite extension of K, and
write By for the place of Ky such that the completion at this place is L.

(b) The field of coefficients of an analytic specialisation ¢p: A — @p is its image, which
we denote Ly. It is clear that Ly is a subfield of @p, and by the rigid analytic
Nullstellensatz [BGR84, §6.1.2, Cor. 3] it is a finite extension of L. As in the algebraic
case we write Oy for its ring of integers, Ky = Lg N Q and B for the place of Ky
such that the completion at this place is Lg.

Definition 2.30: Let (7, p) be an (algebraic or analytic) family of Galois representations of
rank n and ¢ a specialisation. In the algebraic case, set 74 = 7 ®71 4 Oy, which is a free
Og-module of rank n. In the analytic case, set 7 := 7 ®4 4 Ls, which is an n-dimensional
Lg-vector space. We write

pg: G—— Aut(Ty)

for the representation induced from p and call it the specialisation of p at ¢.

Proposition 2.31: Let 7 be as above and set A .= I ®pyr) L(T). Then A is an affinoid L-
algebra. Every specialisation of I induces a specialisation of A, which we denote by the same
symbol. Every algebraic family T8 of Galois representations over I naturally induces an
analytic family of Galois representations T8 over A such that for each specialisation ¢, 7;5a1g is

a Galois-stable lattice in 7;rig.

Proof: Since 7 is finite over O[[T]|, by base change A is finite over L(T), hence A is affinoid
by [BGR84, §6.1.1, Prop. 6]. So tensoring an algebraic family with L(T) yields an analytic
family. If ¢: 7 — @p is an algebraic specialisation, then « := ¢(T) € @p has absolute value
< 1, so we can define a morphism L(T) —— Ly by T —— a (see [BGR84, §6.1.1, Prop. 4]).
This induces an analytic specialisation which we denote again by ¢. The rest is then clear.[]

Definition 2.32: (a) Let V be a finite-dimensional K-vector space. An I -lattice in V
is a finitely generated 7 -submodule which generates V as a K-vector space. See
also [Bou89, chap. vi1, §4.1, Prop. 1 & Cor.].

(b) Let p: G—— Autx(V) be a representation of G on a finite-dimensional K-vector
space V. Then p is called continuous if V contains a G-stable 7 -lattice 7 such that
the induced map

p: G— Autr(7)

is continuous with respect to the profinite topology. See also [Hid86a, p. 557] and
[Bari1, §2.2].

Lemma 2.33: Let p: G—— Autg (V) be a continuous representation of G on a finite-dimen-
sional K-vector space V. Then one can find a free G-stable I -sublattice T of V.

Proof: This can be proved with exactly the same argument as [Bar11, Cor. 2.11]. O
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2.6. (¢,T)-modules and families

We shortly review (¢, I')-modules over the Robba ring and families of such, following Berger,
Colmez and Bellovin [Ber11; Colog; Colos; BCo8; Bel15]. Throughout the section we fix a
finite extension L of Q,.

Definition 2.34: The Robba ring B ;, over L is the ring of Laurent series ).,z a,X" with
coeflicients a, € L for which there ex1sts a real number 0 < r < 1 such that the series
converges on the annulus {x € L : r < |x| < 1}.

Since L will usually be clear from the context, we denote the Robba ring mostly just by
Bjig. In other texts it is denoted by R or Ry.

The Robba ring carries a Frobenius endomorphism ¢,z and an action of G¢yc. In the
literature, the group which we call Gy is usually called I in this context, so we follow this
convention and let I' := Gy, for this section.

Definition 2.35: Let A be an affinoid L-algebra. A (¢, T')-module over A is a free A& BIi o«
module M of finite rank with an endomorphism ¢ and an action of T such that the following
properties hold:

* ¢ is A-linear and ¢,ig-semilinear,

« if B is a basis of M, then also ¢(B) is a basis,

the action of T is A-linear and semilinear with respect to the I'-action on Bjig,
« if B is some basis of M and y € T then also y(B) is a basis of M,
« the action of I' commutes with ¢.

We denote the category of (¢, I')-modules over A by B:i ¢ -Mod ff’r). It carries natural notions
of direct sums, duals and tensor products.

If A = L', the (¢,T)-module is called étale if with respect to some basis of M the
endomorphism ¢ is described by a matrix whose entries are Laurent series in BL ‘ all of whose
coeflicients have absolute value < 1.

In the case A = L, we call a (¢,T)-module over L just a (¢,T')-module. Just as in the
case of Galois representations, a (¢, I')-module over A can be seen as a whole family of
(¢, T)-modules parametrised by Sp A, the rigid space associated to A.

Theorem 2.36 (Fontaine, Cherbonnier/Colmez, Kedlaya, Liu, Berger, Bellovin): There is a
fully faithful functor
T (¢, I
rlg g{'epA(GQ ) — B _M d

This functor commutes with direct sums and tensor products and is compatible with base change
in A. If A = L, then its essential image is the subcategory of étale (¢, T')-modules.

Proof: For the general case see [Bel1s, Cor. 2.2.11]; note that since we work with an affinoid
algebra, the associated space is automatically quasi-compact and quasi-separated. For the
case A = L see [Colos, Prop. 2.7]. O

16 This notion can also be defined for general A, but since we don’t need this we omit it.
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The compatibility with base change means in particular that the functor Dji behaves well
with families: it does not matter whether we first apply it to a family of Galois representations
and then specialise the resulting (¢, I')-module or whether we first specialise a family of
Galois representations and then apply Djig.

We now restrict to the case A = L. It is possible to extend the definitions of Dy, Dggr, Dst,
Dpst and Deyis to(@, I')-modules, generalising the definitions for Galois representations. We
do not repeat the definitions here, but just summarise this fact in the next theorem. In fact it
is even possible to this for general A (see [Bel1s, §4]), but we will not use this.

Theorem 2.37 (Berger, Colmez, Bellovin): There are functors D», with ? being one of ‘HT,
‘AR’ “st”, “pst” or “cris”, going from the category Bjig -Moz[ff’r) to the category of L-vector
spaces’” with additional structure,’® such that if V is an L-linear representation of Gq,,, then

Dy(D] (V) = Do(V)

compatibly with these additional structures.

Proof: See [Bel1s, §4.2] and the references there. O

Definition 2.38: We say that a (¢, I')-module M is Hodge-Tate, de Rham, semistable resp.
crystalline if dimy D,(M) equals the rank of M, for the corresponding “?”.

We finally cite the following important definition from [Ber11, Def. 2.3.1].

Definition 2.39: We say that a (¢, I')-module M is trianguline if for some finite extension F

of L the base change B:i o F ®p7 M is a successive extension of (¢, I')-modules of rank 1. We
4 rig, L

say that an L-linear representation of Gq, is trianguline if Dji g(V) is trianguline.

2.7. Galois cohomology and Selmer groups

In this section we briefly recall some definitions and statements related to certain Galois
cohomology groups. All cohomology groups in this section are continuous cochain coho-
mology groups, which are often denoted “H,.” or similarly, but we omit this and write just
“H*”. As is common, we denote the cohomology of the absolute Galois group of a field k
by H*(k, —) instead of H*(Gg, —). We denote the complex of continuous cochains whose
cohomology is H*(k, V) (for a representation V of G¢) by RI'(k, V), and we denote its image
in the derived category by the same symbol.

In this whole section we fix a prime p and a finite extension L/Q, with ring of integers O.
Before we treat actual Galois cohomology, we record the following facts about continuous
cochain cohomology of profinite groups.

Theorem 2.40: Let G be a profinite group having the following property:

For each finite discrete p-primary G-module A and each i > 0 the groups (2.4)
H!(G, A) are finite. >4

Let V be a finite-dimensional L-vector space with a continuous G-action and fix a G-stable
O-lattice T C V. Then the following hold for all i > 0:

'7 In the case “pst”, the functor goes to Q)" ®q,, L-modules.
18 The additional structures are the same as in the case of Galois representations, e. g. filtrations, Frobenius
endomorphisms and so on.
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(a) We have H!(G,T) = lin H'(G,T/p"T).
nelN

(b) We have H'(G,V) = H(G,T) ®¢ L.

(c) The O-modules H'(G, T) are finitely generated. The L-vector spaces H'(G, V) are finite-
dimensional.

(d) The canonical homomorphism H(G,T) ®» L/ O — H(G, V/T) has finite kernel and
cokernel.

Proof: [NSW13, Cor. 2.7.6, Cor. 2.7.9, Cor. 2.7.10] O
Proposition 2.41: The property (2.4) holds for the following groups:
¢ The local absolute Galois group Gq, for any prime ¢;

e the Galois group Gq,s of the maximal extension of Q unramified outside a finite set of
places S of Q containing p and the archimedean place.

Proof: [NSW13, Thm. 7.1.8 (iii), Thm. 8.3.20 (i)] O

Now we turn to Galois representations. Let V be an L-linear representation of Gg which
is unramified outside a finite set of places of Q and de Rham at all primes. We first look at
the local behaviour. By proposition 2.41, we may then use the results from theorem 2.40.

Definition 2.42: For each place v of  we define a complex RI}(Q,, V) as

1— Frob,,

VIU - VI‘U’ v ;t p’ OO,
RFf(Q»U, V) = (1= @cris» 1) 0

Dcris(V) E— Dcris(V) ® DdR(V)/ﬁ1 DdR(V)’ v =p,

RI'(R, V), v = oo,

where the entries are in degree 0 and 1, respectively. We denote its cohomology groups by
H:(Qp, V).

Lemma 2.43: Let v be a place of Q).

(a) HAQu, V) = H(Qu, V).

dimL HO(Q‘U’V)9 v ;tp,OO,
(b) dim; HY(Qy. V) = { dimy H(Qy. V) + dim; Dar(V)/BL’ Dax(V), v = p,
0, V= 00,

From now on, let v = { be a prime number.

(c) IFC # p, then HY(Q, V) = HI(F,, VI¢) = ker (Hl(Qg, V), H(1,, V)).

(d) Ift = p, then H}(QP, V) = ker (Hl(Qp, V) — HY(Q,, Beris ®q, V)).
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(e) Under the perfect cup product pairing
H(Qe, V) x H(Q, V*(1) — H*(Qe, L(1) = L
the subspaces H%(Q[, V) and H}(Qg, V*(1)) are orthogonal complements of each other.

Proof: The statements for v = co are trivial, so we assume v = ¢ is a prime number.
We first treat the case ¢ # p. Then (a) is clear from the definition and (b) follows from the
exact sequence

1— Frob,

0 — HY(Qg, V) vie vie HY(Q¢, V) — 0.

To prove (c) we use the long exact sequence attached to the short exact sequence of G, -
representations

0 —— (1 = Frob,)V* — V¥ — H(Q,, V) — 0,
which looks like
0 —— H(IF¢, (1 — Frobe)V") — H(F¢, V') — H(F¢, HH(Qe, V)

L HY(Fy. (1 - Frobe)VY) —— H'(F,, Vi) H(F,, HY(Qr, V))
— H%(Fy, (1 - Frob,)VY¥) — ...

One knows that for any Gy, -representation V’ the dimensions of H(F, V') for i = 0,1 are
equal and are 0 for i > 2: this follows from [NSW13, Prop. 1.7.7] and theorem 2.40 (a), using
the exact sequence

1— Froby

0—— (V)© v’ v’ (Vg — 0,

where Froby is here a topological generator of G,. Hence the arrow labelled () in the above
long exact sequence is surjective, and counting dimensions we see that it is an isomorphism.
Since Gr, = Z is the free profinite group of rank 1 and acts trivially on H{(Qy, V), we get
HY(F,, H%(Qg, V)) = Hom(Gp,, H%(Q[, V)) = H%(Qg, V), completing the proof of the first
isomorphism. The second one now follows from the inflation-restriction exact sequence
[NSW13, Prop. 1.6.7] (using again theorem 2.40 (a)).

In the case ¢ = p, the statements (a), (b) and (d) follow from [BKgo, Cor. 3.8.4].

Finally, (e) is shown in [BKgo, Prop. 3.8] (for any ¢). O

Definition 2.44: We define the following variant:

HY(Qp. V) = ker (Hl(Qp, V) — HY(Q,, Bir g V)) :

Lemma 2.45: We have
dim; H(Q,, V) = dim; ( Dar(V) / A1 D g (V) ) + dimy HY(Qp, V) + dimy, Degis(V (1)) %",

In particular, H{(Qy, V) = H(Qp, V) if Deis(V*(1))75571 = 0.
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Proof: The dimension formula is proved in [BKgo, Cor. 3.8.4] and the last claim follows from
lemma 2.43 (b). O

Lemma 2.46: Let ¢ be a prime number.

(a) The group H'(Qg, V) parametrises equivalence classes of extensions of G, -representa-
tions

0 Vv E L 0. (2.5)

(b) Let{ # p. The class of an extension as above lies in H}(Qg, V) if and only if the sequence
(2.5) remains exact after taking ly-invariants.

(c) Let € = p. The class of an extension as abo