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im Juni 2019

Betreut durch Prof. Dr. Otmar Venjakob



Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbstständig verfasst und
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Abstract

In this thesis, we study and generalize some results of the article [ST01] by Peter Schneider
and Jeremy Teitelbaum. Schneider and Teitelbaum studied a certain rigid analytic group
variety X that parametrizes the locally L-analytic characters on oL, where L is a finite
extension of Qp. One of their main results in [ST01] states that X becomes isomorphic to
the open unit disk B after base extension to Cp. They proved this by using Lubin-Tate
theory to make B a group variety and p-adic Hodge theory to construct an isomorphism
κ : B/Cp −→ X/Cp of rigid group varieties. They raised the question whether this iso-
morhism can be generalized to the situation where B is endowed with the group structure
given by a relative Lubin-Tate formal group law (a generalization of the usual Lubin-Tate
groups, introduced in [dS85]). We succeed in verifying a weaker version of this, namely
that there is a group isomorphism B(Cp) −→ X(Cp) on the level of Cp-points that gener-
alizes κ(Cp). Furthermore, in the last section of [ST01], Schneider and Teitelbaum applied
their results to construct p-adic L-functions for supersingular elliptic curves. We study
the question how the existence of their L-function implies congruences between the special
values.

Zusammenfassung

In dieser Arbeit untersuchen und verallgemeinern wir Ergebnisse aus dem Artikel [ST01]
von Peter Schneider und Jeremy Teitelbaum. Schneider und Teitelbaum haben eine gewisse
rigid-analytische Gruppenvarietät X untersucht, welche die lokal L-analytischen Charak-
tere auf oL parametrisiert, wobei L eine endliche Erweiterung von Qp ist. Eines ihrer
Hauptergebnisse in [ST01] besagt, dass X nach Basiserweiterung zu Cp isomorph zur of-
fenen Einheitsdisk B wird. Um dies zu beweisen, haben sie mittels Lubin-Tate-Theorie
B mit der Struktur einer Gruppenvarietät versehen. Im Anschluss haben sie mit Hilfe
von p-adischer Hodge Theorie einen Isomorphismus κ : B/Cp −→ X/Cp rigider Gruppen-
varietäten konstruiert. Sie haben die Frage gestellt, ob sich obiger Isomorphismus auf die
Situation verallgemeinern lässt, dass B mit derjenigen Gruppenstruktur ausgestattet ist,
die von einem relativen Lubin-Tate formalen Gruppengesetz induziert wird (relative Lubin-
Tate-Gruppen sind eine von Ehud de Shalit in [dS85] eingeführte Verallgemeinerung der
üblichen Lubin-Tate-Gruppen). Wir beantworten eine schwächere Version obiger Frage,
indem wir zeigen, dass ein Gruppenisomorphismus B(Cp) −→ X(Cp) auf der Ebene der
Cp-Punkte existiert, der κ(Cp) verallgemeinert. Darüber hinaus haben Schneider und
Teitelbaum im letzten Abschnitt von [ST01] ihre Ergebnisse angewendet, um p-adische
L-Funktionen zu elliptischen Kurven zu konstruieren. Wir untersuchen die Frage, wie sich
aus der Existenz ihrer L-Funktion Kongruenzen zwischen den speziellen Werten herleiten
lassen.
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Introduction

The theory of L-functions plays a central role in modern number theory. For instance,
two of the seven Millennium Problems are questions about L-functions. One of these two
problems is the famous Riemann hypothesis, which asserts that all the non-trivial zeros of
the Riemann Zeta function lie on the line with real part 1/2. The Riemann Zeta function
can be thought of as the archetypical L-function. Indeed, many classical L-functions are
defined in association to an arithmetic object, by a formula that in some way mimics the
formula of the Riemann Zeta function. Examples of such L-functions are Dedekind Zeta
functions and Hasse-Weil L-functions. They are associated to algebraic number fields and
elliptic curves, respectively. A remarkable thing about these L-functions is that their val-
ues at the integers (“the special values”) contain information concerning the arithmetic of
the associated objects. A conjectural example of this phenomenon is the second of the two
Millennium Problems we mentioned: the Birch and Swinnerton-Dyer conjecture. Given an
elliptic curve E over a number field K, the conjecture asserts that the rank of the abelian
group E(K) of K-valued points of E is equal to the order of the zero of LE(s) at s = 1,
where LE is the Hasse-Weil L-function associated to E. To give another example, due to
Kummer, we first recall that the values of the Riemann Zeta function ζ at the negative
integers are rational numbers, as has been known since Euler. Kummer has proven that
an odd prime number p divides the order of the ideal class group of Q(e2πi/p) if and only if
p divides the numerator of at least one of ζ(−1), ζ(−3), . . . , ζ(2− p). An important ingre-
dient in Kummer’s proof of this theorem are certain congruences modulo pn between the
values of the Zeta function at the negative integers. From a modern point of view, these
congruences are equivalent to the existence of a (necessarily unique) continuous function
ζp on the ring Zp of p-adic integers, such that the values of ζp at the negative integers
essentially coincide with those of ζ. The function ζp is called the Kubota-Leopoldt p-adic
Zeta function. When we write ζp, we mean “the first branch” ζp,1 from [Col02] Théorème
VI.2.1. (In particular, we have cheated in not mentioning that ζp has a pole at 1 ∈ Zp and
that ζp satisfies the interpolation property only at the negative integers that are congru-
ent to 1 modulo p− 1.) For a precise statement about the various branches ζp,i and their
interpolation properties, see [Col02] Théorème VI.2.1 and the subsequent Remarque VI.2.2.

The Kubota-Leopoldt p-adic Zeta function is historically the first example of a p-adic
L-function. p-adic L-functions are analytic functions of a p-adic variable that interpolate
special values of classical L-functions. They are of great interest to number theorists. One
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Introduction

reason for this is that, in order to link the properties of a classical L-function to the arith-
metic properties of the associated object, one often has to consider the p-adic scenario.
But p-adic interpolation (i.e. showing the existence of a p-adic L-function) is an intricate
matter. This is where the theory of p-adic distributions plays a crucial role. To roughly il-
lustrate this on the example of the Kubota-Leopoldt p-adic Zeta function ζp, we recall that
a locally analytic distribution on Zp can be thought of as a generalized measure, against
which locally Qp-analytic functions on Zp can be integrated. For the moment, we only
consider distributions with values in Qp, to keep things simple. The space D(Zp,Qp) of all
such distributions is a ring, with multiplication given by the convolution product. For a
distribution λ ∈ D(Zp,Qp), one can define (the minus-first branch of) its Mellin transform
Melλ. It is an analytic function on Zp (see [Col02] Corollaire VI.2.7) satisfying

Melλ(n) =

∫
Z×p
xnλ(x)

for all n ∈ N such1 that n ≡ −1 mod p − 1. So if one finds a distribution µ such that∫
Z×p
xnµ(x) essentially coincides with ζ(−n), one may define ζp to be s 7−→ Melµ(−s) up

to a few factors. Thus, thanks to the formalism of the Mellin transform, the p-adic Zeta
function can be identified with a distribution µ satisfying the interpolation property.

Since the distribution ring D(Zp,Qp) is (a priori) a very complicated ring, it is not at
all clear that the matter becomes simpler when reduced to finding a distribution µ that
satisfies the interpolation property. Fortunately, Yvette Amice discovered an isomorphism
between the distribution ring D(Zp,Qp) and the ring of power series in one variable over
Qp converging on the open unit disk in Cp. Given a distribution λ, we have∫

Z×p
xnλ(x) =

( d
dt

)n
Aλ(exp(T )− 1)

∣∣
T=0

(∗)

where Aλ is the power series corresponding to λ under Amice’s isomorphism. So the
problem of constructing µ (and thus ζp) amounts to finding a power series in Q[[T ]] that
converges on the unit disk in Cp and whose n-th derivative at the origin (as on the right-
hand side of (∗)) is essentially equal to ζ(−n). But it is not too hard to find such a power
series, see [Col02] Proposition VI.1.2. This completes our outline of the construction of ζp
via distribution theory. We review the Amice isomorphism in Section 1.1.

In view of Amice’s result, it is natural to ask whether there is a similar description of the
ring D(oL, K) of K-valued locally L-analytic distributions on oL, when Qp ⊆ L ⊆ K ⊆ Cp

is a tower of fields with L finite over Qp and K complete and oL the ring of integers in L. In
their article [ST01], Peter Schneider and Jeremy Teitelbaum studied this question. They
introduced a certain rigid analytic group variety X, whose K-valued points parametrize

1We have tacitly assumed that p is odd. If p = 2, then the equality holds for all n ∈ N such that n ≡ −1
mod 2.
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K-valued locally L-analytic characters on oL. Hence X is called the rigid character variety
(associated to oL). Schneider and Teitelbaum then produced an isomorphism (“the Fourier
isomorphism”) between D(oL, K) and O(X/K), where X/K is the base extension of X to
K and O(X/K) is the ring of rigid functions on X/K. In the case L = Qp = K, the variety
X can be identified with the rigid open unit disk B, O(B) is the ring of power series con-
verging on B(Cp) = {z ∈ Cp : |z| < 1}, and the Fourier isomorphism coincides with the
Amice isomorphism. However, if L 6= Qp then X is not isomorphic to the unit disk B and
D(oL, L) is generally not a ring of convergent power series, see [ST01] Corollary 3.8 and
Lemma 3.9. Fortunately, the varieties B and X do become isomorphic after base extension
to Cp. To prove this, Schneider and Teitelbaum endowed the Cp-valued points B(Cp) with
the group structure provided by a Lubin-Tate group law associated to L. They then used
a result of Tate’s in [Tat67] to construct a group isomorphism κ(Cp) : B(Cp)

∼−→ X(Cp)
on the level of Cp-points, see [ST01] Proposition 3.1. The isomorphism κ(Cp) depends on
the choice of a period of the Lubin-Tate group. Finally, with the help of Fontaine’s work
on p-adic Hodge theory, they showed that the group isomorphism κ(Cp) derives from an
isomorphism κ : B/Cp

∼−→ X/Cp between rigid Cp-analytic varieties, see [ST01] Theorem
3.6. One importance of this result is that it gives an isomorphism O(X/Cp)

∼−→ O(B/Cp).
Composing with the Fourier isomorphism yields an isomorphism

D(oL,Cp)
∼−→ O(B/Cp). (∗∗)

Thus, D(oL,Cp) is the ring of power series over Cp converging on the open unit disk B(Cp).
In Section 5 of [ST01], Schneider and Teitelbaum exploited this fact to construct a p-adic
L-function for a CM elliptic curve at a supersingular prime. Their approach is analogous to
the one we described for the p-adic Zeta function: the isomorphism (∗∗) reduces the prob-
lem to finding a convergent power series F ∈ O(B/Cp) such that the values ∂nF (T )|T=0

essentially coincide with the special values of the L-function of the elliptic curve. Here ∂
denotes the invariant differential of the Lubin-Tate group. We note that it is not easy to
find such a power series F . For this, Schneider and Teitelbaum rely on the machinery of
Coleman power series and elliptic units from [dS87].

In Section 5 of [ST01], Schneider and Teitelbaum mention that their method for construct-
ing the p-adic L-function might generalize to the situation of so-called relative Lubin-Tate
groups. These are formal groups generalizing Lubin-Tate groups, and were introduced by
Ehud de Shalit in [dS85]. A relative Lubin-Tate group is attached to a finite unramified
extension E/L and to an element ξ ∈ L of valuation2 [E : L]. In the case E = L, one
recovers the usual Lubin-Tate groups. The question of extending the results of [ST01] to
the situation of relative Lubin-Tate groups can now be stated more precisely: does the
isomorphism of rigid group varieties κ : B/Cp −→ X/Cp generalize to the case when B is
endowed with a relative Lubin-Tate group law attached to a finite unramified extension
E/L? A positive answer would allow for construction of the p-adic L-function in a more
general setting (see Example 1.30).

2Here we mean the valuation on L that is normalized so that the valuation of a uniformizer is 1.
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In this thesis, we answer a weaker version of the question above by proving that if B(Cp) is
endowed with a relative Lubin-Tate group law associated to a finite unramified extension
E/L, then there is a group isomorphism on the level of Cp-points B(Cp)

∼−→ X(Cp) that
generalizes κ(Cp) (see Theorem 3.20). Our proof is a direct generalization of the proof of
[ST01] Proposition 3.1, which uses results of [Tat67]. In Section 3.2, we survey these results
of Tate’s and verify that they hold for relative Lubin-Tate groups. We do not assume that
the reader is familiar with relative Lubin-Tate groups, and we review them in Section 3.1.
The above is an outline of Chapter 3.
In Chapter 1, we review the first three sections of [ST01], preparing the way for Chapter 3.
In Chapter 2, we establish some results that complement the last two sections of [ST01].
Although these results are interesting in themselves, they were envisaged as tools to help
derive congruences for the special values of Schneider and Teitelbaum’s L-function. We
suggest an idea for an approach for deriving congruences in Section 2.3.
Chapter 2 and Chapter 3 are independent of each other. Whereas the goal of Chapter 3
is to generalize to the relative Lubin-Tate case, Chapter 2 stays in the realm of classical
Lubin-Tate groups and is concerned with analyzing the construction of Schneider and Teit-
elbaum’s L-function and deriving consequences from its existence.

Acknowledgments. I would like to thank my advisor Prof. Dr. Otmar Venjakob
for suggesting the interesting topic and supervising this thesis. I also thank Dr. Michael
Fütterer for helpful discussions regarding p-adic L-functions. Finally, I thank my friends
Rustam Steingart and Max Witzelsperger for their comments on wording that added clar-
ity where it was needed, as well as for providing me with an alternative point of view on
some mathematical issues.

4



Notations and preliminaries

Throughout the thesis, we use the following notations.

The letter p denotes a fixed prime number. We fix fields Qp ⊆ L ⊆ K ⊆ Cp such
that L/Qp is a finite extension and K is complete. We always use the absolute value
|·| on Cp normalized by |p| = p−1. The corresponding additive valuation vp : C×p −→−→ Q
is then given by vp(x) = − log |x| / log(p), so that |x| = p−vp(x). For any intermediate
field Qp ⊆ F ⊆ Cp, we denote the valuation ring {a ∈ F : |a| ≤ 1} by oF , its unique
maximal ideal {a ∈ F : |a| < 1} by mF and its residue field oF/mF by kF . For L, let
d := [L : Qp], o := oL and π := πL a fixed prime element of o. We denote the cardinality of
the residue field k := kL = o/π by q = pf and the ramification index of L/Qp by e.

p-adic analysis

We will work with objects of p-adic analysis, specifically with (paracompact) locally L-
analytic manifolds. For the definitions and basic properties of such objects, see [Sch11].
For a locally L-analytic manifold M we let Can(M,K) denote the K-vector space of all
K-valued locally analytic functions on M . Then Can(M,K) is a locally convex topo-
logical K-vector space in a natural way. It is a Hausdorff space and if (Mi)i∈I is a
cover of M by pairwise disjoint open subsets, then there is a topological isomorphism
Can(M,K) ∼=

∏
i∈I C

an(Mi, K). We will give a brief description of the topology on
Can(M,K) in a special case in Section 1.2, the general details may be found in Section 10
of Chapter II in [Sch11].
If M = G is a locally L-analytic group (sometimes also called a Lie group over L), we

let Ĝ(K) ⊆ Can(G,K) denote the group of locally analytic K-valued characters of G. By
a K-valued character we mean a continuous group homomorphism χ : G −→ K×. Note
that for compact G, the image of every K-valued character χ is contained in oK = {z ∈
K : |z| ≤ 1}. Indeed, a z ∈ K× \ oK cannot be a member of the image im(χ), because
|zn| = |z|n gets arbitrarily large whereas im(χ) is a compact and hence bounded subset of
K×.

Let G be a locally L-analytic group. The continuous dual D(G,K) := Can(G,K)′ is a
K-algebra with multiplication given by the convolution product ∗ (see [ST02], Proposition
2.3). It is called the algebra of K-valued distributions on G. Equipped with the strong
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dual topology, it is a locally convex K-vector space. See [Sch13] for the basics on contin-
uous dual spaces. In the case when G is compact, the convolution product is continuous,
i.e. D(G,K) is a topological K-algebra. In the case when G is commutative, D(G,K) is
commutative as a ring. It follows that D(o,K) is a commutative topological K-algebra.
In Section 1.2.1, we will see that D(o,K) is a K-Fréchet space. Distribution algebras are
interesting for many reasons. For instance, they play an important role in the theory of
locally analytic representations of p-adic Lie groups (see [ST02]). However, our focus will
be on the algebra D(o,K) and its role in the construction of p-adic L-functions.

Although locally analytic distributions will be the primary objects of study, there is an-
other type of distributions that we will make use of in Chapter 2. These are the so-called
continuous distributions. They are sometimes also called “measures” in the literature.
For topological spaces X and Y , let Ccont(X, Y ) denote the set of all continuous func-
tions X −→ Y . For a compact X, we endow Ccont(X,K) with the supremum norm
‖f‖sup = supx∈X |f(x)|, which makes it into a K-Banach space (cf. Example 2 after
Lemma 2.3 in [Sch11]). The elements of the continuous dual Dcont(X,K) := Ccont(X,K)′

are called K-valued continuous distributions on X. In the case when X = G is a compact
locally L-analytic group, Proposition 12.1 in [ST] (together with the preceding comments
there) explains how Dcont(G,K) is a K-algebra. We remark that there are two different
natural topologies with which one can equip Dcont(G,K). One is the topology given by the
usual operator norm. For a description of the other, see the discussion around Definition
11.2 in [ST].

Rigid analytic geometry

We also consider objects of rigid analytic geometry, the theory of which is presented rather
extensively in [BRG84]. The notes [Sch98] provide an excellent short overview of the the-
ory.
If Y is a rigid analytic variety over L, let O(V) denote the ring of global sections on Y.
This ring is also referred to as the ring of holomorphic (or rigid) functions on Y.
Suppose that Y is reduced. Then a function f ∈ O(Y) is called bounded if there ex-
ists a real constant C > 0 such that |f(y)| ≤ C for any Cp-point y ∈ Y(Cp). On the
subring Ob(Y) := {f ∈ O(Y) : f is bounded} we have the supremum norm ‖f‖Y =
supy∈Y(Cp) |f(y)|, which makes Ob(Y) into a Banach K-algebra (as mentioned in the pre-
liminaries in [BSX15]).
If Y is separated, base change to K is possible (see [BRG84] 9.3.6), and we denote it by
Y/K. This is e.g. the case when Y is affinoid, i.e. Y = Sp(A) is the affinoid space
associated to some affinoid L-algebra A. Then Y/K := Y⊗̂LK := Sp(A⊗̂LK), where ⊗̂
is the completed tensor product. It is worth remarking that base change is a special case
of the fiber product only if K is finite algebraic over L, because only in this case can K
be viewed as an affinoid L-algebra, allowing one to write Y⊗̂LK = Y ×Sp(L) Sp(K). In
general, Y/K is constructed by gluing the base change of affinoids.
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The Tate algebra in n variables over K is denoted by K〈T1, . . . , Tn〉. It consists of all
power series f =

∑
ν∈Nn aνT

ν ∈ K[[T1, . . . , Tn]] such that lim|ν|→∞ aν = 0, and is equipped
with the Gauss norm ‖f‖ = max |aν |. Recall that a K-algebra A is called affinoid if there
exists an epimorphism of K-algebras α : K〈T1, . . . , Tn〉 −→−→ A for some n ∈ N. Affinoid al-
gebras are always equipped with the following topology. The Gauss norm induces a residue
norm ‖‖α on A via ‖α(f)‖α = infg∈kerα ‖f −g‖. All residue norms on A are equivalent and
all K-algebra-homomorphisms between two affinoid algebras are continuous. As an exam-
ple, for c ∈ L with |c| ≥ 1 the affinoid L-algebra L〈c−1T 〉 is defined as the image of the
morphism L〈T 〉 −→ L〈T 〉, T 7−→ c−1T . This morphism is well-defined, since the condition
|c| ≥ 1 ensures that c−1T ∈ L〈T 〉 is power bounded (cf. [Bos14] 3.1 Lemma 19). Since
the morphism is injective, the norm of an element

∑∞
n=0 anc

−nT n ∈ L〈c−1T 〉 is given by
the Gauss norm of its unique preimage

∑∞
n=0 anT

n ∈ L〈T 〉. Thus, by setting bn := anc
−n,

L〈c−1T 〉 can be identified with the algebra {f =
∑∞

n=0 bnT
n ∈ L[[T ]] : limn→∞ bnc

n = 0}
equipped with the norm ‖f‖ = max |bncn|. Note that L〈T 〉 −→ L〈c−1T 〉, T 7−→ c−1T is
an isomorphism of K-Banach-algebras, whereas the inclusion L〈c−1T 〉 ↪−→ L〈T 〉 is not a
topological embedding in general. Otherwise its image, i.e. L〈c−1T 〉 equipped with the
Gauss norm of L〈T 〉, would also be a Banach-algebra and hence closed in L〈T 〉. But
this is not the case in general. To see this, note that L〈c−1T 〉 is dense in L〈T 〉, since
L[T ] ⊆ L〈c−1T 〉 and L[T ] is dense in L〈T 〉. If L〈c−1T 〉 were moreover closed in L〈T 〉, we
could conclude L〈c−1T 〉 = L〈T 〉. This is obviously not true in general, as there may exist
power series that converge on the closed unit disk but not on the closed disk of radius |c|,
if |c| > 1.

B1, resp. B will always denote the rigid L-analytic open disk of radius one around the
point 1 ∈ L, resp. around 0 ∈ L. Its K-points are B1(K) = {z ∈ K : |z − 1| < 1}, resp.
B(K) = {z ∈ K : |z| < 1}.
For x ∈ Zp and n ∈ N, we let

(
x
n

)
= x(x−1)···(x−(n−1))

n!
, which is easily seen to be an el-

ement of Zp. The multiplicative abelian group B1(K) ⊆ K× becomes a Zp-module via
Zp ×B1(K) −→ B1(K), (a, z) 7−→ za :=

∑∞
n=0

(
a
n

)
(z − 1)n. The notation za is adequate

because za = z · · · z (a times) if a ∈ N. Furthermore, if (an)n is a sequence of natu-
ral numbers converging to a in Zp, then zan converges to za in B1(K). It follows that
log(za) = a log(z) for all a ∈ Zp, z ∈ B1(K).
We briefly recall how the the rigid structure on B is defined by gluing an increasing sequence
of closed disks. This is analogous to the construction of the rigid affine space in Section
5.4 of [Bos14]. For c ∈ L with r = |c| ≥ 1, let B(r) be the closed disk of radius r around 0.
This is an affinoid rigid L-variety, associated to the affinoid L-algebra L〈c−1T 〉. As men-
tioned, L〈c−1T 〉 can be identified with {f =

∑∞
n=0 anT

n ∈ L[[T ]] : limn→∞ anc
n = 0} ={

f ∈ L[[T ]] : f converges on B(r)(Cp)
}

. More generally, we also have closed rigid L-disks

of any radius r ∈ pQ =
∣∣C×p ∣∣. Indeed, for r = p−m/n with m ∈ Z and n ∈ N, let A :=

L〈X, Y 〉/(pmY − Xn) and B(r) := Sp(A) the associated affinoid space. Its K-points are
B(r)(K) = {(z, zn/pm) ∈ K2 : |z| ≤ 1 and |zn/pm| ≤ 1} ∼= {z ∈ K : |z| ≤ p−m/n = r}.
Interpreting the chain B(p−1) ⊆ B(p−1/2) ⊆ B(p−1/3) . . . as a gluing datum, we obtain
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the rigid space B equipped with the admissible covering B =
⋃
nB(p−1/n). The ring of

global sections O(B/K) of B/K is the ring of power series f =
∑∞

n=0 anT
n over K which

converge on B(Cp).

In general, by an open disk we always mean a disk defined by a strict inequality in the
appropriate setting. A closed disk, on the other hand, is defined by the condition that
the distance to the center be less than or equal to the radius of the disk. Almost always,
any disk (whether open or closed in the sense just explained) will be both open and closed
topologically in the ambient space, since we are dealing with ultrametric spaces.

Other conventions

Our convention is that rings have multiplicative identity elements, and that homomor-
phisms of rings respect the identity elements. Throughout, “ring” means “not necessarily
commutative ring” unless explicit mention is made to the contrary. Nevertheless, almost
all of the rings appearing in this thesis will be commutative.

8



Chapter 1

Review of p-adic Fourier theory

In Sections 1.2 and 1.3, we review the article [ST01] by Schneider and Teitelbaum. Along
the way, we provide proofs for facts that are stated without proof or reference in [ST01].
In Section 1.1, we review a classical theorem by Amice that inspired Schneider and Teit-
elbaum’s Fourier theory. Amice’s theorem not only serves the purpose of showcasing and
motivating the goals of Sections 1.2 and 1.3, but is also an important ingredient in the
proof of the main theorem of Fourier theory (Theorem 1.16).

1.1 The Amice transform as a motivational example

In the 1960s, french mathematician Amice formulated a complete description of the ring
D(Zp,Qp) by showing that it is isomorphic to a certain ring of convergent power series,
namely the ring O(B) defined below. We will state two formulations of this result ((1.B)
and (1.D) below) and then discuss how p-adic Fourier theory generalizes them.
We assume L = Qp = K for the whole section. Recall that B then denotes the rigid
Qp-analytic open disk of radius one around the point 0 ∈ Qp. Its ring of global sections is

O(B) =

{
f =

∞∑
n=0

anT
n ∈ Qp[[T ]] : vp(an) + rn→ +∞ for all r > 0

}
=
{
f ∈ Qp[[T ]] : f converges on mCp = B(Cp)

}
.

Example 1.1. Any power series f ∈ Qp[[T ]] whose coefficients are bounded lies in O(B).
There is an obvious isomorphism between the ring of power series with bounded coefficients
and Qp ⊗ Zp[[T ]]. An example for a power series that lies in O(B) but whose coefficients

are not bounded is the logarithm log(1 + T ) =
∑∞

n=1
(−1)n−1

n
T n.

The Amice transform of a distribution λ ∈ D(Zp,Qp) is defined as the formal power
series

Aλ(T ) =
∞∑
n=0

T n
∫
Zp

(
y

n

)
λ(y) =

∫
Zp

(1 + T )yλ(y).

9



1. Review of p-adic Fourier theory

The last identity is purely formal here and the expression
∫
Zp f(y)λ(y) for a function

f ∈ Can(Zp,Qp) is just notation for λ(f). Nevertheless, Lemme V.3.10 in [Col02] tells us
that Aλ ∈ O(B) and

Aλ(z) =

∫
Zp

(1 + z)yλ(y) for all z ∈ B(Cp). (1.A)

Theorem 1.2. The map

D(Zp,Qp)
∼−→ O(B) (1.B)

λ 7−→ Aλ

is an isomorphism of Qp-Fréchet algebras.

Proof. The following is an elaboration of the proof of [Col02] Thèoréme V.3.11. The proof
relies on Thèoréme V.3.3, which is a version of Mahler’s theorem on expansions. This
theorem says that the functions [ k

pn
]!
(
.
k

)
for k ∈ N form a so-called Banach basis of the

Banach space Fn(Zp,Qp). We define the space Fn(Zp,Qp) in Section 1.2.1. Colmez denotes
this space by LAn. He also denotes the floor function (taking the integer part of a real
number x) by [x]. By the definition of a Banach basis, we have an isometric isomorphism

c0(N,Qp)
∼−→ Fn(Zp,Qp)

(ak)k 7−→
∑
k∈N

ak [k/pn]!

(
.

k

)

where c0(N,Qp) is the Banach space of all zero sequences (ak)k∈N in Qp equipped with
the maximum norm ‖(ak)k‖ = maxk |ak|. The dual space of c0(N,Qp) is well-understood:
[Sch11] Lemma 2.6 says that

c0(N,Qp)
′ ∼−→ `∞(N,Qp)

` 7−→ (`(ek))k∈N

is an isometric isomorphism onto the Banach space `∞(N,Qp) of all bounded sequences
in Qp equipped with the maximum norm. Here, ek ∈ c0(N,Qp) ⊆ `∞(N,Qp) denotes the
“k-th unit vector” and c0(N,Qp)

′ is equipped with the operator norm (which induces the
strong dual topology, cf. [Sch13] Remark 6.7). Using the linear embedding `∞(N,Qp) ↪−→
Qp[[T ]], ek 7−→ T k, we conclude that the mapping

Fn(Zp,Qp)
′ −→ Qp[[T ]] (1.C)

` 7−→
∞∑
k=0

bkT
k

10



1. Review of p-adic Fourier theory

with

bk := `

((
.

k

))
= `

(
[k/pn]!

(
.

k

))
([k/pn]!)−1

induces a bijection onto its image, which consists of all power series
∑∞

k=0 ckT
k for which

(ck · [k/pn]!)k is bounded. This boundedness condition implies (see Lemma 1.3 (i)) that∑∞
k=0 ckT

k converges on the open disk of radius p−1/(p−1)pn .
Now, one may obtain the Amice transform Aλ of a distribution λ ∈ D(Zp,Qp) in the fol-
lowing way: compose λ : Can(Zp,Qp) −→ Qp with the continuous inclusion Fn(Zp,Qp) −→
lim−→m

Fm(G,K) = Can(Zp,Qp) to get an element of Fn(Zp,Qp)
′ and then apply (1.C) to it.

This shows that Aλ converges on the open disk of radius p−1/(p−1)pn . Since this is true for
all n, it follows that Aλ ∈ O(B).
To describe the inverse of (1.B), let

∑∞
k=0 bkT

k ∈ O(B). The corresponding distribution λ
is constructed as follows. Any f ∈ Can(Zp,Qp) belongs to an Fn(Zp,Qp) for some n and
can hence be written as

f =
∞∑
k=0

vk(f, n) [k/pn]!

(
.

k

)
with a unique zero sequence (vk(f, n))k ∈ c0(N,Qp). We define

λ(f) :=
∞∑
k=0

vk(f, n) [k/pn]! bk.

The term on the right-hand side converges because (bk ·[k/pn]!)k is bounded (see Lemma 1.3
(ii)) and (vk(f, n))k is a zero sequence. Moreover, it is independent of the choice of n: as
the functions

(
.
k

)
for k ∈ N form a Banach basis of Ccont(Zp,Qp) (cf. [Col02] Corollaire

V.2.3.), f has a unique series representation f =
∑∞

k=0 ak(f)
(
.
k

)
in Ccont(Zp,Qp). Together

with Lemma 1.3 (iii), this implies that

(vk(f, n) · [k/pn]!)k = (ak(f))k = (vk(f,m) [k/pm]!)k

holds for any n,m ∈ N such that f ∈ Fn(Zp,Qp) and f ∈ Fm(Zp,Qp). For any n, the linear
form λ is clearly continuous on Fn(Zp,Qp), as it is the element of Fn(Zp,Qp)

′ ∼= `∞(N,Qp)
corresponding to the bounded sequence (bk · [k/pn]!)k. Therefore it is also continuous on
lim−→m

Fm(G,K) = Can(Zp,Qp).
We omit the proof of continuity and multiplicativity of the map (1.B) and refer to [Col02]
V.4 v).

Lemma 1.3. (i) Let n ∈ N and let g =
∑∞

k=0 ckT
k ∈ Qp[[T ]]. Suppose that the sequence

(ck · [k/pn]!)k is bounded. Then g converges on the open disk of radius p−1/(p−1)pn.

(ii) Let
∑∞

k=0 bkT
k ∈ O(B). Then the sequence (bk · [k/pn]!)k is bounded for all n ∈ N.

11



1. Review of p-adic Fourier theory

(iii) Let n ∈ N and let f ∈ Can(Zp,Qp). Suppose that there exist functions fk ∈ Fn(Zp,Qp)
and scalars rk ∈ Qp such that f =

∑∞
k=0 rkfk in Fn(Zp,Qp) (i.e. the series converges

to f with respect to the norm of Fn(Zp,Qp)). Then f =
∑∞

k=0 rkfk in Ccont(Zp,Qp)
(i.e. the series converges to f with respect to the norm of Ccont(Zp,Qp)).

Proof. (i) Since (ck · [k/pn]!)k is bounded, there is a C ∈ R such that vp(ck · [k/pn]!) ≥ C
holds for all k. We need to show that vp(ckz

k) → ∞ for all z ∈ Cp that satisfy
vp(z) > 1/(p− 1)pn. We have vp(ckz

k) = vp(ck) + kvp(z) ≥ C − vp([k/pn]!) + kvp(z).
But kvp(z)− vp([k/pn]!)→∞ according to the proof of [Col02] Lemme V.3.10 (there
stated in the form zk/[k/pn]!→ 0).

(ii) We have k/pn+1 − 1 ≤ vp([k/p
n]!), as mentioned in the proof of [Col02] Thèoréme

V.3.11. Hence vp(bk) + vp([k/p
n]!) + 1 ≥ vp(bk) + k/pn+1. But vp(bk) + k/pn+1 →∞

because
∑∞

k=0 bkT
k ∈ O(B). It follows that vp(bk · [k/pn]!) is bounded from below,

which is equivalent to the assertion (ii).

(iii) This follows immediately from the fact that the inclusion Fn(Zp,Qp)
⊆−→ Ccont(Zp,Qp)

is continuous (see Lemma 1.5 in Section 1.2).

Remark 1.4. Note that the Amice transform of the Dirac distribution δ1 is Aδ1 = 1 + T .
The definition of the Dirac distribution δx ∈ D(M,K), for a general locally L-analytic
manifold M and x ∈M , is given by δx(f) := f(x).

We discuss the Fréchet algebra structures of D(Zp,Qp) and O(B) in a more general
situation in Section 1.2. Before we address the significance of the Amice isomorphism
above, we wish to give an alternative formulation of it. We consider Zp as a locally Qp-
analytic group and use the bijections from (1.M) in Section 1.2:

Ẑp(Qp)←→ B1(Qp)←→ B(Qp)

χ 7−→ χ(1)

[a 7→ za]←− [ z.

The second one is given by z 7−→ z−1. This allows us to consider Ẑp(Qp) as the Qp-points
of a rigid Qp-analytic variety X, which is called the rigid character variety of the locally
Qp-analytic group Zp. Now the Amice isomorphism (1.B) may be restated as

D(Zp,Qp)
∼−→ O(X) (1.D)

λ 7−→ Fλ,

where Fλ is the rigid function corresponding to Aλ ∈ O(B) under the above identification

of B and X. To determine the value of Fλ at a character χ ∈ Ẑp(Qp), let z = χ(1). We
obtain

Fλ(χ) = Aλ(z − 1) = λ(χ),

12



1. Review of p-adic Fourier theory

where the last equality follows from (1.A). The function Fλ is called the Fourier transform
of λ.
Now, the first formulation (1.B) of the theorem gives a very useful concrete description
of the ring D(Zp,Qp) through the well-understood ring of power series O(B). It allows
us, among other things, to construct integrals which interpolate given special values and
therefore give rise to p-adic L-functions. See Chapitre VI of [Col02] for a construction of
the Kubota-Leopoldt p-adic zeta function using this approach.
On the other hand, it is the second formulation (1.D) of the isomorphism that allows a
generalization to arbitrary L and K (such that Qp ⊆ L ⊆ K ⊆ Cp with L/Qp a finite
extension and K complete). Schneider and Teitelbaum discovered the analogue of the
rigid character variety X in this setting, and we present their construction in Section 1.2.
There we also review their generalization of (1.D).
For general L, the character variety X is no more simply the open unit disk. In fact, if
L 6= Qp, it is not isomorphic to the unit disk over any discretely valued field K. So, a
priori, we do not have a good understanding of X. However, using the theory of Lubin-Tate
formal groups, Schneider and Teitelbaum showed that X/Cp becomes isomorphic to the
open unit disk over Cp. This gives a nice description of O(X/Cp) and thus, via descent, of
O(X). We treat these facts in Section 1.3.

1.2 Fourier theory for G = oL

Let G := o denote the additive group o = oL viewed as a locally L-analytic group. One of
the main results of [ST01] states that the ring D(G,K) is isomorphic to the ring of rigid
functions on X/K, where X is a certain rigid group variety over L, called the rigid charac-
ter variety of G. This is a generalization of Amice’s description of the ring D(Zp,Qp). In
this section, we first recall some facts about Can(G,K) and D(G,K) and the “restriction
of scalars”, then we describe the construction of X and exhibit the Fourier isomorphism
F : D(G,K)

∼−→ O(X/K).

Before we begin, we need one more bit of notation. For a locally L-analytic manifold
M , let M0 denote M but viewed as a locally Qp-analytic manifold. We say that M0 is
obtained from M by restriction of scalars.
The Lie algebra of G can naturally be identified with the Lie algebra of G0, and we denote
it by g. We have that g ∼= L and the exponential map g 99K G is given by the identity
map L 99K o. We use the dashed arrow to indicate that the map is defined only on a
neighbourhood of 0 ∈ g.

1.2.1 Facts about Can(G,K), D(G,K) and the restriction of scalars

Here we state the results of Section 1 of [ST01] for G = o, even though they hold more
generally for any compact locally L-analytic group. This makes some of our formulae

13



1. Review of p-adic Fourier theory

simpler, for instance note how in general (1.J) involves the exponential map g 99K G,
which in our case is just the identity L 99K o. Also note that G is a one-dimensional Lie
group over L and G0 a d-dimensional Lie group over Qp.
To describe the topology on Can(G,K), we start with the standard fundamental system
G = o ⊇ πo ⊇ . . . ⊇ πno . . . of open subgroups of G. Note that πno = B(p−n/e)(L) is a
disk in L of radius |πn| = p−n/e. To simplify notation, we write Hn := πno. By taking the
cosets of Hn as an open cover of G, we obtain for each n a so-called index In for G (see
[Sch11], Section 10). For such an index, we have the Banach space

Fn(G,K) :=
∏

g∈G/Hn

F(g+Hn)(K) ⊆
∏

g∈G/Hn

Can(g +Hn, K) = Can(G,K),

where F(g+Hn)(K) is the K-Banach space of K-valued, globally L-analytic functions on the
disk g +Hn, i.e.

F(g+Hn)(K) =

{
f : g +Hn −→ K : f(x) =

∞∑
i=0

ci(x− g)i, ci ∈ K, ciπni → 0

}
.

The norm on F(g+Hn)(K) is given by

‖
∞∑
i=0

ci(x− g)i‖g,n = max
i

∣∣ciπni∣∣ ,
and so F(g+Hn)(K) is isomorphic to the K-Banach space of rn-convergent power series
with coefficients in K (defined in Section 5 of [Sch11]), with rn = |πn|. In other words,
F(g+Hn)(K) is isomorphic to the Tate algebra O(B(rn)/K) of rigid functions on the affinoid

disk B(rn)/K. In particular, by the maximum principle, the norm on F(g+Hn)(K) has the
alternative description

‖f‖g,n = max
x
|f(x)| (1.E)

where the maximum is taken over all elements x ∈ g+B(rn)(Cp) = g+πnoCp . Note that this
implies that ‖f‖g,n doesn’t depend on the choice of representative of g+Hn. Alternatively,
this can be seen directly using Corollary 5.5 in [Sch11]. There are many equivalent norms
that induce the product topology on Fn(G,K). We choose the maximum norm, which is
given by the maximum of the norms of the components.
Finally, the space Can(G,K) is the locally convex inductive limit

Can(G,K) = lim−→
n

Fn(G,K). (1.F)

This limit topology on Can(G,K) is the same as the limit topology on Can(G,K) =
lim−→I
FI(K) from Section 10 of [Sch11], where I runs over all indices for G. The reason

for this is the fact that the family (In)n of indices obtained above from (Hn)n is a cofinal
subfamily of the family of all indices for G.
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1. Review of p-adic Fourier theory

Lemma 1.5. The inclusion Can(G,K)
⊆−→ Ccont(G,K) is continuous.

Proof. Since Can(G,K) = lim−→m
Fm(G,K) carries the limit topology, it suffices to show

that the inclusion Fn(G,K) −→ Ccont(G,K) is continuous for any n. This is a linear
map between normed spaces, so we have to show that there is a constant c > 0 such that
supy∈G |f(y)| ≤ c ·maxg∈G/Hn ‖f‖g,n holds for all f ∈ Fn(G,K). The identity (1.E) implies
that c = 1 does the job.

Remark 1.6. In general, the inclusion Fn(G,K) −→ Can(G,K) is not a topological
embedding. More precisely, the topology on Fn(G,K) in general is strictly finer than
the subspace topology induced by Fn+1(G,K) ⊇ Fn(G,K). Indeed, if the inclusion
Fn(G,K) −→ Fn+1(G,K) were a topological embedding, the image would be a Banach
space and hence closed in Fn+1(G,K). But, if L = Qp = K, Mahler’s theorem on ex-
pansions (cf. proof of Theorem 1.2) tells us that any f ∈ Fn+1(Zp,Qp) has a unique
representation as a series in

(
.
k

)
∈ F0(Zp,Qp) ⊆ Fn(Zp,Qp), so the image of Fn(Zp,Qp) in

Fn+1(Zp,Qp) is dense and therefore not closed.

By dualizing (1.F), we obtain an identification

D(G,K) = lim←−
n

Fn(G,K)′. (1.G)

of K-vector spaces. The strong dual topology on D(G,K) coincides with the projective
limit topology. In particular, D(G,K) is a K-Fréchet algebra. Moreover, from (1.G) we
can see that there is a natural strict inclusion

D(G,K) ↪−→ D(G,Cp).

Because, as we will see in the next subsection, X is constructed as a subvariety of a variety
X0 associated to the Qp-analytic group G0, it is important to consider the relation between
the L-analytic distributions D(G,K) and the Qp-analytic distributions D(G0, K). Since
the obvious injective K-linear map

Can(G,K) ↪−→ Can(G0, K) (1.H)

is in fact a homeomorphism onto its image ([ST01] Lemma 1.2), the dual map

D(G0, K) −→−→ D(G,K) (1.I)

is shown, by an application of the Hahn-Banach theorem in the appropriate setting, to be
surjective. By the open mapping theorem, it follows then that (1.I) is an open quotient
map. Lemma 1.1 in [ST01] describes the image of (1.H) by using the action of g = L on
Can(G,K) and Can(G0, K). In particular, we can characterize the L-analytic characters
among the Qp-analytic ones: define

d : Ĝ0(K) −→ HomQp(L,K)

χ 7−→ dχ,
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1. Review of p-adic Fourier theory

by

dχ : L −→ K (1.J)

r 7−→ d

dt
χ(tr)|t=0.

Note that d : Ĝ0(K) −→ HomQp(L,K) is clearly a group homomorphism. By [ST01]
Lemma 1.3, we have

Ĝ(K) = {χ ∈ Ĝ0(K) : dχ is L-linear} (1.K)

= {χ ∈ Ĝ0(K) : dχ(t) = t · dχ(1) for all t ∈ L}.

An equivalent way of formulating (1.K) is to say that the diagram

Ĝ(K)
⊆

//

d

��

Ĝ0(K)

d

��

HomL(L,K)
⊆
// HomQp(L,K)

(1.L)

is cartesian. Note the philosophical similarity to complex analysis, where a function
f : C −→ C is complex analytic if and only if it is real analytic (i.e. both of its com-
ponent functions f1, f2 : R2 −→ R are real analytic) and its differential is C-linear.

1.2.2 The rigid character variety X and the Fourier isomorphism

Recall that B1(K) is a Zp-module and that a ∈ Zp acts on z ∈ B1(K) by sending it to its
a-th power za. As a stepping stone to defining X, we first introduce the rigid L-analytic
variety

X0 := B1 ⊗Zp HomZp(o,Zp).

Since HomZp(o,Zp) is a free Zp-module of rank d, the variety X0 is non-canonically isomor-
phic to a rigid d-dimensional open polydisk over L:

X0
∼= Bd

1.

Since the rigid open unit disk is constructed as an admissible increasing union of closed
disks of radius p−1/n over all n ≥ 1, we deduce by using the sheaf property that O(X0) is
a projective limit of affinoid algebras. In particular, it is in a natural way an L-Fréchet
algebra.
The rigid variety X0 is designed so that its K-points parametrize locally analytic characters
on G0. To prove this, we need the following results.

Lemma 1.7. We have

Homcont
Z (Zp, K×) = Homcont

Z (Zp,B1(K)),

i.e. any continuous character Zp −→ K× factors over B1(K) ⊆ K×.
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1. Review of p-adic Fourier theory

Proof. Let χ : Zp −→ K× be a continuous character. Since Z is dense in Zp, the image
of χ is contained in the closure of χ(Z). Since B1(K) ⊆ K× is a closed subset, the
assertion will follow if we show that χ(Z) ⊆ B1(K). Because pn → 0 in Zp, it follows that
χ(1)p

n → 1 in Cp, i.e. χ(1)p
n − 1→ 0. For large N ∈ N, we obtain in oCp/mCpthe equation

0 = χ(1)p
N − 1 = (χ(1) − 1)p

N
, which implies χ(1) ∈ (1 + mCp) ∩K = B1(K). It follows

that χ(Z) ⊆ B1(K).

Lemma 1.8. We have

HomZp(Zp,B1(K)) ⊆ Ẑp(K),

i.e. any Zp-linear map Zp −→ B1(K) is locally Qp-analytic.

Proof. Any Zp-linear map f : Zp −→ B1(K) is completely determined by f(1). If we set
z := f(1), then f(a) = za for all a ∈ Zp. Hence, we need to argue that za is locally analytic
in a. First consider those a ∈ Zp that are close to zero, i.e. such that |a| is small. For such
a, we have that exp(a · log(z)) converges and that za = exp(a · log(z)). Indeed, the last
equality obviously holds for a ∈ N close to zero, and these are dense around zero. Now
consider a general a ∈ Zp, close to some a0 ∈ Zp. Then za = za−a0+a0 = za−a0 · za0 and
za−a0 is a power series in a − a0 by the preceding case, since a − a0 is close to zero. This
completes the proof.

Proposition 1.9. We have

HomZp(o,B1(K)) = Ĝ0(K).

Proof. We will in fact show that

Ĝ0(K) = Homcont
Z (o,K×) = HomZp(o,B1(K)).

Clearly we have Ĝ0(K) ⊆ Homcont
Z (o,K×). To prove that Homcont

Z (o,K×) ⊆ HomZp(o,B1(K)),
consider a χ ∈ Homcont

Z (o,K×). Since we have an isomorphism

o ∼= Zdp

of topological groups, the isomorphism

Homcont
Z (Zp, K×)d

∼−→ Homcont
Z (Zdp, K×)

(ϕi)i 7−→ [(ai)i 7−→ ϕ1(a1) · · ·ϕd(ad)]

and Lemma 1.7 together imply that the image of χ is contained in B1(K). Since the map
χ : o −→ B1(K) is Z-linear and continuous, we deduce by the density of Z in Zp that χ is
Zp-linear, completing the proof of the desired inclusion. Finally, since o is isomorphic to Zdp
as a locally Qp-analytic group, the inclusion HomZp(o,B1(K)) ⊆ Ĝ0(K) follows similarly
from Lemma 1.8.
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1. Review of p-adic Fourier theory

As an immediate consequence of Proposition 1.9 (in the case L = Qp) we obtain the
mutually inverse isomorphisms that we have used in Section 1.1:

Ẑp(K)←→ B1(K) (1.M)

χ 7−→ χ(1)

[a 7→ za]←− [ z.

More generally, we obtain:

Corollary 1.10. The map

B1(K)⊗Zp HomZp(o,Zp)
∼−→ Ĝ0(K)

z ⊗ β 7−→ [g 7−→ zβ(g)] =: χz⊗β

is an isomorphism of Zp-modules.

Proof. In general, for a commutative ring A and A-modules M and N , we have the homo-
morphism

HomA(M,A)⊗A N −→ HomA(M,N)

β ⊗ n 7−→ [m 7−→ β(m) · n].

This map is clearly an isomorphism if M is a free A-module. For A = Zp,M = o and
N = B1(K), this yields the isomorphism

B1(K)⊗Zp HomZp(o,Zp)
∼−→ HomZp(o,B1(K))

z ⊗ β 7−→ χz⊗β

which, together with Proposition 1.9, establishes the assertion.

Remark 1.11. Let t1, . . . , td be a Zp-basis of o and let β1, . . . , βd be the corresponding
dual basis of HomZp(o,Zp). We may identify B1(K)d with B1(K) ⊗Zp HomZp(o,Zp) via

(z1, . . . , zd) 7−→
∑d

i=1 zi ⊗ βi. Then Corollary 1.10 says that the characters χ ∈ Ĝ0 are

precisely those of the form χ(a) = za11 · · · z
ad
d where a =

∑d
i=1 aiti.

In view of Corollary 1.10 we have X0(K) = Ĝ0(K), and in this sense the variety X0

represents the character group Ĝ0. We will now define the Fourier morphism F for G0

and X0. In this situation it is immediately seen, by reducing to the case of Amice, to be
well-defined and an isomorphism.

Definition 1.12. The Fourier transform of a distribution λ ∈ D(G0, K) is the function

Fλ : Ĝ0(Cp) −→ Cp

χ 7−→ λ(χ).

18



1. Review of p-adic Fourier theory

The Fourier transform is indeed well-defined for any K, because we have a strict inclu-
sion D(G0, K) ↪−→ D(G0,Cp), as already mentioned. By a several-variable-version of the
Amice isomorphism (which is described at the beginning of the proof of Theorem 4.4 in
[Koh11]), the map

F : D(G0, K)
∼−→ O(X0/K)

λ 7−→ Fλ.

is a well-defined isomorphism of K-Fréchet algebras. The isomorphism F plays an impor-
tant role in the proof of the Fourier isomorphism for G and X (Theorem 1.16 below).

In order to define X, we show that Ĝ is cut out in Ĝ0 by analytic equations. For this,
we will need the following lemma.

Lemma 1.13. The following formula holds for all z ∈ B1(K) and all β ∈ HomZp(o,Zp):

dχz⊗β = log(z) · β.

Proof. For x ∈ o sufficiently close to zero, we have zβ(x) = exp(β(x) · log(z)). Consequently,
dχz⊗β(a) is just the derivative of (the germ of) the function

t 7−→ exp(β(a · t) · log(z))

at t = 0. Since this function is the composition of t 7−→ β(a · t) with x 7−→ exp(x · log(z)),
the assertion follows by the chain rule and the equality d

dt
β(a · t)|t=0 = β(a). To see this

last equality, note that d
dt
β(a · t)|t=0 is, by the chain rule, just the differential of β at the

origin applied to a. But β, being linear, is equal to its own differential at any point.

This lemma, combined with the description of Ĝ(K) stated in (1.K), implies that Ĝ is
cut out by the equations

(β(t)− t · β(1)) · log(z) = 0 for all t ∈ L. (1.N)

Definition 1.14. The analytic subset of X0 cut out by the equations above in (1.N) can
be endowed with a (unique) structure of a reduced closed rigid analytic subvariety of X0,
see [BRG84] 9.5.3 Proposition 4. The variety thus obtained is denoted by X and called the
rigid character variety of G. Note that X can also be defined by any finite subfamily of
equations of (1.N) parametrized by a Qp-basis t1, . . . , td of L.

The following description of X indicates that X is one-dimensional (cf. also Corol-
lary 1.19 later on).

Proposition 1.15. Let t1, . . . , td be a Zp-basis of o and let β1, . . . , βd be the corresponding
dual basis of HomZp(o,Zp). If one uses the basis β1, . . . , βd to identify X0 with Bd

1, then X
identifies with{

(z1, . . . , zd) ∈ Bd
1 : log(zj) =

tj
t1

log(z1) for all j = 1, . . . , d

}
.
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1. Review of p-adic Fourier theory

Proof. A point (z1, . . . , zd) corresponds to
∑d

i=1 zi⊗βi under the stated identification Bd
1 =

X0. The condition that the differential d of the character corresponding to
∑d

i=1 zi ⊗ βi
satisfies (1.N) for all t1, . . . , td becomes

d∑
i=1

(βi(tj)− tjβi(1)) · log(zi) = 0 for all j = 1, . . . , d.

But since
∑d

i=1 βi(tj) · log(zi) = log(zj), the condition above is equivalent to

log(zj) =
d∑
i=1

tjβi(1) log(zi) for all j = 1, . . . , d.

If this condition is satisfied, it follows that 1
tj

log(zj) is independent of j and therefore equal

to 1
t1

log(z1). Conversely, if the condition in the statement of the proposition is satisfied,
then

d∑
i=1

log(zi)βi(1) =
d∑
i=1

ti
t1

log(z1)βi(1) =
log(z1)

t1

d∑
i=1

tiβi(1) =
log(z1)

t1
· 1 =

log(zj)

tj

holds for all j = 1, . . . , d.

By definition, X represents Ĝ in the sense that X(K) = Ĝ(K). Moreover, by con-
struction, the structure sheaf satisfies OX = OX0/J , where J is the sheaf of ideals in OX0

consisting of all germs of functions vanishing on Ĝ(Cp). Since X0 is a Stein space, the
global section functor is exact on coherent sheaves. This remains true after base change to
K, so we conclude that

O(X/K) = O(X0/K)/J(o),

where J(o) is the ideal of all global holomorphic functions vanishing on Ĝ(Cp). This allows
us to equip O(X/K) with a K-Fréchet algebra structure in a natural way.

Theorem 1.16. The Fourier transform

F : D(G,K)
∼−→ O(X/K)

λ 7−→ Fλ

is a well-defined isomorphism of K-Fréchet algebras.

Proof. Considering the diagram

D(G0, K) ∼
F

//

����

O(X0/K)

����

D(G,K) // O(X/K)

where both vertical maps are open quotient maps (the left one being the one from (1.I)),
one only needs to check that J(o) = F(I(o)), where I(o) denotes the kernel of the left
vertical map. This is done in Corollary 1.5 in [ST01].

20



1. Review of p-adic Fourier theory

We end this section by collecting some facts about the rigid character variety X. Before
we state and prove them, we recall the relevant concepts of rigid analytic geometry.

Definition 1.17. (i) A rigid analytic variety Y is called reduced, normal or smooth if
for every x ∈ Y, the local ring OY,x is reduced, normal or regular, respectively.

(ii) The dimension of a rigid analytic variety Y at a point x ∈ Y is defined as the
Krull dimension of the local ring OY,x. The dimension of Y is the supremum of the
dimensions at the points of Y.

(iii) A rigid analytic variety Y is called quasi-Stein if it has an admissible covering Y =⋃
nYn by an increasing sequence Y1 ⊆ . . . ⊆ Yn ⊆ . . . of affinoid subdomains such

that the restriction maps O(Yn+1) −→ O(Yn) all have dense image.

(iv) A morphism f : Y −→ Z of rigid analytic varieties is called étale if for every y ∈ Y
the induced homomorphism of local rings OZ,f(y) −→ OY,y is flat and unramified.
The latter means that OY,y/mOY,y is a finite separable field extension of OZ,f(x)/m,
where m denotes the maximal ideal of OZ,f(x).

Proposition 1.18. Choose a Zp-basis t1, . . . , td of o and let β1, . . . , βd be the corresponding
dual basis of HomZp(o,Zp). We have the cartesian diagram of rigid L-analytic varieties

X
⊆

//

ev1 ◦d
��

B1 ⊗Zp HomZp(o,Zp) ∼= Bd
1

log⊗id
��

A1 // A1 ⊗Zp HomZp(o,Zp) ∼= Ad

(1.O)

where the lower horizontal arrow is the map a 7−→
∑d

i=1 ati⊗ βi. Moreover, the horizontal
arrows are closed immersions and the vertical arrows are étale.

Proof. The cartesian diagram (1.L) and Lemma 1.13 together imply that the diagram

Ĝ(K)
⊆

//

d

��

Ĝ0(K) = B1(K)⊗Zp HomZp(o,Zp)

log⊗id

��

HomL(L,K)
⊆

// HomQp(L,K) = K ⊗Zp HomZp(o,Zp)

is cartesian. Since HomL(L,K) ∼= K via evaluation at 1 ∈ L, we obtain the cartesian
diagram (1.O). For the assertion about the lower horizontal arrow, we need to show that∑d

i=1 ati⊗ βi corresponds to the multiplication-by-a map in HomQp(L,K) under the iden-
tification HomQp(L,K) = K ⊗Zp HomZp(o,Zp). But

∑
i ati ⊗ βi corresponds to the map

x 7−→
∑

i βi(x) · ati under the identification, and
∑

i βi(x)ati = a
∑

i βi(x)ti = ax. This
proves that the lower horizontal arrow is the map a 7−→

∑
i ati ⊗ βi. This map is a closed

immersion. In fact, if we use the basis β1, . . . , βd to identify the space A1⊗Zp HomZp(o,Zp)
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1. Review of p-adic Fourier theory

with Ad, this map becomes the closed embedding a 7−→ (at1, . . . , atd). The upper horizon-
tal arrow in (1.O) is a closed immersion by the definition of X. The vertical arrows are
étale according to [ST01] paragraph after Theorem 2.3.

Corollary 1.19. The rigid character variety X is smooth, one-dimensional and quasi-
Stein. For every x ∈ X, the local ring OX,x is a discrete valuation ring.

Proof. In general, by [FVdP12] paragraph after Definition 4.10.1, for a closed immersion
Z −→ Y of rigid analytic varieties one has that for any admissible affinoid U ⊆ Y, the
preimage f−1(U) is an admissible affinoid of Z and OY(U) −→ OZ(f−1(U)) is surjective.
This immediately implies that a closed rigid subvariety of a quasi-Stein variety is quasi-
Stein. As B1 is obviously quasi-Stein by construction, we conclude that X is quasi-Stein.
We now argue that the stalks of the affine space A1 are discrete valuation rings. We
have an admissible open covering A1 = ∪nB(|c|n) for some c ∈ L with |c| > 1. Since
B(|c|n) = Sp(L〈c−nT 〉) and each L〈c−nT 〉 is isomorphic to L〈T 〉, it suffices to consider
the stalks of Sp(L〈T 〉) =: Y . These stalks are closely related to the localizations of L〈T 〉.
To make this statement precise, let y ∈ Y be a point corresponding to the maximal ideal
m ⊆ L〈T 〉. According to [BRG84] 7.3.2 Proposition 8, OY,y is a discrete valuation ring if
and only if L〈T 〉m is a discrete valuation ring. Hence it suffices to show that every L〈T 〉m
is a discrete valuation ring. But this is true because L〈T 〉, being a principal ideal domain
and not a field, is a Dedekind domain. This completes the argument.
Now, we show that X is one-dimensional and smooth. In fact, we show the stronger
statement that the stalks of X are discrete valuation rings. Let x ∈ X. The étale morphism
d : X −→ A1 induces a flat unramified homomorphism

A := OA1,d(x)
ϕ−−→ OX,x =: B

of local rings. Any flat local ring homomorphism of local rings fulfills condition (iii) in
[Liu02] Corollary 2.20 and is therefore faithfully flat. Hence ϕ is faithfully flat. Lemma 1.20
(i) below tells us that ϕ is injective. Denote the maximal ideal of A by m and the maximal
ideal of B by n. As we have shown above, A is a discrete valuation ring, so m is a principal
ideal. Because ϕ is unramified, we have ϕ(m)B = n, so in particular n is also principal
ideal. Since the local ring B is noetherian (as stalks of rigid analytic varieties always are, cf.
[BRG84] 7.3.2 Proposition 7), it suffices to show that the Krull dimension of B is greater
than zero. Indeed, [Mat89] Theorem 11.2 then implies that B is a discrete valuation ring
and we are done.
Suppose that the dimension of B is zero. The variety X is reduced, so B is a reduced ring.
Thus Lemma 1.20 (ii) applies, to show that B is a field. But B cannot be a field since its
maximal ideal is n = ϕ(m)B and ϕ(m) 6= 0 (because m 6= 0 and ϕ is injective), so we have
arrived at a contradiction.

Lemma 1.20. (i) Any faithfully flat ring homomorphism R −→ S between two commu-
tative rings is injective.

(ii) Let R be a commutative zero-dimensional reduced local ring. Then R is a field.
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1. Review of p-adic Fourier theory

Proof. Let f : R −→ S be a faithfully flat ring homomorphism and let I := ker(f). We
want to show that the canonical map π : R −→ R/I is injective. It suffices to show that the
homomorphism π ⊗ id : R ⊗R S −→ (R/I)⊗R S is injective. The canonical isomorphisms
R⊗R S ∼= S and (R/I)⊗R S ∼= S/(IS) = S/0 = S fit into the commutative diagram

R⊗R S
π⊗id

//

∼=
��

(R/I)⊗R S
∼=
��

S
id // S

which implies that π ⊗ id is an isomorphism. This proves assertion (i).
Assertion (ii) can be proven very nicely with use of algebraic geometry. The affine scheme
Spec(R) is reduced, because R is a reduced ring. As R is a zero-dimensional local ring,
Spec(R) consists of a single point and is hence irreducible. Being irreducible and reduced,
the scheme Spec(R) is integral, which means that R is an integral domain. But any zero-
dimensional integral domain is a field.

For any rigid variety satisfying the properties stated in Corollary 1.19, there is a divisor
theory (see [BSX15] Section 1.1). One can use this to show that O(X) enjoys many nice
properties, for instance that it is a Prüfer domain (i.e. the classes of closed, finitely
generated and invertible ideals in this ring coincide). The same is true for O(X/K) (see
the discussion after Lemma 3.10 in [ST01]).

1.3 An isomorphism X/Cp
∼= B/Cp via Lubin-Tate the-

ory

If L 6= Qp, the rigid varieties B and X are not isomorphic. For instance, the ring O(B) =
{f ∈ L[[T ]] : f converges on B(Cp)} is a Bezout ring (i.e. the classes of closed, finitely
generated and principal ideals all coincide), whereas in O(X) there is a finitely generated
ideal that is not principal ([ST01] Lemma 3.10). If K is discretely valued, the same
argument applies to show that B and X are not isomorphic even after base change to
K. But, remarkably, X and B become isomorphic over Cp. If one endows B(Cp) with a
Lubin-Tate group law associated to L and to π, then there is an explicit isomorphism of
rigid group varieties

κ : B/Cp
∼−→ X/Cp

that depends on the choice of a period of the Lubin-Tate group (i.e. on the choice of a
generator of the o-module T ′ from Section 1.3.2). Schneider and Teitelbaum referred to this
result as the “uniformization of X by the open unit disk B”. Accordingly, we refer to the
isomorphism κ as the “uniformization isomorphism”. With κ, we obtain an isomorphism

O(X/Cp)
∼−→ O(B/Cp)
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1. Review of p-adic Fourier theory

which allows for many applications of the Fourier isomorphism F from Theorem 1.16.
The goal of this section is to present the construction of the uniformization isomorphism
on the level on Cp-points:

κ(Cp) : B(Cp)
∼−→ Ĝ(Cp). (1.P)

We do this in Section 1.3.2, following the approach in Section 3 of [ST01]. Our ultimate
goal, which we achieve in Chapter 3, is of course to show that the isomorphism (1.P)
generalizes to the case of relative Lubin-Tate groups. Many of the details we provide here
in Section 1.3.2 will later play an important role in the relative case.
In Section 1.3.1, we summarize the necessary Lubin-Tate theory needed for Section 1.3.2.
Much of this can be seen as a special case of the results of Section 3.1 in Chapter 3, where
we will review relative Lubin-Tate groups. Nevertheless, this separate discussion of the
properties of classical Lubin-Tate groups and their role in the proof of (1.P) will make
clear which properties we will want to expect of relative Lubin-Tate laws later. Moreover,
it facilitates the reading of Chapter 2, which stays in the classical Lubin-Tate case.

1.3.1 A brief summary of Lubin-Tate theory

To motivate our intentions, let us consider the case L = Qp for the moment. Then G =

G0 = Zp and (1.M) gives a group isomorphism Ĝ(Cp) ∼= B1(Cp). As we wish to have an

isomorphism between Ĝ(Cp) and B(Cp), we transport the group structure of B1(Cp) onto
B(Cp) via the bijection z 7−→ z − 1. This defines the following group law on B(Cp):

z +Ĝm z
′ := (z + 1)(z′ + 1)− 1 = z + z′ + zz′.

Note that the this group law is given by a formal power series Ĝm(X, Y ) = X+Y +XY ∈
Zp[[X, Y ]]. This is an instance of the following general principle.

Definition 1.21. Let A be a commutative ring. A one-dimensional, commutative formal
group law over A is a formal power series F ∈ A[[X, Y ]] in two variables such that

(i) F (X, Y ) = X + Y+ terms of degree ≥ 2,

(ii) F (X,F (Y, Z)) = F (F (X, Y ), Z),

(iii) F (X, Y ) = F (Y,X), and

(iv) there exists a unique ιF (T ) ∈ TA[[T ]] such that F (X, ιF (X)) = 0.

Since we consider no other in this chapter, we shall refer to one-dimensional commutative
formal group laws simply as formal group laws.
A homomorphism h : F −→ G of formal group laws F and G over A is a power series
h ∈ TA[[T ]] such that h(F (X, Y )) = G(h(X), h(Y )).
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By taking Y = Z = 0 in axioms (i) and (ii), one deduces that F (X, 0) = X and
F (0, Y ) = Y . For any formal group laws F and G, the set HomA(F,G) of homomorphisms
from F to G becomes an abelian group under the addition f +G g := G(f(T ), g(T )). The
abelian group EndA(F ) of endomorphisms of F becomes a (not necessarily commutative)
ring under the multiplication f ◦ g.

Definition 1.22. (i) Let F be a formal group over a field of characteristic p. Then
[p]F (X) = X +F . . . +F X (p times) is a power series in Xr with r = ph for some
h ≥ 1 (cf. [Haz78] 18.3.1-18.3.3). If [p]F 6= 0, the largest possible h is called the
height of F . Otherwise, we say that F is of infinite height.

(ii) Let B be a commutative local ring with residue field B/m of characteristic p and let
F (X, Y ) be a formal group over B. We define the height of F as the height of the
reduction of F over B/m.

Let A = o and let F =
∑∞

i,j aijX
iY j ∈ o[[X, Y ]] be a formal group law. For every

x, y ∈ B(K), the series F (x, y) converges to an element x+F y ∈ B(K), because aijx
iyj → 0

as (i, j)→∞ and K is a complete non-Archimedean field. Because of the axioms imposed
on F , B(K) becomes an abelian group (B(K),+F ). Any endomorphism h : F −→ F
induces a group endomorphism B(K) −→ B(K), z 7−→ h(z).

Example 1.23. Ĝm(X, Y ) = X+Y +XY = (1+X)(1+Y )−1 is called the multiplicative
formal group law. We have already seen the reason for this, namely the isomorphism

(B(K),+Ĝm)
∼−→ B1(K), z 7−→ z + 1

onto the multiplicative group B1(K). The polynomial f(T ) = (1 +T )p− 1 is an endomor-
phism of Ĝm:

Ĝm(f(X), f(Y )) = (1 +X)p(1 + Y )p − 1 = f(Ĝm(X, Y )).

Under our identification of (B(K),+Ĝm) and B1(K), f corresponds to the endomorphism
z 7−→ zp, i.e. the diagram

B(K)
f

//

z 7→z+1

��

B(K)

z 7→z+1

��

B1(K) z 7→zp //B1(K)

is commutative. Note that we clearly have [p]Ĝm(T ) = f(T ) = (1 + T )p − 1. Hence the

reduction of [p]Ĝm(T ) modulo p is equal to Xp, which means that the height of Ĝm is one.

Example 1.24. Let E be an elliptic curve over an arbitrary field K determined by a
non-singular Weierstrass equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,
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ai ∈ K. Let R be a subring of K containing all the Weierstrass coefficients ai. Chapter
IV in [Sil09] explains how one associates a formal group law Ê = Ê(T1, T2) ∈ R[[T1, T2]]
to E. First, one constructs formal Laurent series x(T ), y(T ) ∈ K((T )) =: L such that
(x(T ) : y(T ) : 1) provides a formal solution to the Weierstrass equation, i.e. such that

(x(T ) : y(T ) : 1) ∈ E(L). Then one constructs the power series Ê formally giving the
addition law on E(L).

If K is of characteristic p, then we can consider the height of the formal group Ê associated
to E. One can show that the height of Ê is either one or two according as E is ordinary
or supersingular.
If K is the fraction field of a commutative complete local integral domain (R,m), then

m ↪−→ E(K) (1.Q)

z 7−→ (x(z) : y(z) : 1)

is an injective group homomorphism from m (endowed with the group structure provided

by Ê) into E(K) (endowed with the group law of the elliptic curve E), cf. [Sil09] Example
IV.3.1.3 and the discussion on page 119 in IV.1.
For K = L and R = o, [Sil09] Proposition VII.2.2 describes the image of the monomorphism
(1.Q).

After these general preliminaries on formal group laws, we turn towards Lubin-Tate
formal group laws. Once a uniformizer π ∈ o has been fixed, these are exactly the formal
group laws defined over o that admit a so-called Frobenius power series as an endomor-
phism.

Definition 1.25. A Frobenius power series for π is a formal power series φ ∈ o[[X]] such
that

(i) φ(X) = πX+ terms of degree ≥ 2,

(ii) φ(X) ≡ Xq mod πo[[X]].

The set of all Frobenius power series for π is denoted by Fπ.

To avoid confusion later on, we remark now that we usually denote such a Frobenius
power series by φ, whereas we reserve the letter ϕ for denoting the Frobenius element
ϕ ∈ Gal(E/L) of an unramified extension E/L.
The following are examples of Frobenius power series.

Example 1.26. (i) The polynomial φ(X) = πX +Xq lies in Fπ.

(ii) If L = Qp and π = p then the polynomial

φ(X) = (1 +X)p − 1 = pX +

(
p

2

)
X2 + . . . pXp−1 +Xp

lies in Fp.
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Theorem 1.27. For any φ ∈ Fπ, there is a unique formal group law Fφ with coefficients
in o admitting φ as an endomorphism. It is called the Lubin-Tate formal group law of the
Frobenius power series φ. Moreover, for φ, ψ ∈ Fπ and a ∈ o, there is a unique element
[a]φ,ψ ∈ o[[X]] such that

[a]φ,ψ(X) = aX + terms of degree ≥ 2, and

φ ◦ [a]φ,ψ = [a]φ,ψ ◦ ψ.

Such an [a]φ,ψ is necessarily a group homomorphism Fψ −→ Fφ. We also have

[a+ b]φ,ψ = [a]φ,ψ +Fφ [b]φ,ψ, and (1.R)

[ab]τ,ψ = [a]τ,φ ◦ [b]φ,ψ (1.S)

for any a, b ∈ o and τ ∈ Fπ.

Proof. All of the following refers to [Sch17]. See Proposition 1.3.4 for the existence and
uniqueness of Fφ. The existence and uniqueness of [a]φ,ψ follows from Lemma 1.3.3 as the
special case n = 1 and F1 = aX. The proof of Proposition 1.3.6 shows that [a]φ,ψ is a
homomorphism Fφ −→ Fψ. Finally, (1.R) and (1.S) are true because the power series on
the right obviously satisfies the two defining conditions of the power series on the left, in
each case.

Corollary 1.28. For φ, ψ ∈ Fπ, any choice of a unit u ∈ o× gives rise to an isomorphism
[u]φ,ψ : Fψ

∼−→ Fφ of formal groups. In particular, we have the canonical isomorphism
[1]φ,ψ : Fψ

∼−→ Fφ.

By setting [a]φ := [a]φ,φ, we see that there is a unique ring homomorphism

o −→ Endo(Fφ)

a 7−→ [a]φ

such that

(a) [a]φ = aX+ terms of degree ≥ 2, and

(b) [a]φ commutes with φ.

Because of (a), the homomorphism o −→ Endo(Fφ) is injective. We also have [π]φ = φ,
because φ clearly satisfies (a) and (b) for π. The formal group isomorphisms [u]φ,ψ from
Corollary 1.28 are actually isomorphisms of formal o-modules, i.e. they commute with the
actions of o on Fψ and Fφ. Indeed,

[a]φ ◦ [u]φ,ψ = [au]φ,ψ = [ua]φ,ψ = [u]φ,ψ ◦ [a]ψ

holds by (1.S).
It follows that the abelian group (B(K),+Fφ) has a natural o-module structure. If ψ ∈ Fπ,
then any unit u ∈ o× gives rise to an o-module isomorphism [u]φ,ψ : (B(K),+Fψ) −→
(B(K),+Fφ).

27



1. Review of p-adic Fourier theory

Example 1.29. For L = Qp, we have seen that φ = (1+X)p−1 ∈ Fp is an endomorphism

of Ĝm, cf. Example 1.23. This implies Fφ = Ĝm. Recall that, for a ∈ Zp, the formal power
series (1 +X)a ∈ Zp[[X]] is defined as

(1 +X)a =
∞∑
n=0

(
a

n

)
Xn.

If a ∈ N, we clearly have (1 +X)a = (1 +X) · · · (1 +X) (a times). We claim that

[a]φ(X) = (1 +X)a − 1

holds for all a ∈ Zp. Certainly, (1 +X)a − 1 = aX+ terms of degree ≥ 2. Moreover,

φ ◦ ((1 +X)a − 1) = (1 +X)ap − 1 = ((1 +X)a − 1) ◦ φ

holds if a ∈ N, which implies that it holds for all a ∈ Zp, since N is dense in Zp. The claim
is thus proven. Note that it follows that the isomorphism z 7−→ z+1 transforms the action
of [a]φ on (B(K),+Ĝm) into the map sending an element of B1(K) to its a-th power.

Example 1.30. Let K be an imaginary quadratic field, let M be a finite extension of K,
and let E be an elliptic curve defined over M with complex multiplication by the full ring
of integers of K. Let Ê be the formal group law associated to E (see Example 1.24). Let
p be a prime of K and P a prime of M dividing p. Assume that E has good reduction at
P and that p splits completely in M/K. Then Ê, as a formal group law defined over op
(the ring of integers in the completion Kp = MP), is a Lubin-Tate law. If we replace the
condition that p splits completely in M/K by the weaker condition that P is not ramified

in M/K, then Ê is a so-called relative Lubin-Tate group with respect to the unramified
extension MP/Kp, see [dS85] Example 9.

Any Lubin-Tate law Fφ over o is of height d. This is easily verified using the following
three facts: (i) p = uπe for some u ∈ o×; (ii) ht[uπe]φ = ht([u]φ) + e ht([π]φ) = e ht([π]φ);
and (iii) one may assume that [π]φ(X) = πX + Xq. Fact (ii) is true because the height
function ht defines a valuation on the ring Endk(F ), see [Haz78] 18.3.2.

We fix a Frobenius power series φ ∈ Fπ and write F := Fφ and [.] := [.]φ. For any
n ≥ 1, we have the o-submodule Wn ⊆ B(Cp) defined by

Wn := ker[πn] = {z ∈ B(Cp) : [πn](z) = 0}.

Since it is annihilated by πn, Wn is naturally an o/πn-module. If ψ ∈ Fπ and W ′n :=
ker[πn]ψ, then W ′n and Wn are isomorphic as o/πn-modules. Indeed, any u ∈ o× gives rise
to an isomorphism [u]φ,ψ : W ′n

∼−→ Wn. By [Sch17] Remark 1.3.8, we have the equality
L(Wn) = L(W ′n) of field extensions. By [Sch17] Corollary 1.3.11, Wn consists of algebraic
elements, i.e. Wn = {z ∈ B(Qalg

p ) : [πn](z) = 0}. Finally, we define the π-adic Tate module
T = Tπ(F ) by

T = lim←−(. . .
[π](.)−−−→Wn+1

[π](.)−−−→Wn
[π](.)−−−→ . . .

[π](.)−−−→W1).
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Proposition 1.31. Let n ≥ 1.

(i) Wn is a free o/πn-module of rank one. If z ∈ Wn \Wn−1, then

o/πn
∼−→Wn

a+ πno 7−→ [a](z)

is an isomorphism.

(ii) If z ∈ Wn generates Wn over o/πn, then [π](z) generates Wn−1 over o/πn−1. The
converse is true for n ≥ 2.

Proof. See [Sch17] Proposition 1.3.10 and its proof for (i). The assertion (ii) is obvious for
n = 1, since W0 = 0. If n ≥ 2, it follows from (i) and the equivalence

z ∈ Wn \Wn−1 ⇐⇒ [π](z) ∈ Wn−1 \Wn−2.

Corollary 1.32. Any choice of a sequence (zn)n with zn ∈ Wn \Wn−1 and [π](zn) = zn−1

gives rise to an isomorphism

. . .
pr

// o/πn+1 pr
//

∼= [.](zn+1)

��

o/πn
pr

//

∼= [.](zn)

��

. . .
pr

// o/π

∼= [.](z1)

��

. . .
[π](.)

//Wn+1
[π](.)

//Wn
[π](.)

// . . .
[π](.)

//W1

of projective systems. In particular, the Tate module T is free of rank one over o.

Proof. Such a sequence (zn)n exists since the projective limit lim←−n(Wn\Wn−1) is non-empty.
Indeed, a projective limit of a projective system of non-empty finite sets is non-empty, cf.
[RZ10] Proposition 1.1.4. Everything else follows immediately from Proposition 1.31 and
the fact that lim←−n o/π

n ∼= o.

1.3.2 The uniformization isomorphism

Let G = Gπ be a Lubin-Tate formal group law for π. We identify G with B, so B becomes
an o-module object. The o-action on B, denoted by (a, z) 7−→ [a](z), is given by formal
power series [a](Z) ∈ Zo[[Z]]. We denote by T ′ = Tp(G ′) the Tate module of the p-divisible
dual G ′ of G, i.e. the Zp- module

T ′ = HomoCp
(G, Ĝm)

of all formal group homomorphisms, defined over oCp , from G to Ĝm. T ′ inherits its

structure as an abelian group, or rather even its structure as a Zp-module, from Ĝm. For
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an element t′ ∈ T ′, we often also write Ft′ to emphasize that we are regarding it as a formal
power series Ft′ ∈ ZoCp [[Z]].
We will always denote the leading coefficient of Ft′ ∈ ZoCp [[Z]] by Ωt′ , i.e. Ωt′ = d

dZ
Ft′(0)

and so Ft′(Z) = Ωt′Z+ terms of degree ≥ 2. Since the coefficients of the power series Ft′
lie in oCp , we have that Ft′ ∈ O(B/Cp).
On the other hand, we consider

H := {f ∈ oCp [[Z]] : f(X +G Y ) = f(X)f(Y ) and f(0) = 1}.

Lemma 1.33. We have the following bijection

HomoCp
(G, Ĝm)

∼−→ H

f 7−→ f + 1

of sets. Let B and � denote the unique operations of addition and scalar multiplication on
H making the above bijection an isomorphism of Zp-modules. Then we have

(f B g)(Z) = f(Z)g(Z) and

(a� f)(Z) = f(Z)a

for any f, g ∈ H and a ∈ Zp, where f(Z)a denotes the power series
∑

n≥0

(
a
n

)
(f(Z) − 1)n

(cf. Example 1.29). Moreover, we have the equality

f(Z)a = f ◦ [a](Z), (1.T)

where [a] is, as always, the power series giving the action of a ∈ Zp ⊆ o on the Lubin-Tate
group G.

Proof. Let f ∈ H. To show that f − 1 ∈ T ′, we need to argue that (f − 1)(X +G Y ) =
((f−1)(X)+1)((f−1)(Y )+1)−1. The latter term is obviously equal to f(X)f(Y )−1 and
the former term is equal to f(X +G Y )− 1 = f(X)f(Y )− 1. Conversely, let g ∈ T ′ and let
f := g+1. We need to show that f(X+G Y ) is equal to f(X)f(Y ) = (g(X)+1)(g(Y )+1).
But f(X +G Y ) = g(X +G Y ) + 1 = (g(X) + 1)(g(Y ) + 1) − 1 + 1. This proves that the
bijection in the lemma is well-defined.
Next, we prove the statement about the resulting module structure on H. For f, g ∈ H,
we have f B g = (f − 1) +Ĝm (g − 1) + 1 = fg − 1 + 1 = fg. To determine a � f for an
a ∈ Zp, we first let a act on f − 1 in T ′. This gives ((f − 1) + 1)a− 1 = fa− 1. Translating
back to H, we obtain a � f = fa. It remains to prove that fa = f ◦ [a]. This is true for
a ∈ N, which we can see from f([2](X)) = f(X +G X) = f(X)f(X) and induction. The
general case now follows by continuity, since N is dense in Zp.

We use the special symbols B and � in order to avoid confusion with the natural ad-
dition and scalar multiplication in oCp [[Z]] ⊇ H. On the other hand, +Ĝm denotes the
module addition in T ′.
If t ∈ H and a ∈ o, then obviously also t◦ [a] ∈ H, and so (1.T) implies that the Zp-module
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structure on H extends to an o-module structure. We now make preparations for the proof
of the vital fact that H is a free o-module of rank one.

Recall that the p-adic Tate module TpG of G is defined by

TpG = lim←−(. . .
[p](.)−−→ ker[pn+1]

[p](.)−−→ ker[pn]
[p](.)−−→ . . .

[p](.)−−→ ker[p]),

where ker[pn] = {z ∈ B(Cp) : [pn](z) = 0}. Note that the elements of ker[pn] are all alge-
braic over L, since p = uπe for some u ∈ o× and the πk-torsion points are algebraic for all
k ∈ N by Corollary 1.3.11 in [Sch17].
Similarly, the Tate module TpĜm of Ĝm is the projective limit over the pn-torsion points

of Ĝm. Since Ĝm is the Lubin-Tate group law for Qp and the uniformizer p ∈ Zp, Corol-
lary 1.32 says that there is an isomorphism

TpĜm
∼= Zp (1.U)

of Zp-modules.

Lemma 1.34. TpG is a free module of rank d over Zp.

Proof. We claim that we have an isomorphism

. . .
pr
// (Zp/pn+1Zp)d

pr
//

∼=
��

(Zp/pnZp)d
pr
//

∼=
��

. . .
pr
// (Zp/pZp)d

∼=
��

. . .
[p](.)

// ker[pn+1]
[p](.)

// ker[pn]
[p](.)

// . . .
[p](.)

// ker[p]

(1.V)

of projective systems. Observe that

ker[pn] = ker[πen] ∼= o/πen = o/pn ∼= Zdp/pn(Zp)d = Zdp/(pnZp)d = (Zp/pnZp)d

as a Zp-module, where ker[πen] ∼= o/πen by a choice of a zen ∈ Wen \ Wen−1 as in Corol-
lary 1.32. Note that [p] = [π] ◦ . . . ◦ [π] (e times) and that the projection pr factors as

(Zp/pn+1Zp)d = o/πe(n+1) pr
// o/πe(n+1)−1 pr

// . . .
pr
// o/πe(n+1)−e = (Zp/pnZp)d.

Hence our claim follows at once from Corollary 1.32, i.e. the corresponding statement for
the projective system (ker[πn])n.

Remark 1.35. The statement of Lemma 1.34 holds more generally if G is any formal group
over o of height d. This follows from the the theory of p-divisible groups as developed in
[Tat67], since the category of finite height formal groups over o is equivalent to the category
of connected p-divisible groups over o. We will elaborate on this in Section 3.2.1.
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Every f ∈ T ′ = HomoCp
(G, Ĝm) induces a homomorphism of the Tate modules, so we

have a mapping

T ′
∼−→ HomZp(TpG, TpĜm) (1.W)

which is an isomorphism of Zp-modules by a result of [Tat67], as mentioned on page 6 in
[Box86]. That (1.W) is an isomorphism is also true more generally if G is any finite height
formal group law over o, cf. Section 3.2.2.
Together with Lemma 1.34 and (1.U), the isomorphism (1.W) implies that T ′ is free of
rank d over Zp.

Corollary 1.36. H is a free o-module of rank one.

Proof. We know that H is finitely generated over o, since it is already finitely generated over
the subring Zp ⊆ o. The structure theorem for finitely generated modules over a principal
ideal domain tells us that H ∼= or⊕Htors as an o-module, where Htors

∼= o/πk1⊕ . . .⊕o/πks
for some integers ki ≥ 1. In particular, the underlying set of Htors is finite. But or⊕Htors

∼=
Zdrp ⊕Htors as a Zp-module, where Htors, having finite underlying set, is a Zp-torsion module.
Since we know that H is free of rank d over Zp, we conclude that Htors = 0 and r = 1.

Another consequence of the isomorphism (1.W) is the following fact, which is stated
here for use in the next chapter.

Lemma 1.37. For each non-zero element η ∈ ker[p], there exists an element t ∈ H such
that t(η) is a primitive p-th root of unity.

Proof. Denote the group of p-th roots of unity in Cp by µp. Any f ∈ T ′ maps ker[p] into

the p-torsion of Ĝm, which is precisely {ξ − 1: ξ ∈ µp}. It follows that t(z) ∈ µp for any
z ∈ ker[p] and any t ∈ H. Hence we have to show that there doesn’t exist a non-zero
η ∈ ker[p] such that t(η) = 1 holds for all t ∈ H. Suppose that there exists such an
element η. If ω is a lift of η to TpG (i.e. an element of lim←− ker[pn] = TpG whose first

component is equal to η), then all homomorphisms in HomZp(TpG, TpĜm) are trivial on
the first component of ω. Indeed, this follows from the fact that (1.W) is an isomorphism
and that f(η) = 0 for all f ∈ T ′. By taking the constant lift of η in the upper row of the
diagram (1.V) from the proof of Lemma 1.34, we obtain an element η̃ ∈ lim←−(Zp/pnZp)d

such that all homomorphisms lim←−(Zp/pnZp)d −→ TpĜm = lim←−(Zp/pnZp) are trivial on the
first component of η̃. In particular, because this is true for the d projections, it follows
that the first component of η̃ is 0 ∈ (Zp/pZp)d, a contradiction.

We fix a generator t1 of the o-module H. Then every t ∈ H is of the form t1 ◦ [a] for a
unique a ∈ o. We write ta for t1 ◦ [a]. Using our identification of the o-modules T ′ and H,
we obtain a generator t′0 of T ′ by setting

Ft′0 := t1 − 1.

We write Ω for Ωt′0
, the leading coefficient of Ft′0 . Then we obviously have

ta(Z) = 1 + ΩaZ + terms of degree ≥ 2.
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Lemma 1.38. The pairing

T ′ × Cp −→ Cp

(t′, x) 7−→ Ωt′x

is o-bilinear.

Proof. The pairing is clearly o-linear in the second component. To show that it is o-linear
in the first component, let t′, s′ ∈ T ′. For shortness, write H for Ft′ + 1, G for Fs′ + 1 and
H ′ for the formal derivative d

dZ
H. Since Ft′ +Ĝm Fs′ and (Ft′ +Ĝm Fs′) + 1 = H B G have

the same derivative at the origin, we obtain

Ωt′+Ĝms
′ = (H BG)′(0) = (H ·G)′(0) = H ′(0)G(0) +H(0)G′(0) = Ωt′ + Ωs′

using H(0) = 1 = G(0). For a ∈ o, we have

Ωat′ = (H ◦ [a])′(0) = H ′([a](0)) · [a]′(0) = H ′(0) · a = Ωt′ · a (1.X)

since [a](0) = 0 and [a]′(0) = a. The assertion now follows immediately.

A key ingredient in our considerations to come will be the pairing

〈·, ·〉 : T ′ ×B(Cp) −→ B1(Cp)

(t′, z) 7−→ 1 + Ft′(z),

or, equivalently

〈·, ·〉 : H×B(Cp) −→ B1(Cp)

(t, z) 7−→ t(z).

This pairing is Z-bilinear:

〈tB s, z〉 = (tB s)(z) = t(z)s(z) = 〈t, z〉〈s, z〉, and

〈t, z +G z
′〉 = t(z +G z

′) = t(z)t(z′) = 〈t, z〉〈t, z′〉

hold for all t, s ∈ H, z, z′ ∈ B(Cp). Note that this is indeed bilinearity, since B1(Cp) is a
Zp-module in such a way that the module addition is the multiplication in B1(Cp) ⊆ C×p .
Moreover, the pairing is o-invariant:

〈a� t, z〉 = 〈t ◦ [a], z〉 = t([a](z)) = 〈t, [a](z)〉 (1.Y)

holds for all a ∈ o, t ∈ H, z ∈ B(Cp). Note that the pairing cannot be o-bilinear, because
the target is B1(Cp), which only has the structure of a Zp-module and not of an o-module.
Consider the map

κt′⊗z : G −→ B1(Cp)

a 7−→ 〈t′, [a](z)〉,
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for fixed t′ ∈ T ′ and z ∈ B(Cp). The Z-bilinearity of the pairing implies that this map is a
character on o = G. Since κt′⊗z is also continuous, it is automatically Zp-linear and hence
Qp-analytic by Proposition 1.9. The proof of Proposition 3.1 in [ST01] shows that κt′⊗z is

even L-analytic, i.e. κt′⊗z ∈ Ĝ(Cp) = X(Cp).
Consequently, we have the pairing

T ′ ×B(Cp) −→ Ĝ(Cp)

(t′, z) 7−→ [a 7−→ 〈t′, [a](z)〉].

Being Z-bilinear and o-invariant as well, it factors through ⊗o, giving rise to a group
homomorphism

κ(Cp) : T ′ ⊗o B(Cp)
∼−→ Ĝ(Cp)

t′ ⊗ z 7−→ κt′⊗z,

which is in fact a group isomorphism by [ST01] Proposition 3.1. We will prove this propo-
sition in a more general setting in Section 3.3. Since T ′ is a free o-module of rank one and
we have fixed a generator t′0, we obtain the group isomorphism

κ(Cp) : (B(Cp),+G)
∼−→ Ĝ(Cp) (1.Z)

z 7−→ κz,

where κz = κt′0⊗z, i.e. κz(a) = 1 + Ft′0([a](z)) = ta(z).

Example 1.39. If L = Qp and π = p ∈ Zp, then we can choose G = Ĝm (cf. Example 1.29).

Therefore, the identity mapping is a generator of the Zp-module HomZp(TpG, TpĜm), and
we can choose t′0 to be the corresponding generator of T ′, i.e. Ft′0(Z) = Z. Then κz(a) =
1 + [a](z) = 1 + ((1 + z)a− 1) = (1 + z)a. Thus, if we identify (B(Cp),+Ĝm) with B1(Cp),
κ(Cp) is the isomorphism from (1.M).

In Theorem 3.6 in [ST01], an isomorphism

κ : B/Cp
∼−→ X/Cp

of rigid Cp-varieties is constructed, which on the level of Cp-points is given exactly by
κ(Cp). This is the isomorphism we refer to as the uniformization isomorphism. With κ,
we obtain an isomorphism O(X/Cp)

∼−→ O(B/Cp).

The remainder of this thesis ramifies in two separate directions. In Chapter 2, we an-
alyze the applications of the previous results in constructing p-adic L-functions, following
[ST01] Section 5. On the other hand, Chapter 3 is concerned with proving our main result,
namely that (1.Z) generalizes to an isomorphism in the relative Lubin-Tate case.
We end the current chapter with two remarks on further applications of the uniformization
isomorphism, which we will not pursue in this thesis.

34



1. Review of p-adic Fourier theory

Remark 1.40. Let Lalg be the algebraic closure of L in Cp. Since the absolute Galois group
GL := Gal(Lalg/L) of L acts naturally on O(X/Cp) and we have O(X) = O(X/Cp)

GL , the
isomorphism between O(X/Cp) and O(B/Cp) restricts to an isomorphism of O(X) and
the subring O(B/Cp)

GL,∗ of Galois-fixed elements in the power series ring O(B/Cp) with
respect to a “twisted” action of GL on O(B/Cp). This twisted action is by definition
precisely the one that makes the isomorphism O(X/Cp)

∼−→ O(B/Cp) Galois-equivariant.
See [ST01] Corollary 3.8 and the surrounding discussion for more details.

Remark 1.41. In Section 1.1, we have seen how the Amice isomorphism is proven with the
theory of Mahler expansions for functions in Can(Zp,Qp). Conversely, Schneider and Teit-
elbaum applied their Fourier theory to obtain a generalization of the Mahler expansion for
functions in Can(G,Cp) (see Section 4 in [ST01]). If one were able to first prove the gener-
alized Mahler expansion, one could then prove Theorem 1.16 by identifying O(X/Cp) with
O(B/Cp) and constructing the inverse F−1 : O(B/Cp) −→ D(G,Cp) in a way analogous
to the proof of Theorem 1.2.
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Chapter 2

Applications to p-adic interpolation

In this chapter, we analyze in detail the ingredients with which Schneider and Teitelbaum
proved their interpolation result ([ST01] Proposition 5.1). Given a Cp-valued locally L-
analytic distribution λ on o that is supported on o×, the mentioned interpolation result
provides a link between the values

∫
o
xnλ(x) (which are called the moments of λ) on the

one hand and the Fourier transform Fλ on the other hand. Schneider and Teitelbaum used
this link to construct a distribution that gives rise to a p-adic L-function, such that the
special values of the L-function agree with the moments of the distribution. An early goal
of this thesis was to investigate what congruences between the special values are implied
by the existence of this L-function. The idea would be to deduce information about the
values

∣∣∣∣∫
o

(xn − xm)λ(x)

∣∣∣∣ (2.A)

in dependence of: the coefficients of Fλ, the numerical invariants of L and the relation
between the natural numbers n and m. I later became aware that Kenichi Bannai and
Shinichi Kobayashi had already found a solution to this problem (see [BK16] Theorem 1.1
or Section 2.3 of this thesis for a precise statement of their result). Thereupon I shifted
the goal of the current chapter to providing proofs for facts that are stated without proof
or reference in the last section of [ST01]. For instance, Section 2.2 provides a proof of
analyticity of the Mellin transform. Section 2.3 gives a sketch of what would have been my
approach to deriving an inequality involving the values (2.A) in the case when the Fourier
transform has bounded coefficients. An auxiliary result which is interesting in itself is
Proposition 2.14.

This chapter and the next are independent of each other. Chapter 3 can therefore be
read directly after Chapter 1.
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2.1 The integration pairing

We keep the notations of the previous chapter. Thus, G denotes o viewed as a locally
L-analytic group, the Lubin-Tate formal group is again denoted by G = Gπ and the dual
Tate module HomoCp

(G, Ĝm) by T ′. Finally, with a fixed generator t′0 of T ′, we have the

isomorphism κ : B/Cp
∼−→ X/Cp given on Cp-points by the group isomorphism

(B(Cp),+G)
∼−→ Ĝ(Cp)

z 7−→ κz := κt′0⊗z

from Section 1.3.2. The Fourier transform and the uniformization isomorphism κ allow us
to identify O(B/Cp) with the continuous dual D(G,Cp) of Can(G,Cp), giving rise to an
“integration pairing”

{·, ·} : O(B/Cp)× Can(G,Cp) −→ Cp.

If a power series F ∈ O(B/Cp) corresponds to a distribution λ ∈ D(G,Cp) under the
identification above (i.e. if λ = {F, ·}), we write F = Fλ. For z ∈ B(Cp), the formula

Fλ(z) = λ(κz)

holds. Schneider and Teitelbaum’s p-adic L-functions arise as locally analytic distributions
on Galois groups that are naturally isomorphic to multiplicative, rather than additive
groups. Proposition 2.4 below, which characterizes when a distribution on o is supported
in o×, is therefore of technical importance. The goal of this section is to provide a proof
of this proposition. For this, we first prove a few lemmata.

Lemma 2.1. Given f ∈ Can(G,Cp) and F ∈ O(B/Cp), the equation

{F, κzf} = {F (z +G .), f}

holds for all z ∈ B(Cp).

Proof. Let λ ∈ D(G,Cp) be the unique distribution such that F = Fλ. Define the distri-
bution λz ∈ D(G,Cp) by λz : Can(G,Cp) −→ Cp, g 7−→ λ(κzg). Then we have

Fλz(w) = λz(κw) = λ(κzκw) = λ(κz+Gw) = Fλ(z +G w)

for any w ∈ B(Cp), i.e. F (z +G .) = Fλz . It follows that

{F (z +G .), f} = λz(f) = λ(κzf) = {F, κzf}.

Lemma 2.2. We have the equality ∑
[π](z)=0

κz = q · 1πo

of functions on o, where 1πo is the indicator function given by 1 if x ∈ πo and 0 if x ∈ o\πo.
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Proof. Let B(π) := ker[π] = {z ∈ B(Cp) : [π](z) = 0}. By Proposition 1.31, we have an
isomorphism

B(π) ∼= o/π (2.B)

of o-modules.
For a fixed α ∈ o, consider the group homomorphism

tα : B(π) −→ µp ⊆ C×p
z 7−→ tα(z) = κz(α),

where µp denotes the group of p-th roots of unity. To convince ourselves that tα is well-
defined, observe that because of (2.B) and the fact that o/π = k is of characteristic p,

every 0 6= z ∈ B(π) has additive order equal to p. As κ(Cp) : B(π) −→ Ĝ(Cp) is a group
homomorphism, we conclude that κpz is the trivial character for all z ∈ B(π). Hence κz(α)
is a p-th root of unity.
Now, if α ∈ πo, we have [α](z) = 0 and hence

κz(α) = tα(z) = t1([α](z)) = t1(0) = 1,

from which we conclude ∑
z∈B(π)

κz(α) = q.

On the other hand, if α ∈ o×, we claim that the image of tα is not trivial. Suppose that
we have shown this. As the only non-trivial subgroup of µp is µp itself, it follows that tα is
surjective. Hence, for any x ∈ µp the fiber t−1

α (x) has the same cardinality as ker(tα), i.e.
equal to q/p = pf−1. Therefore,∑

z∈B(π)

κz(α) = pf−1 ·
∑
ξ∈µp

ξ = pf−1 · 0 = 0

and we are done. To see that
∑

ξ ξ = 0, pick a primitive ξ0 ∈ µp and observe that

0 = ξp0 − 1 = (ξ0 − 1)(ξp−1
0 + ξp−2

0 + . . .+ ξ0 + 1) = (ξ0 − 1)
∑

ξ ξ and ξ0 − 1 6= 0.
It remains to show that the image of tα is not trivial if α ∈ o×. Pick a non-zero element
w ∈ B(π). Then [α](w) is also non-zero, since α ∈ o×. Hence we may apply Lemma 1.37
to η = [α](w), which tells us that there exists a t ∈ H such that t(η) is a primitive p-th
root of unity. Recall that t1 generates the o-module H, so t is of the form t = tc = t1 ◦ [c]
for some c ∈ o. The equality tc ◦ [α] = tcα = tαc = tα ◦ [c] then implies that the image of
tα contains the primitive p-th root of unity t(η) = tα([c](w)).

Let H denote o× viewed as a Lie group over L. As a locally L-analytic manifold, H is
an open submanifold of G. In particular, there is a mapping D(G,K) −→ D(H,K) given
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2. Applications to p-adic interpolation

by “restriction”, which we now explain.
In general, we may consider any open subset X ⊆ o as a locally L-analytic submanifold of
G = o. Suppose moreover that X is closed in G (we call such a set “clopen”). Then the
following two operators are well-defined:

Can(G,K) −→ Can(G,K) and Can(X,K) −→ Can(G,K)

f 7−→ 1Xf h 7−→ hex,0,

where hex,0 denotes the extension of h by zero, i.e. hex,0(x) = h(x) for x ∈ X and
hex,0(x) = 0 for x ∈ G \X.
For λ ∈ D(G,K), we define ResX(λ) ∈ D(G,K) by

ResX(λ)(f) := λ(1Xf).

The following is common notation for ResX(λ)(f):∫
G

f(x) ResX(λ)(x) = ResX(λ)(f) =

∫
X

f(x)λ(x).

On the other hand, for λ ∈ D(G,K) we also define ResX(λ) ∈ D(X,K) by

ResX(λ)(h) := λ(hex,0).

Observe that, for an f ∈ Can(G,K), the extension of f |X by zero is equal to 1Xf and
hence

ResX(λ)(f |X) = ResX(λ)(f). (2.C)

Definition 2.3. We say that a distribution λ ∈ D(G,K) is supported in X if λ vanishes
on functions with support in G \X.

It is especially useful to consider ResX for a distribution λ ∈ D(G,K) with support in
X. The reason for this is the following. If h̃ ∈ Can(G,K) is any extension of h ∈ Can(X,K)
(in the sense that h̃|X = h), then h̃− hex,0 is supported in G \X, and so λ(hex,0) = λ(h̃).
Therefore, we have λ(f) = ResX(λ)(f |X) for any f ∈ Can(G,K). Together with (2.C),
this implies that λ(f) = ResX(λ)(f) (which is∫

G

f(x)λ(x) =

∫
X

f(x)λ(x)

in the notation of integrals) holds for all f ∈ Can(G,K), if λ is supported in X. From now
on, we will mostly work with the notation of integrals.
We are now ready to prove the following result.
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Proposition 2.4. A distribution λ ∈ D(G,Cp) is supported on o× if and only if∑
[π](z)=0

Fλ(.+G z) = 0. (2.D)

Proof. Using Lemma 2.1 and Lemma 2.2, we deduce

{
∑

[π](z)=0

Fλ(.+G z), f} =
∑

[π](z)=0

{Fλ(.+G z), f}

=
∑

[π](z)=0

{Fλ, κzf}

= {Fλ,
∑

[π](z)=0

κzf}

= {Fλ, q1πof}
= q · {Fλ,1πof}

for any f ∈ Can(G,Cp). Suppose now that (2.D) holds and let f ∈ Can(G,Cp) be a
function with support in πo. Then f = 1πof and consequently

0 = {0, f} = {
∑

[π](z)=0

Fλ(.+G z), f} = q · {Fλ,1πof} = q · {Fλ, f} = q · λ(f),

which means that λ(f) = 0. Hence λ vanishes on functions supported in πo.
The converse follows similarly.

2.2 The Mellin transform

In this section, we define the Mellin transform of a distribution and show that it is a rigid
analytic function. The analyticity of the Mellin transform will imply the analyticity of the
interpolating function (the p-adic L-function) in Proposition 2.8.
Let us briefly recall the structure of o×. We have the split exact sequence

1 −→ 1 + πo −→ o× −→ k× −→ 1.

A section of this short exact sequence is given by the Teichmüller character ω : k× −→ o×.
Recall that for x ∈ k× = (o/π)×, ω(x) is defined as the unique (q − 1)-th root of unity in
L that is congruent to x modulo π. With this definition, ω is obviously multiplicative and
induces an isomorphism

ω : k×
∼−→ µq−1 ⊆ o×
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onto the group of (q − 1)-th roots of unity. Recall that H denotes o× viewed as an L-
analytic Lie group, and let H1 denote the open subgroup 1 + πo ⊆ o×. Then we have the
isomorphism

H
∼−→ H1 × k×

x 7−→ (〈x〉, x+ πo)

where 〈x〉 := x · ω(x+ πo)−1. In the following, we often write ω(x) for ω(x+ πo).
From now on, until the rest of this section, we assume that the ramification index e of L/Qp

satisfies e < p − 1. With this assumption we can apply Satz 5.5 in Kapitel II of [Neu06],
which tells us that the power series of exp and log converge and give rise to mutually
inverse isomorphisms

πo
exp
// 1 + πo.

log
oo

Therefore ` := π−1 · log defines an L-analytic isomorphism

` : H1
∼−→ G

that in turn induces isomorphisms

D(H1, K)
∼−→ D(G,K) and B(Cp)

∼−→ Ĥ1(Cp)

λ 7−→ `∗λ z 7−→ ψz,

with `∗(λ)(f) := λ(f ◦`) and ψz := κz ◦`. Since k̂× is a cyclic group of order q−1 generated
by ω, we further conclude that

Ĥ(Cp) = {ωiψz : z ∈ B(Cp), 1 ≤ i ≤ q − 1}.

Definition 2.5. Given a distribution λ ∈ D(H,K), its Mellin transform is defined as the
function

Mλ(z, ω
i) := λ(ωiψz)

of z ∈ B(Cp) and i ∈ {1, . . . , q − 1}.

Proposition 2.6. Let λ ∈ D(H,K). For each fixed value of i, Mλ(−, ωi) is a rigid analytic
function in O(B/Cp).

Proof. Our proof is inspired by the proof of Proposition VI.2.6 in [Col02]. The goal is to

construct a distribution Γ
(i)
λ ∈ D(G,K) such that

Mλ(z, ω
i) =

∫
G

κz(x)Γ
(i)
λ (x).
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Once this is done, it follows that we have an equality

Mλ(−, ωi) = F
Γ
(i)
λ

between the i-th Mellin transform of λ and the Fourier transform of Γ
(i)
λ . Since the latter

is a rigid function in O(B/Cp), this proves the proposition.

To obtain Γ
(i)
λ , we will need the following way of constructing new distributions from given

ones. If µ ∈ D(H,K) and a ∈ o×, we define the distribution δa ? µ by∫
o×

f(x)(δa ? µ)(x) =

∫
o×

f(ax)µ(x). (2.E)

Denote the group of (q − 1)-th roots of unity by µ ⊆ L×. Let

Γ
(i)
λ := `∗Res1+πo(

∑
ε∈µ

εiδε−1 ? λ).

Then ∫
o

κz(y)Γ
(i)
λ (y) =

∑
ε∈µ

εi
∫

1+πo

ψz(〈x〉)(δε−1 ? λ)(x).

We have used the fact that κz ◦ `(x) = ψz(x) = ψz(〈x〉). We have also passed from Res to
Res by virtue of (2.C).
Recall that we use the notation∫

1+πo

ψz(〈x〉)(δε−1 ? λ)(x) =

∫
o×

ψz(〈x〉) Res1+πo(δε−1 ? λ)(x).

Next, using the fact that Res1+πo(δε−1 ? λ) = δε−1 ? Resε+πo(λ) by Lemma 2.7 below and
that 〈εx〉 = 〈x〉 holds for all x ∈ o×, we see that∫

o×

ψz(〈x〉) Res1+πo(δε−1 ? λ)(x) =

∫
o×

ψz(〈ε−1x〉) Resε+πo(λ)(x)

=

∫
ε+πo

ψz(〈ε−1x〉)λ(x)

=

∫
ε+πo

ψz(〈x〉)λ(x).
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Now we use the fact that ω(x) = ε if x ∈ ε+ πo to conclude that∫
o

κz(y)Γ
(i)
λ (y) =

∑
ε∈µ

εi
∫

ε+πo

ψz(〈x〉)λ(x)

=
∑
ε∈µ

∫
ε+πo

ω(x)iψz(〈x〉)λ(x)

=

∫
o×

ω(x)iψz(〈x〉)λ(x),

which completes the proof.

Lemma 2.7. Let X be a clopen subset of o×, λ ∈ D(H,K) a distribution and α ∈ o×.
Then we have the following equality of distributions (which are defined according to (2.E)):

ResX(δα ? λ) = δα ? Resα−1X(λ).

Proof. Let f ∈ Can(H,K). Using the equality 1X(αx) = 1α−1X(x), we compute:∫
o×

f(x) ResX(δα ? λ)(x) =

∫
o×

1X(x)f(x)(δα ? λ)(x) =

∫
o×

1X(αx)f(αx)λ(x)

=

∫
o×

1α−1X(x)f(αx)λ(x) =

∫
o×

f(αx) Resα−1X(λ)(x)

=

∫
o×

f(x)(δα ? Resα−1X(λ))(x).

Recall that we have fixed a generator t′0 of the o-module T ′ and that Ω denotes the
leading coefficient of t′0. Let logG (resp. expG) denote the logarithm (resp. the exponential)
of the formal group G and let ∂ denote the invariant differential of G. By [Lan12] §8.6
Lemma 4, logG and expG induce mutually inverse group isomorphisms

(B(ρ),+G)
logG

// (B(ρ),+Ĝa)expG
oo

where ρ := p−1/e(q−1), B(ρ) = B(ρ)(Cp) = {z ∈ Cp : |z| < ρ} and Ĝa is the additive

formal group law Ĝa(X, Y ) = X+Y . Furthermore, for z ∈ B(ρ) we have |z| = |logG(z)| =
|expG(z)|.
Proposition 2.8. Let λ be a distribution in D(G,Cp) that is supported on H, let Fλ be
its Fourier transform and Mλ its Mellin transform. Suppose that n ∈ N satisfies n ≡ i
mod q − 1. Then

Mλ(expG(nπ/Ω), ωi) =

∫
o×

xnλ(x) = Ω−n(∂nFλ(z)|z=0). (2.F)
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Proof. [ST01] Proposition 5.1.

By [ST01] Lemma 3.4, we have |Ω| = p−s with s = 1
p−1
− 1

e(q−1)
. Hence the hypothesis

e < p − 1 guarantees that |xπ/Ω| < ρ, i.e. that expG(xπ/Ω) converges for all x ∈ o. In
view of Proposition 2.6, it follows that the left-hand side of the equations in (2.F) gives a
(globally) L-analytic interpolation of the values on the right side.

2.3 Towards congruences

Schneider and Teitelbaum’s approach for constructing a p-adic L-function for a CM elliptic
curve at a supersingular prime was the following. They made use of the machinery of Cole-
man power series and elliptic units from [dS87] to produce a power series F ∈ O(B/Cp)
such that Ω−n(∂nF (z)|z=0) essentially coincides with the n-th special value that is to be
interpolated. Since they made sure that F satisfies

∑
[π](z)=0 F (.+G z) = 0, the correspond-

ing distribution λ := {F, ·} is supported on H (by Proposition 2.4). Finally, they applied
their interpolation result (Proposition 2.8 above) to obtain the L-function. A nice aspect of
their construction is that the n-th special value is equal to

∫
o×
xnλ(x). This motivates the

following general question: given a power series ψ ∈ O(B/Cp) such that the corresponding
distribution µ := {ψ, ·} is supported on H, what can be said about the values∣∣∣∣∫

o×
xnµ(x)

∣∣∣∣ and

∣∣∣∣∫
o×

(xm − xn)µ(x)

∣∣∣∣ ?
Of course, one would also need to identify reasonable conditions that need to be imposed
on n (resp. m − n) and on the coefficients of ψ in order to ensure that the question may
be answered in a satisfactory way.
We note again that [BK16] provides a solution for the above problem. To describe it, we
will need the following notation. For k ∈ N, we let

ρ(k) := max
m≥k
|m!/Ωm| .

For ψ =
∑∞

k=0 ckT
k ∈ O(B/Cp) and N ∈ N, we let

‖ψ‖N := max
k

{
|ck| ρ

([
k

qN

])}
.

The main theorem of [BK16] is the following one.

Theorem 2.9. Let g ∈ o and f ∈ F(g+πNo)(K). Let ψ ∈ O(B/Cp) and µ = {ψ, ·}. Then∣∣∣∣∫
g+πNo

f(x)µ(x)

∣∣∣∣ ≤ ρ(0)

∣∣∣∣πq
∣∣∣∣N ‖f‖g,N‖ψ‖N .

Moreover, if e ≤ p− 1, then∣∣∣∣∫
g+πNo

f(x)µ(x)

∣∣∣∣ ≤ ∣∣∣∣πq
∣∣∣∣N ‖f‖g,N‖ψ‖N .
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Proof. [BK16] Theorem 4.3 ii).

In [BK16] Section 5, this theorem is used to prove the following proposition.

Proposition 2.10. Let L be the unramified quadratic extension of Qp, let ψ ∈ oCp [[T ]] and
let µ = {ψ, ·}. If m ≡ n mod pl(q − 1), then∣∣∣∣∫

o×
(xm − xn)µ(x)

∣∣∣∣ ≤ p−l+
p
q−1 .

Proof. [BK16] Proposition 5.3.

Using this, Bannai and Kobayashi go on to prove congruences between the Bernoulli-
Hurwitz numbers.

We will now sketch an idea for an alternative approach involving measures (i.e. con-
tinuous distributions).
Recall that Dcont(G,K) is the continuous dual of Ccont(G,K). It is a Banach space with
the usual operator norm

‖ν‖ = sup
f

|ν(f)|
‖f‖

.

The presence of a norm allows us to deduce the following statement.

Lemma 2.11. Let ν ∈ Dcont(G,K) with ‖ν‖ ≤ 1. Let k ∈ N≥1 and m,n ∈ N be such that
m ≡ n mod qk−1(q − 1) and m,n ≥ k. Then∣∣∣∣∫

o

(xm − xn)ν(x)

∣∣∣∣ ≤ ∣∣πk∣∣ .
Proof. We have ∣∣∣∣∫

o

(xm − xn)ν(x)

∣∣∣∣ ≤ ‖ν‖‖fm,n‖ ≤ ‖fm,n‖
where fm,n denotes the function x 7−→ xm − xn. Hence we need to show that xm ≡ xn

mod πk for all x ∈ o. This is obviously true for x ∈ πo, since m,n ≥ k. On the other
hand, if x ∈ o×, then its residue modulo πk (which we again denote simply by x) lies in
(o/πk)×. Using the fact that m− n is a multiple of qk−1(q− 1) and that qk−1(q− 1) is the
cardinality of (o/πk)×, we obtain the following equations in (o/πk)×:

xm = xn · xm−n = xn · 1 = xn,

i.e. xm ≡ xn mod πk.

Returning to the given ψ ∈ O(B/Cp) and µ = {ψ, ·}, we see that it is useful to ask
under what circumstances the distribution µ extends to a measure. Such an extension, if
it exists, is necessarily unique:
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Lemma 2.12. The restriction map Dcont(G,K) −→ D(G,K) is well-defined and injective.

Proof. The restriction of an ` ∈ Dcont(G,K) to Can(G,K) is a continuous linear form on
Can(G,K) by Lemma 1.5. Hence the restriction map Dcont(G,K) −→ D(G,K) is well-
defined. It is moreover injective, since Can(G,K) is dense in Ccont(G,K). We remark that
already the space of all locally constant functions is dense in Ccont(G,K) (cf. the proof of
[BSX15] Lemma 1.2.1).

In the case L = Qp, we know that µ extends to a measure precisely when the coefficients
of ψ are bounded. In fact, it follows from Mahler’s expansion theorem for functions in
Ccont(Zp, K) (compare the proof of Theorem 1.2) that the map associating to a measure
ν ∈ Dcont(Zp, K) its Amice transform Aν is an isometric isomorphism of Dcont(Zp, K) onto

K[[T ]]bc := {f ∈ K[[T ]] : the coefficients of f are bounded}

equipped with the supremum norm of the coefficients. We obtain the commutative diagram

Dcont(Zp, K) //

∼=
��

D(Zp, K)

∼=
��

K[[T ]]bc
⊆

// O(B/K)

(2.G)

where the upper horizontal map is the restriction map and the vertical maps are given
by the Amice transform. Because the left vertical map in is an isometry, we see that a
distribution λ ∈ D(Zp, K) extends to a measure λ ∈ Dcont(Zp, K) satisfying ‖λ‖ ≤ 1 if
and only if its Amice transform Aλ lies in oK [[T ]]. In that case we may apply Lemma 2.11.
See [Col02] §VI.1 for a proof of the famous Kummer congruences using this argument.

For general L/Qp, composing the Fourier isomorphism F : D(G0, K) −→ O(X0/K) with
the restriction map Dcont(G,K) −→ D(G0, K) (which is injective by the same argument
as in Lemma 2.11) yields an isometric isomorphism

Dcont(G,K)
∼−→ Ob(X0/K)

(cf. the proof of [BSX15] Lemma 1.2.1). For K = Cp, we obtain the commutative diagram

Dcont(G,Cp) //

∼= F

��

D(G0,Cp) // //

∼= F

��

D(G,Cp)

∼= F

��

Ob(X0/Cp)
⊆
// O(X0/Cp) // // O(X/Cp)

κ
∼=
// O(B/Cp).

(2.H)

In particular, since the map obtained by composing all the maps in the upper row is the
injective map Dcont(G,K) −→ D(G,K), the map Ob(X0,Cp) −→ O(B/Cp) obtained by
composing all the maps in the lower row is also injective.
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Question 2.13. Is there a nice description of the image of the map Ob(X0,Cp) −→
O(B/Cp)? Does the image contain Ob(B/Cp)? If so, can the norm of the preimage
of a given f ∈ Ob(B/Cp) be estimated by the norm of f?

At the moment, we do not know the answers to these questions. Suppose that the
answers are positive. If ψ ∈ Ob(B/Cp), then µ = {ψ, ·} extends to a measure. Moreover,
the norm of ψ (i.e. the supremum norm of its coefficients, cf. Proposition 2.14 below)
estimates the norm of µ in Dcont(G,Cp), so that we can apply Lemma 2.11 to µ. Hence
Question 2.13 is an interesting problem for the future.

We end this chapter by proving the following result which, in particular, says that (2.H)
complies with (2.G) in the case L = Qp:

Proposition 2.14. We have an equality

Ob(B/K) = K[[T ]]bc

of rings. Moreover, the identity map is an isometry:

sup
z∈B(Cp)

|f(z)| = sup
n∈N
|an|

holds for all f =
∑∞

n=0 anT
n ∈ K[[T ]]bc = Ob(B/K).

Proof. For any f =
∑∞

n=0 anT
n ∈ K[[T ]]bc, the inequality

sup
z∈B(Cp)

|f(z)| ≤ sup
n∈N
|an| (2.I)

is clear and implies f ∈ Ob(B/K). Conversely, let f =
∑∞

n=0 anT
n ∈ Ob(B/K). If

f = 0, then the conclusion is trivial, so we may assume that f is non-zero. The radius of
convergence of f is the extended real number 0 ≤ rf ≤ ∞ defined by

rf = sup{r ≥ 0: |an| rn → 0}.

The fact that f converges on the open unit disk implies rf ≥ 1.
Let us make a brief digression to introduce the so-called growth modulus of f (cf. [Rob00]
6.1.4), a notion that we will need to complete our proof. The growth modulus of a power
series g =

∑∞
n=0 bnT

n ∈ K[[T ]] with radius of convergence rg > 0 is defined by

Mr(g) = max
n≥0
|bn| rn (0 ≤ r < rg)

so that r 7−→ Mr(g) is a positive increasing real-valued function on [0, rg). We say that
r ∈ [0, rg) is a regular radius for g if the equality Mr(g) = |bn| rn holds for one index
n = n(r) only. We have the inequality

|g(z)| ≤Mr(g) if |z| = r < rg
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which is an equality

|g(z)| = Mr(g)

for all regular radii r. The “Classical Lemma” in [Rob00] 6.1.4 says that the set Reg(g)
of regular radii of a non-zero g is dense in [0, rg). More precisely, it says that any non-
zero g has only finitely many non-regular radii smaller than any given value r < rg. This
also implies that Reg(g) is open in [0, rg). As the value group

∣∣C×p ∣∣ is dense in R>0, we

may conclude that the intersection Reg(g) ∩
∣∣C×p ∣∣ is dense in [0, rg). Indeed, the density

and openness of Reg(g) imply that V ∩Reg(g) is non-empty and open for any non-empty
open V ⊆ [0, rg). The density of

∣∣C×p ∣∣ then implies that V ∩ Reg(g) ∩
∣∣C×p ∣∣ is non-empty,

completing the argument that Reg(g) ∩
∣∣C×p ∣∣ is dense in [0, rg).

We now continue our proof where we left off. Since f ∈ Ob(B/K), we have that

C := sup
z∈B(Cp)

|f(z)| <∞.

We claim that |an| ≤ C holds for all n ∈ N. To show this, let m ∈ N be arbitrary. Let
ε > 0. By continuity of the function y 7−→ ym, there exists a δ > 0 such that

1− ym < ε

holds for all y ∈ (0, 1) with 1− y < δ. Since Reg(f) ∩
∣∣C×p ∣∣ is dense in [0, 1) ⊆ [0, rf ), we

can choose a z0 ∈ B(Cp) such that R := |z0| ∈ (0, 1) is a regular radius for f satisfying
1−R < δ. Then

|am| − |am|Rm < |am| ε. (2.J)

On the other hand, we also have

|am|Rm ≤MR(f) = |f(z0)| ≤ C.

Plugging this into (2.J) implies that

|am| < C + |am| ε.

Since ε > 0 is arbitrary, we obtain

|am| ≤ C,

which completes the proof.

Remark 2.15. For r < 1, let B(r) denote the rigid open disk of radius r, so that we have
B(r)(K) = {z ∈ K : |z| < r}. The inequality

sup
z∈B(r)(Cp)

|f(z)| ≤ sup
n∈N
|an| rn ≤ sup

n∈N
|an|
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holds for any f =
∑∞

n=0 anT
n ∈ K[[T ]]bc and implies the inclusion K[[T ]]bc ⊆ Ob(B(r)/K).

However, the reverse inclusion does not hold in general. Indeed, for r0 = p−1/(p−1), the
power series exp(T ) =

∑∞
n=0

Tn

n!
defines an isometric isomorphism

exp: B(r0)(Cp)
∼−→ 1 + B(r0)(Cp)

of groups (cf. [Rob00] 5.4.2, Corollary after Proposition 3). In particular, its image is
bounded even though its coefficients aren’t. But, it is easy to see that our proof may be
adapted in an obvious way to show the following generalization of Proposition 2.14:

Ob(B(r)/K) = K[[T ]]bc,r

where K[[T ]]bc,r is the ring of power series f =
∑∞

n=0 anT
n for which {|an| rn} is bounded.

To verify this in the case of exp, observe that we have r0 =
∣∣p1/(p−1)

∣∣ for any chosen (p−1)-

th root p1/(p−1) ∈ Cp of p. The values |an| rn0 =
∣∣pn/(p−1)/n!

∣∣ are then indeed bounded (from
above), since their additive valuations are bounded from below:

vp

(
pn/(p−1)

n!

)
= vp(p

n/(p−1))− vp(n!) =
n

p− 1
− n− Sp(n)

p− 1
≥ 0.

Here Sp(n) is the sum of the coefficients appearing in the p-adic expansion of n.
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Chapter 3

Uniformization with relative
Lubin-Tate groups

We start this chapter by introducing the relative Lubin-Tate groups of [dS85]. These are
certain formal groups that generalize Lubin-Tate groups. They are “relative” to a finite
unramified extension of L.
We therefore fix an m ∈ N and let E ⊆ Cp be the unique unramified extension of L of
degree m. We also fix a prime element $ ∈ oE, so that mE = $oE and kE = oE/$. Of
course, we have $ = uπ for some u ∈ o×E. Since the restriction map induces an isomorphism

Gal(E/L)
∼−→ Gal(kE/k),

there is a unique ϕ ∈ Gal(E/L) (called the Frobenius automorphism of E/L) such that
ϕ(a) ≡ aq mod $ for all a ∈ oE. The group Gal(E/L) is cyclic and ϕ is a generator.

3.1 Relative Lubin-Tate group laws

Generalizing the starting point of Lubin-Tate theory, we first define a family of relative
Frobenius power series in oE[[X]] for $. Any element φ of this family is going to play the
role of a homomorphism lifting X 7−→ Xq. But φ will only be an “endomorphism up to a
transformation by ϕ”. To make this precise, we introduce the following notation.

For any ν ∈ Z and any formal power series F (X1, . . . , Xn) =
∑

i1,...in≥0 ci1,...inX
i1
1 · · ·X in

n in
oE[[X1, . . . , Xn]] we define the formal power series

ϕνF (X1, . . . , Xn) =
∑

i1,...in≥0

ϕν(ci1,...in)X i1
1 · · ·X in

n .

Let F,G ∈ oE[[X1, . . . , Xn]]. Let H1, . . . , Hn be power series over oE in any fixed number
of variables. Assume that the constant terms of the Hi are all zero, so that F (H1, . . . , Hn)
is defined. The following facts are easily verified:
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3. Uniformization with relative Lubin-Tate groups

- ϕν (F +G) = ϕνF + ϕνG.

- ϕν (F (H1, . . . , Hn)) = ϕνF (ϕ
ν
H1, . . . ,

ϕνHn).

- If F is a formal group law, then ϕνF is also a formal group law.

Definition 3.1. A relative Frobenius power series for$ is a formal power series φ ∈ oE[[X]]
such that

(i) φ(X) = $X+ terms of degree ≥ 2,

(ii) φ(X) ≡ Xq mod $oE[[X]].

Theorem 3.2. For any relative Frobenius power series φ(X) there is a unique formal group
law Fφ(X, Y ) over oE such that φ : Fφ −→ ϕ(Fφ) is a homomorphism of formal group laws.

Proof. See [dS85] Theorem 1 for the statement, proofs are provided in Chapter I of [dS87].

Fφ is called the relative (to the extension E/L) Lubin-Tate formal group law of the
Frobenius power series φ.
If E = L, we are in the situation of Section 1.3.1 and Fφ is a Lubin-Tate group. In this
case, φ ∈ Endo(Fφ). Moreover, as we have seen in Section 1.3.1, if φ and ψ are Frobenius
power series for the same prime element π (i.e. φ, ψ ∈ Fπ), then there is an o-isomorphism
Fψ

∼−→ Fφ. In this sense, Fφ depends only on π.
For a general E/L and a relative Frobenius power series φ for $, the relative Lubin-Tate
law Fφ depends only on NormE/L($), as we will see in Corollary 3.5 (ii) and (iii). It is
therefore convenient to introduce the set

F relξ = {f ∈ oE[[X]] : f = cX+higher terms,NormE/L(c) = ξ and f ≡ Xq mod $oE[[X]]}

where ξ is a fixed element of o such that vp(ξ) = m
e

. As NormE/L(c) is the product over
all the Galois-conjugates of c and each Galois-conjugate has valuation equal to vp(c), we
conclude vp(c) = 1

e
. This means that c is a prime element of oE. Thus, we obtain the

following alternative description of F relξ :

F relξ =
⋃

NormE/L($′)=ξ

{all relative Frobenius power series for $′}.

Example 3.3. φ(X) = πX + Xq is a relative Frobenius power series for π and φ ∈ F relξ

for ξ = πm.

Theorem 3.4. Let φ and ψ be relative Frobenius power series for the prime elements $
and $′, respectively. Let o$,$

′

E denote the additive subgroup {a ∈ oE : $a = $′ϕ(a)}.
There is a unique map

[.]φ,ψ : o$,$
′

E −→ (X) ⊆ oE[[X]]
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3. Uniformization with relative Lubin-Tate groups

such that

[a]φ,ψ(X) = aX + higher terms and φ ◦ [a]φ,ψ = ϕ[a]φ,ψ ◦ ψ.

Moreover, any [a]φ,ψ is necessarily a group homomorphism Fψ −→ Fφ and [.]φ,ψ is actually
an isomorphism

[.]φ,ψ : o$,$
′

E

∼−→ HomoE(Fψ, Fφ)

of additive groups. We also have

[ab]τ,ψ = [a]τ,φ ◦ [b]φ,ψ (3.A)

for any relative Frobenius power series τ for $′′, a ∈ o$,$
′

E and b ∈ o$
′,$′′

E .

Proof. See [dS85] Theorem 2. Compare [dS87] Chapter I Proposition 1.5. Note that we

have o$,$
′

E · o$
′,$′′

E ⊆ o$,$
′′

E , so that the left-hand side of (3.A) is well-defined.

Corollary 3.5. (i) The map [.]φ := [.]φ,φ : o −→ EndoE(Fφ) is a ring isomorphism. In
particular, (Fφ, [.]φ) is a formal o-module.

(ii) If u ∈ o$,$
′

E ∩ o×E, then [u]φ,ψ : Fψ
∼−→ Fφ is an isomorphism of formal o-modules with

inverse [u−1]ψ,φ.

(iii) The set o$,$
′

E ∩ o×E is non-empty if and only if NormE/L($) = NormE/L($′).

Proof. The assertions (i) and (ii) follow immediately from the theorem. For (iii), note that

the set o$,$
′

E ∩o×E is non-empty if and only if there exists a u ∈ o×E satisfying $/$′ = ϕ(u)/u.
By Hilbert’s theorem 90, such a u exists precisely when NormE/L($/$′) = 1, i.e. when
NormE/L($) = NormE/L($′).

Fix a relative Frobenius power series φ for $ and let G = Fφ and [.] = [.]φ. The height
of G is equal to d (cf. the discussion following the proof of Theorem 1.3 in Chapter I of
[dS87]). Another important fact is that the p-adic Tate module TpG is free of rank d over
Zp. This can be proven using the o-modules

Wrel
n := {z ∈ B(Cp) : [a](z) = 0 for all a ∈ πno}

= {z ∈ B(Cp) : [πn](z) = 0}.

If z ∈ Wrel
n \ Wrel

n−1, then a 7−→ [a](z) gives an isomorphism o/πn
∼−→ Wrel

n (cf.[dS85]
Proposition 1). Therefore, the same argument as in the proof of Lemma 1.34 can be used
to show that TpG is free of rank d over Zp.
We remark that the elements ofWrel

n are algebraic over L, see [dS87] Chapter I, Proposition
1.8.
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3. Uniformization with relative Lubin-Tate groups

3.2 p-divisible groups

The purpose of this section is to prepare the proof of Theorem 3.20 (uniformization on
points in the relative Lubin-Tate case). We briefly review definitions and facts from the
theory of p-divisible groups (or Barsotti-Tate groups). Then we apply these results to rel-
ative Lubin-Tate group laws. This is possible because there is an equivalence of categories
between the category of “divisible” formal group laws over o and the category of connected
p-divisible groups over o.
For the applications to relative Lubin-Tate groups, we keep the setting and the notations
of the previous section.
All the general rings appearing in this section (R,Λ etc.) are assumed to be commutative.

3.2.1 General theory

Definition 3.6. Let R be a ring and h a non-negative integer. A p-divisible group G of
height h over R is a sequence of commutative affine group schemes Gν = Spec(Aν), ν ≥ 0,
together with morphisms of group schemes iν : Gν −→ Gν+1 such that

(i) Gν is finite flat of order pνh over R (i.e. the R-algebra Aν is a finitely generated module
over R and the localization (Aν)p is free of rank pνh over Rp for all p ∈ Spec(Aν)),
and

(ii) the sequence 0 −→ Gν
iν−→ Gν+1

pν−→ Gν+1 is exact (in the sense of [Tat67] (1.3)),
where pν is the homomorphism “adding an element to itself pν times”.

As a consequence of (ii), the multiplication map p : Gν+1 −→ Gν+1 lands in the kernel
of pν : Gν+1 −→ Gν+1, which is equal to iν(Gν). Thus there is a unique homomorphism
jν : Gν+1 −→ Gν such that iν ◦ jν = p.

Definition 3.7. Let G be a p-divisible group of height h over an integral domain R of
characteristic zero. Let K be the field of fractions of R and let Kalg be an algebraic closure
of K. The Tate module of G is

Tp(G) := lim←−
ν

Gν(K
alg)

where the limit is taken over the maps jν .

Lemma 3.8. Keep the setting of Definition 3.7. The Tate module is a free Zp-module of
rank h.

Proof. Since the abelian group Gν(K
alg) is annihilated by pν , it is a Z/pνZ-module. Hence

lim←−ν Gν(K
alg) = Tp(G) is a module over lim←−ν Z/p

νZ = Zp. Tate mentions at the bottom of
page 167 in [Tat67] that Tp(G) is free of rank h. We remark that the proof of this relies
on the following three facts: (i) every finite flat group scheme over a field of characteristic
zero is finite étale; (ii) if F is an algebraically closed field of characteristic zero, then
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3. Uniformization with relative Lubin-Tate groups

taking F-points induces an equivalence between the category of finite étale group schemes
over F and the category of finite abelian groups; (iii) given a tower of finite abelian groups
N1 ⊆ N2 ⊆ . . . such that Nν is the kernel of multiplication by pν in Nν+1 and the cardinality
of Nν is equal to pνh, group theory shows that Nν

∼= (Z/pνZ)h.

Definition 3.9. Let R be a complete noetherian local ring. A finite flat group scheme
Spec(B) over R is called connected if and only if B is a local ring, cf. [Tat67] (1.4). A
p-divisible group G over R is called connected if and only if each Gν is connected.

Now we describe the relation between formal groups and p-divisible groups, following
[Tat67] (2.2). Let R be a complete noetherian local ring with residue field of characteristic
p. Let F (X, Y ) be a (commutative) n-dimensional formal group over R, which is essentially
the same as an n-dimensional formal Lie group as defined on page 162 of [Tat67]. This
means that F is a family of n power series in 2n variables over R such that the axioms
(i)-(iv) from Definition 1.21 are satisfied when we write F (X, Y ), X and Y as column
vectors (cf. [Haz78] 9.1). Consider [p]F (X) := X +F . . .+F X (p times). It is an n-tuple of
power series in n variables: [p]F (X) = (H1(X), . . . , Hn(X)). The formal group F is called
“divisible” if the ring R[[X]] = R[[X1, . . . , Xn]] is a finitely generated free module over the
subring R[[H1, . . . , Hn]]. If this is the case, the rank of R[[X1, . . . , Xn]] over R[[H1, . . . , Hn]]
is necessarily ph for some h ∈ N, as Tate explains in the discussion preceding Proposition
1 in [Tat67]. We call h the degree of the isogeny [p]∗F . For a one-dimensional formal group
over R, the property of being divisible is equivalent to the property of having finite height,
as we will see in Proposition 3.13.

Remark 3.10. In Section 1.3.1, we defined the height of a one-dimensional formal group
law. Some authors define height for higher-dimensional formal group laws as well, in such
a way that having finite height basically corresponds to what we call “being divisible”, cf.
[Haz78] 18.3.8 and 18.3.9. See also [Haz78] Appendix B.2.

Suppose that F is divisible with degree of isogeny equal to h. For ν ∈ N, let Jν be the
ideal of R[[X]] = R[[X1, . . . , Xn]] generated by the n power series of the n-tuple [pν ]F . Then
R[[X]]/Jν is free of rank pνh over R and the comultiplication R[[X]] −→ R[[X]]⊗̂RR[[X]]
defined by F (X, Y ) induces a comultiplication R[[X]]/Jν −→ R[[X]]/Jν⊗RR[[X]]/Jν which
makes F (p)ν := Spec(R[[X]]/Jν) into a connected finite commutative group scheme over
R. The F (p)ν combine to define a connected p-divisible group F (p).

Theorem 3.11. Let R be a complete noetherian local ring whose residue field is of charac-
teristic p. Then F 7−→ F (p) is an equivalence of categories between the category of divisible
formal groups over R and the category of connected p-divisible groups over R.

Proof. See [Tat67] Proposition 1. Compare [Haz78] Appendix B.2, for we have followed
the approach taken there to describe F 7−→ F (p). We note that Tate’s construction of
F (P )ν is actually the same as the one we described. He uses the ideals ψν(I)R[[X]],
where I ⊆ R[[X]] is the ideal generated by the variables Xi and ψ = [p]∗F : R[[X]] −→
R[[X]], P 7−→ P ◦ [p]F = P (H1, . . . , Hn). We clearly have ψν(I)R[[X]] = Jν .
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3. Uniformization with relative Lubin-Tate groups

For the proof of Proposition 3.13, we will need the Weierstrass Preparation Theorem,
which we now state.

Theorem 3.12 (Weierstrass Preparation). Let Λ be a complete local ring and let
f =

∑∞
i=0 ciT

i ∈ Λ[[T ]] have first unit coefficient in degree n (i.e. all the ci with i < n are
non-units in Λ and an ∈ Λ×). Then there is a unique pair (U, g) such that U ∈ Λ[[T ]]×,
g ∈ Λ[T ] is a Weierstrass (or “distinguished”) polynomial of degree n (i.e. g is monic and
reduces to Xn modulo the maximal ideal of Λ) and

f = Ug.

Proof. [Lan02] Chapter IV, Theorem 9.2.

Proposition 3.13. Let R be a complete noetherian local ring with maximal ideal m and
residue field k of characteristic p. A one-dimensional formal group law F over R is of
finite height h if and only if it is divisible with degree of isogeny equal to h.

Proof. Suppose that F is of finite height h. This means that the first unit coefficient of
H := [p]F ∈ R[[X]] appears in degree r = ph. Here R[[X]] denotes the ring of formal
power series in one variable over R. Let ai ∈ R denote the i-th coefficient of H, so that
H =

∑∞
i=0 aiX

i. We have to show that R[[X]] is free of rank r over its subring R[[H]].
Note that the variable X is obviously not free over R[[H]], as it satisfies the non-trivial
relation

∑∞
i=0 aiX

i−H = 0. In a sense, this is the only non-trivial relation X satisfies over
R[[H]]. To make this statement precise, let T be a free variable over R[[H]] and consider
the homomorphism of R[[H]]-algebras

R[[H]][[T ]]
/

(
∑

i aiT
i −H)

Θ−→ R[[X]] (3.B)

T 7−→ X.

This homomorphism is well-defined becauseR[[X]] is complete for the (X)-adic topology, so
the universal property of R[[H]][[T ]] says that we can define a homomorphism by plugging
in any element of (X) for T . Moreover, Θ is clearly surjective. To see that it is injective, we
define the homomorphism of R-algebras θ : R[[X]] −→ R[[H]][[T ]]/(

∑
i aiT

i−H), X 7−→ T .
We obviously have θ◦Θ = id, which implies the injectivity of Θ. Now we want to apply the
Weierstrass Preparation Theorem 3.12 with Λ = R[[H]], f =

∑
i aiT

i−H and n = r. This
is possible because R[[H]], being isomorphic to R[[X]] via the isomorphism of R-algebras
R[[X]]

∼−→ R[[H]] sending X to H, is a complete local ring1 with maximal ideal (m, H).
Thus, there is a Weierstrass polynomial g ∈ R[[H]][T ] of degree r such that left-hand side
of (3.B) is equal to

R[[H]][[T ]]/(g).

1R[[X]] itself is a complete local ring because it is a power series ring over a complete local ring (see
[Lan02] Chapter IV, the discussion preceding Theorem 9.1).
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3. Uniformization with relative Lubin-Tate groups

Since R[[H]] is complete and g is a Weierstrass polynomial, the natural map

R[[H]][T ]/(g)
∼−→ R[[H]][[T ]]/(g)

is an isomorphism of R[[H]]-algebras (cf. [Ell14] Lemma 3.5(2)). Hence R[[H]][[T ]]/(g)
is free of rank r over R[[H]], with basis {1, T, . . . , T r−1}. Together with the isomorphism
(3.B), this proves that R[[X]] is free of rank r over R[[H]].
Conversely, suppose that F is divisible with degree of isogeny equal to h and let H = [p]F .
Then there is an R[[H]]-basis of R[[X]] consisting of s = ph elements P1, . . . , Ps ∈ R[[X]].

Let P̃ denote the power series obtained from P ∈ R[[X]] by reducing the coefficients modulo

m. Then {P̃1, . . . , P̃s} generates k [[X]] over k [[H̃]]. Since k [[X]] is infinite-dimensional as

a vector space over k , we have H̃ 6= 0. In particular, H is of finite height. Let h′ denote
the height of H and let r = ph

′
. The first part of the proof then shows that R[[X]] is free of

rank r over R[[H]]. It follows that r = s and hence h′ = h. This completes the proof.

We now review some objects and concepts related to p-divisible groups. Many of these
are introduced and studied in [Tat67] for arbitrary p-divisible groups over a complete dis-
crete valuation ring R of characteristic zero whose residue field is of characteristic p and
perfect. We restrict our exposition to the case of a connected p-divisible group over R = o.

Let G be a connected p-divisible group over o. Let F be the formal group correspond-
ing to G and let n be the dimension of F .

- The group G(oK) of points of G with values in oK is defined in [Tat67] (2.4). It can be
identified (non-canonically) with (B(K)n,+F ), as is explained at the bottom of page 167
in [Tat67].

- The tangent space tG of G is, by definition, the tangent space of F , see [Tat67] page 168.
Its K-points tG(K) form an n-dimensional vector space over K.

- The logarithm map logG : G(oK) −→ tG(K) is defined at the bottom of page 167 in
[Tat67]. It is a group homomorphism. The kernel of logG is the torsion subgroup
G(oK)tors of G(oK) and its cokernel is a torsion group. If K = Cp, then logG : G(oCp) −→−→
tG(Cp) is surjective.

- The p-divisible dual G′ of G is the p-divisible group

G∗0
j∗1−→ G∗1

j∗2−→ . . .

where G∗ν is the dual of Gν in the sense of [Tat67] (1.2) and j∗n is the dual of the map jn. If
Gν = Spec(Aν), then G∗ν = Spec(Homo-modules(Aν , o)). There is a canonical isomorphism
Gν

∼−→ (G∗ν)
∗. For any o-algebra S, we have a natural group isomorphism

G∗ν(S)
∼−→ HomS(Gν ⊗o S,Gm,S) (3.C)

onto the group of morphisms of group schemes over S from Gν⊗oS := Gν×Spec(o)Spec(S)
into Gm,S = Spec(S[T, T−1]).
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3. Uniformization with relative Lubin-Tate groups

The following results are obtained from [Tat67] page 177 by taking R = o,K = L,C = Cp

and D = oCp . Since Gν(D) = Gν(Cp) = Gν(L
alg) holds by the theory of finite flat

group schemes over an algebraically closed field of characteristic zero, we have Tp(G
′) =

lim←−ν G
∗
ν(D). Using (3.C) and passing to the projective limit, we see that there is a natural

isomorphism

Tp(G
′) = lim←−

ν

G∗ν(D)
∼−→ HomD(G ⊗̂oD,Gm,D(p)) (3.D)

where Gm,D(p) is the p-divisible group attached to Gm,D and HomD denotes morphisms of
p-divisible groups over D. By functoriality, any map of p-divisible groups induces a map
on points and tangent spaces. Consequently, (3.D) gives us pairings

〈·, ·〉 : Tp(G′)×G(D) −→ Gm,D(p)(D) ∼= B1(Cp) (3.E)

and

(·, ·) : Tp(G
′)× tG(Cp) −→ tGm,D(p)(Cp) ∼= Cp. (3.F)

These pairings induce the homomorphisms of Zp-modules

α : G(D) −→ HomZp(Tp(G
′),B1(Cp))

z 7−→ 〈·, z〉

and

dα : tG(Cp) −→ HomZp(Tp(G
′),Cp)

x 7−→ (·, x)

that fit into the commutative diagramm

G(D)
logG // //

α

��

tG(Cp)

dα

��

HomZp(Tp(G
′),B1(Cp)) // HomZp(Tp(G

′),Cp)

(3.G)

where the lower horizontal map is Hom(Tp(G
′), log) (i.e. the map obtained by applying

the functor Hom(Tp(G
′), ·) to the usual logarithm log : B1(Cp) −→ Cp).

We have the following:

Proposition 3.14. α and dα are both injective.

Proof. [Tat67] Proposition 11.

Lemma 3.15. The commutative diagram (3.G) is cartesian.
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Proof. Let us simplify the notation and write T ′ for Tp(G
′), U for B1(Cp), and ` for the

map Hom(T ′, log). Given a commutative diagram of the form

M

f

!!

g

))

ψ

&&

G(D)

α

��

logG

// tG(Cp)

dα
��

HomZp(T
′, U) ` // HomZp(T

′,Cp)

(3.H)

it suffices to show that the image of f lies in the image of α. Indeed, suppose that we have
shown this. Then we may use the fact that α is injective to define ψ := α−1 ◦ f . We claim
that this ψ is the unique homomorphism making (3.H) commute. The only non-obvious
part of this claim is the equality logG ◦ψ = g. But this equality follows from the equality
dα ◦ logG ◦ψ = ` ◦ α ◦ ψ = ` ◦ f = dα ◦ g and the injectivity of dα. This completes the
proof that (3.G) is cartesian, under the assumption that the image of f lies in the image
of α.
To see that the image of f lies in the image of α, we note that the diagram (3.G) is part
of the larger commutative diagram

0 // G(D)tors
//

α0

��

G(D)
logG //

α

��

tG(Cp) //

dα
��

0

0 // HomZp(T
′, Utors) // HomZp(T

′, U) ` // HomZp(T
′,Cp) // 0

(3.I)

whose rows are exact (see (∗) on page 177 in [Tat67]). Here α0 denotes the restriction of
α to G(D)tors. By [Tat67] Proposition 11, α0 is bijective. Therefore, the exactness of the
bottom row implies that the kernel of ` lies in the image of α:

ker(`) ⊆ im(α). (3.J)

Let m ∈M . Since logG is surjective, we may choose a z ∈ G(D) such that logG(z) = g(m).
Then `(f(m)) = dα(g(m)) = dα(logG(z)) = `(α(z)). Hence f(m) lies in α(z) + ker(`),
which by (3.J) is a subset of the image of α. Since m ∈ M was arbitrary, this establishes
our claim.

We need one more fact about the dual Tate module Tp(G
′). We have the homomorphism

G∗ν(Cp)
∼−→ HomCp(Gν ⊗o Cp,Gm,Cp) −→ HomZp(Gν(Cp), µpν ) (3.K)

where the first arrow is the one from (3.C), the second arrow is the one sending a map
to the induced map on points2, and µpν denotes the group of pν-th roots of unity. The
homomorphism (3.K) gives a duality pairing

G∗ν(Cp)×Gν(Cp) −→ µpν .

2Note that (Gν ⊗o Cp)(Cp) = Gν(Cp) since HomCp-algebras(Aν ⊗o Cp,Cp) = Homo-algebras(Aν ,Cp).
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As explained in Step 1 of the proof of Proposition 11 in [Tat67], this pairing is perfect
for each ν. This means that the homomorphism G∗ν(Cp) −→ HomZp(Gν(Cp), µpν ) from
(3.K) is in fact an isomorphism. By passing to the projective limit, we obtain a natural
isomorphism

Tp(G
′)

∼−→ HomZp(Tp(G), H) (3.L)

where H = Tp(Gm,o(p)) = lim←−ν µpν .

3.2.2 Applications to relative Lubin-Tate groups

Let Γ be a one-dimensional formal group law over o of finite height h. Consider the Zp-
module

HomoCp
(Γ, Ĝm).

It can be identified with

H(Γ) := {f ∈ oCp [[Z]] : f(X +Γ Y ) = f(X)f(Y ) and f(0) = 1},

cf. Section 1.3.2. As Katz mentions on page 58 of [Kat77], HomoCp
(Γ, Ĝm) is free of

rank h over Zp. This assertion can be verified as follows. Proposition 3.13 ensures
that we can apply Theorem 3.11 to Γ to obtain a corresponding p-divisible group G of
height h over o. The p-divisible dual G′ of G is also of height h, cf. [Tat67](2.3). By
Lemma 3.8, T ′ = Tp(G

′) is free of rank h over Zp. On the other hand, the natural iso-
morphism T ′ −→ HomD(G ⊗̂oD,Gm,D(p)) from (3.D), combined with the isomorphism

HomD(G ⊗̂oD,Gm,D(p)) ∼= HomoCp
(Γ, Ĝm) obtained by the equivalence of categories from

Theorem 3.11, gives an isomorphism T ′ −→ HomoCp
(Γ, Ĝm). This proves the assertion.

Another important result is that the natural map HomoCp
(Γ, Ĝm) −→ HomZp(TpΓ, TpĜm)

is an isomorphism. We have already used this for Γ = G in the discussion preceding Corol-
lary 1.36. We are now in a position to see that this fact is immediately obtained by ap-
plying the equivalence of categories to the isomorphism T ′ = HomD(G ⊗̂oD,Gm,D(p))

∼−→
HomZp(Tp(G), H) from (3.L).

Consider now a relative Lubin-Tate law G for $ ∈ oE. As established at the end of
Section 3.1, G is a formal group over oE of height d. In Subsection 3.2.1, we have worked
with the valuation ring o = oL of an arbitrary finite extension L/Qp as the base ring.
Hence, if we let E play the role of L, we can apply the above observations to G. In
particular,

T ′ := HomoCp
(G, Ĝm)

is free of rank d over Zp. Recall that G is a formal o-module via [.] : o −→ End(G) ⊆
ZoE[[Z]]. Furthermore, we again write F ′t for t′ ∈ T ′ when we want to emphasize that we
are regarding t′ as a formal power series.

59



3. Uniformization with relative Lubin-Tate groups

Lemma 3.16. The Zp-action on T ′ extends via o × T ′ −→ T ′, (a, t′) 7−→ Ft′ ◦ [a] to an
o-action on T ′, making T ′ a free o-module of rank one.

Proof. The proof of Lemma 1.33 and the proof of Corollary 1.36 apply verbatim here.

We also write a � t′ := Ft′ ◦ [a]. In the current setting, the pairings (3.E) and (3.F)
correspond to

〈·, ·〉 : T ′ ⊗o B(Cp) −→ B1(Cp) and (·, ·) : T ′ ⊗o Cp −→ Cp

t′ ⊗ z 7−→ 1 + Ft′(z) t′ ⊗ x 7−→ Ωt′x,

where Ωt′ = d
dZ
Ft′(0) is the leading coefficient of Ft′ .

Proposition 3.17. The pairing 〈·, ·〉 is Z-bilinear and o-invariant, and the pairing (·, ·) is
o-bilinear.

Proof. Both pairings are Z-bilinear by design. The o-invariance of 〈·, ·〉 may be proven
exactly as in (1.Y). Finally, (1.X) from the proof of Lemma 1.38 also applies here to show
that (·, ·) is o-bilinear. Indeed, the computation in (1.X) uses the properties [a](0) = 0 and
[a]′(0) = a for all a ∈ o, which are also true for the current [.] by Theorem 3.4.

The following lemma is trivial to prove.

Lemma 3.18. Let M be an o-module. Then, for any Zp-module N , the set HomZp(M,N)
is an o-module under pointwise addition and scalar multiplication defined by (c, ψ) 7−→ cψ,
where (cψ)(m) = ψ(cm) for c ∈ o, ψ ∈ HomZp(M,N) and m ∈M . The map

HomZp(M,N)⊗oM −→ HomZp(o,N) (3.M)

ψ ⊗m 7−→ [a 7−→ ψ(am)]

is a well-defined homomorphism of o-modules. If M is free of rank one over o, then (3.M)
is an isomorphism.

Proof. We only mention that, if M ∼= o, then the last assertion follows immediately from
the standard isomorphism P ⊗o o

∼−→ P, p⊗ c 7−→ cp which holds for any o-module P .

We tensor the diagram (3.G) by T ′ and apply Lemma 3.18 to the bottom row to obtain
the commutative diagram

B(Cp)⊗o T ′
logG⊗ id

//

α

��

Cp ⊗o T ′

dα

��

HomZp(o,B1(Cp)) // HomZp(o,Cp)

(3.N)

where the lower horizontal arrow is Hom(T ′, log) and logG is the logarithm map of the
formal group G. The left (resp. right) vertical arrow is actually α ⊗ id (resp. dα ⊗ id)
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3. Uniformization with relative Lubin-Tate groups

composed with the isomorphism from Lemma 3.18. Abusing notation, we denote it again
by α (resp. dα). Thus, the image of an element z ⊗ t′ under the map α in (3.N) is the
map g 7−→ 〈g � t′, z〉, for g ∈ o. The same is true for dα if we replace 〈·, ·〉 by (·, ·). The
maps α and dα are injective by Proposition 3.14 and because T ′ is a free (and hence flat)
o-module.

Lemma 3.19. The commutative diagram (3.N) is cartesian.

Proof. Since T ′ is flat, the rows of the commutative diagram (3.I) from the proof of
Lemma 3.15 remain exact after tensoring with T ′ over o. Hence we may conclude with the
same arguments as in the proof Lemma 3.15.

This completes our preparations for Section 3.3.

3.3 Generalized uniformization X(Cp) ∼= B(Cp) on the

level of points

In the previous sections, we have used the letter G to denote p-divisible groups in various
situations. From now on, G denotes o viewed as a Lie group over L, just as in Chapters
1 and 2. Accordingly, G0 denotes the Lie group over Qp obtained from G by restriction
of scalars. But otherwise we keep the setting and the notations of Sections 3.1 and 3.2.2.
Thus, E/L is an unramified extension of degree m, G is a relative Lubin-Tate group law
for a prime element $ ∈ oE and T ′ = HomoCp

(G, Ĝm). For fixed t′ ∈ T ′ and z ∈ B(Cp),
define the map

κz⊗t′ : o −→ B1(Cp)

g 7−→ 〈t′, [g](z)〉.

Note that 〈t′, [g](z)〉 = 1 + Ft′([g](z)) = 〈g � t′, z〉 = α(z ⊗ t′)(g) for all g ∈ o, i.e.

κz⊗t′ = α(z ⊗ t′). (3.O)

In particular, κz⊗t′ is Zp-linear. Therefore, we have the group homomorphism

κ(Cp) : B(Cp)⊗o T ′ −→ HomZp(o,B1(Cp))

z ⊗ t′ 7−→ κz⊗t′ ,

where the o-module structure on B(Cp) is provided by (+G, [.]). Note that HomZp(o,B1(Cp))

coincides with Ĝ0(Cp) by Proposition 1.9. We arrive at the main theorem:

Theorem 3.20. The map

κ(Cp) : B(Cp)⊗o T ′
∼−→ Ĝ(Cp)

z ⊗ t′ 7−→ κz⊗t′

is a well-defined isomorphism of groups.
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3. Uniformization with relative Lubin-Tate groups

Proof. We use the diagram

B(Cp)⊗o T ′

α

��

κ

''

logG⊗ id
// Cp ⊗o T ′

dα

''

dα

��

Ĝ(Cp)

⊆

��

d // HomL(L,Cp)

⊆

��

HomZp(o,B1(Cp))

ι
''

Hom(o,log)
// HomZp(o,Cp)

j

''

Ĝ0(Cp)
d // HomQp(L,Cp)

to prove the assertion in a series of steps. First we discuss all the maps and argue that
each face of the cube is commutative. To simplify notation, we will write κ in place of κ(Cp).

The front face is the cartesian diagram (1.L) from Section 1.2.

In the bottom face, the map ι is just the inclusion HomZp(o,B1(Cp))
⊆−→ Ĝ0(Cp). A

crucial fact is that ι is actually an isomorphism (cf. Proposition 1.9). To explain the
map j, note that any Zp-basis of o is also a Qp-basis of L. Therefore, any element of
f ∈ HomZp(o,Cp) has a unique Qp-linear extension j(f) ∈ HomQp(L,Cp). Clearly j is
an isomorphism. The maps ι and j being inclusions, showing the commutativity of the
bottom face of the cube amounts to showing that

dχz⊗β = log ◦χz⊗β

holds for all z ∈ B1(Zp) and β ∈ HomZp(o,Cp) (cf. Corollary 1.10). But this is clear since
dχz⊗β = log(z) ·β by Lemma 1.13 and log ◦χz⊗β(a) = log(zβ(a)) = β(a) log(z) for all a ∈ o.

The rear face of the cube is the cartesian diagram (3.N) from Lemma 3.19.

In the right face of the cube, the map dα is defined by dα := j ◦ dα. We claim that
the image of dα lies in HomL(L,Cp). This follows from the following two statements,
taken together: (i) any map in the image of dα is o-linear; (ii) if f ∈ HomZp(o,Cp) is
o-linear, then j(f) is L-linear. To prove statement (i), it suffices to check that dα(x⊗ t′) is
o-linear for any x ∈ Cp, t

′ ∈ T ′. But this is clear, since dα(x⊗t′) is the map a 7−→ (a�t′, x)
and (a� t′, x) = (t′, ax) = a · (t′, x) holds for all a ∈ o by Proposition 3.17. To prove state-
ment (ii), observe that it is equivalent to the statement: (ii)’ any map f ∈ HomQp(L,Cp)
whose restriction to o is o-linear, is L-linear. Finally, statement (ii)’ is clearly true because
L = o[p−1].
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3. Uniformization with relative Lubin-Tate groups

Next we claim that dα : Cp ⊗o T ′ −→ HomL(L,Cp) is an isomorphism. By counting di-
mensions, we find that it suffices to show that dα is injective. But dα = j ◦ dα is injective,
since j and dα are both injective.

We are now in a position to show that the image of κ lies in Ĝ(Cp). As each of the
mentioned faces of the cube is commutative, the maps

B(Cp)⊗o T ′
f1:=ι◦α−−−−→ Ĝ0(Cp) and B(Cp)⊗o T ′

f2:=dα◦(logG⊗ id)−−−−−−−−−−→ HomL(L,Cp)

induce a map (f1, f2) : B(Cp)⊗o T ′ −→ Ĝ(Cp) by the universal property of the front face
of the cube. This is the unique map making the top face and the left face (and thus the
whole cube) commute. By the commutativity of the left face and (3.O), we conclude that

(f1, f2) = κ. In particular, the image of κ lies in Ĝ(Cp), i.e. κ is well-defined.

To obtain a homomorphism inverse to κ, we recall that ι and dα are isomorphisms, and

that the rear face of the cube is cartesian. Denote the inclusion Ĝ(Cp)
⊆−→ Ĝ0(Cp) by i.

Using the commutativity of the cube, it is easy to see that the maps

Ĝ(Cp)
g1:=ι−1◦i−−−−−→ HomZp(o,B1(Cp)) and Ĝ(Cp)

g2:=dα−1◦d−−−−−−−→ Cp ⊗o T ′

induce a map (g1, g2) : Ĝ(Cp) −→ B(Cp) ⊗o T ′ by the universal property of the rear face
of the cube. Now it is straightforward to verify that (g1, g2) is inverse to κ.
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