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Introduction

The main conjecture of Iwasawa theory studies the mysterious relation-
ship between purely arithmetic problems and special values of p-adic
zeta functions. Here, p denotes an odd prime number. Let A be the
ideal class group of Q(p,), where p, is the group of p-th roots of unity.
We call p regular if p does not divide the order of A. One of the first re-
sults leading to this relationship is a theorem by E. E. Kummer, which
states that p is irregular if and only if p divides the numerator of at least
one of the rational numbers ((—1),{(—=3),...,((4—p). More generally,
J. Herbrand and K. A. Ribet found that forn = 3,5, ..., p—2, the idem-
potent of Z,[G(Q(u,)|Q)] associated to the n-th power of the cyclo-
tomic character annihilates A(p) if and only if p divides the numerator
of ((n+1—p). Probably one of the most important results concerning
this relationship is the proof of the main conjecture for abelian exten-
sions of totally real number fields by K. Iwasawa, B. Mazur, A. Wiles
and others. This is a far-reaching generalisation of the results of Her-
brand and Ribet.

We quickly recall this theorem here. Let F|F be a Z,-extension of
totally real number fields, where [F' : Q] is finite, with Galois group
G = G(Fx|F). Let X be the Galois group of the maximal abelian
p-extension of F.,, unramified outside p. Then X carries a natural
A(G)-module structure, and X is a finitely generated torsion A(G)-
module. Let Q(G) be the total ring of quotients of A(G). We need
a certain interpolation property of p-adic zeta functions. This will be
expressed by an element of Q(G). We want to compare X with elements
of Q(G). Classically, this is done by the construction of a characteristic
element Fx € A(G). The structure theory of finitely generated torsion
A(G)-modules tells us that there is an exact sequence

0 @AG/AG) i~ X — D0

where D is a A(G)-module of finite cardinality. We define the charac-
teristic element Fx := fi--- f.. Let I(G) be the augmentation ideal of
A(G). Then the main conjecture of commutative Iwasawa theory says
that the p-adic zeta function £ € Q(G) exists and that
FxA(G) =¢I(G).
5



6 INTRODUCTION

Now assume that G is a (not necessarily commutative) p-adic Lie group
which can be written as a semidirect product G = H xI', with I' = Z,,.
Put

S :=S(G)

= {f € A(G)|A(G)/A(G)f is finitely generated as A(H)-module}.
Following Kato [25], we will define a complex C* that encodes the
arithmetic information of the module X. We will show that this com-
plex defines an element [C*] of the group Ko(A(G),A(G)g). (If G is
p-torsion free, we get [C*] = [Z,] — [X].) The p-adic zeta function will
be an element of K;(A(G)g). We use the connecting homomorphism

0: Ki(A(G)s) = Ko(A(G), A(G)g)

of K-theory to compare elements of K (A(G)g) with [C®]. This seems
reasonable since in the commutative case we have 0(Fx) = [X]. In our
more general setting the main conjecture (as formulated by Kato) says
that the p-adic zeta function £ € K;(A(G)g) exists and that

a(§) = —[C”].

The aim of this paper is to work out the details of [25]. The basic
strategy of the proof of the main conjecture given in this paper was
developed by D. Burns and K. Kato [25]. Let Z be a set of pairs
(U, V), where U is an open normal subgroup of G and V is an open
subgroup of H, such that V' is a normal subgroup of U and U/V is
commutative. There are natural maps

0:Ki(MG) — [ Aw/v)”
(UV)eT

0s : Ki(AMG)g) — ] AUV
(UV)eZ

We will show that we can always find Z such that 6 becomes injective.
Assume that there is a group ¥g with

imfg C Uy C HIA(U/V)E and
Vs NI, A(U/V)* = im.

THEOREM (Theorem 2.40). Assume that 6 is injective. Let {uyy €
QU/V) be the p-adic zeta functions for U/V . Assume that (§py)z €
V. Under further assumptions, see property 2.39, we get that the main
conjecture is true for Fy|F.

We will show that the assumptions of the above theorem are satisfied
when G is a pro-p p-adic Lie group that is a quotient of the product of
the p-adic Heisenberg group and a commutative p-adic Lie group. The
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proof of the assumptions splits in the algebraic problem to determine
the kernel and the image of # and to prove the inclusion imfs C Ug,
and the analytic problem to show ({yv )z € Ws.

We will prove the algebraic part for groups without any arithmetic
structure. We will construct the integral logarithms defined by R. Oliver
(cf. [34]),

& = Lp : Ki(A(P1)) — Zp[Conj(P)]
Ls = Lp,s  Ki((AM(Py)s)") — Zy[Conj(P2)]g,

where Py, P, are pro-p p-adic Lie groups, where P, contains a subgroup

H, such that P,/Hy = Z,,, where S := S(P,), where (A(PQ)S)/\ denotes

a completion of A(P2)s (see definition 3.10) and where Z,[Conj(F;)]
and Z,[Conj( ;)] are certain quotient Z,-modules of A(P;) and (A(P,)s)",
respectively. We will use the integral logarithm to transfer the multi-
plicative homomorphisms # and g to the additive homomorphisms

7 : Z,[Conj(P)] — H AU/V)

(UV)eT

75 : Z,[Conj(Py)]s — [ (AU/V)s)".

(UVv)ez

Assume Z = {(U,, V,,)|n € ¢}, where ¢ = {0,1,...,c} if ¢ is finite or
¢ = N otherwise. Let I,, be the image of 7 composed with the projection
1L, AUn/Vi) — AU,/V,). We define I,, s C A(U,/V,)s similarly.
We will show that 7 and 7¢ are injective and see that the images €2,
Qg of 7, 75 are the sets of elements of [[,, I, [ [, In,s, respectively that
satisfy certain natural compatibility relations with respect to the trace
map. This allows us to construct a candidate ¥ for the image of # as
follows: We will show that o — o? for o € U, /V,, (n € ¢) induces the
ring homomorphisms -

2 A(Un/vn> - A<Un+1/Vn+1)
0 AU, /Vi)s — MUny1/Vita)s-

Let ¥ be the set of elements (x,), € [[,, A(U,/V,) that satisfy certain
natural compatibility relations with respect to the norm map such that
Tpp(xn_1)"t € I, for all n > 1. We define Ug C [[,AU,/Vi)s
similarly. The following theorem is the main point of our proof that
indeed ¥ = im#. (The inclusion im (#) C ¥ follows from a similar
diagram and then, by the five lemma, this inclusion is an identity.)
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THEOREM (Theorem 3.47). The diagram

1— ptpo1 X (P)™ — Ki(A(P)) =% Z,[Conj(Py)] — (P)® — 1

P,k

1— Mp—1 X (Pl)ab i} 0 (Pl)ab 1

is commutative with ezact rows, and hence Ki(A(Py)) = V.

We will use a similar construction as above to prove im (ds) C Vg,
but we will not need to calculate the kernel and cokernel of Zs. The
identity s N ][], .. A(Un/V,)* = ¥ will be a simple corollary of the

general theory.

nec

We will now address the technical difficulties that arise in the above
argument more closely. Our construction of the integral logarithm Z
starts with the investigation of the p-adic power series

log(1 — ) := Z% € Q,[Conj(P,)] for z € J(A(P,))
exp() = Zf—' e Ki(A(P), 1) for € I/[A(P), I],

i>0

where J(A(P;)) is the Jacobson radical of A(P;) and I is a two sided
ideal such that I* C pIJ(A(P;)). Convergence of these series follows
similarly to the case of the usual p-adic logarithm and exponential map.
The proof of the homomorphism property does not easily generalise to
our situation. We will prove it in a more general setting. Let A be
the ring of non-commutative power series in two indeterminates over
a divisible commutative topological ring R, and let U be the subset of
power series with constant term 1. Then U is a multiplicative group.

PROPOSITION (Corollaries 3.31 and 3.34). If the power series log(x)
and exp(zx) converge for x € U and x € A, respectively, then the maps

log: U — A/[A,A] and exp: A— UJ[U,U]

are homomorphisms.

We will then apply this to our case. Since A(P;) and (A(P)g)" are
semi-local (cf. [13], [8], [41]), the Kj-groups of these rings are gener-
ated by their respective groups of units. We will define

1
Lp, = (1——p)olog
p
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and show that the image of Zp, is integral. We put Zp, s(z) := Zp,(x)
for x € A(P,)* and

1 _
ng/W,S(Pz/W)(x) = ]—9108;(531090(95) 1),

X

T € ((A(PQ/W)S(Z(PQ/W)))A>

for subgroups W C P, such that the centre of P»/W is open. We show
that this uniquely defines Zp, g.

The fact that 7 and 74 are injective with image €2 and K/th, respectively,
and that the sets ¥ and Wg are groups follow from explicit calculations
with the generators of the Heisenberg group. A main ingredient in the
proof of iméd C ¥ and imfg C Yy is the equivalence

To%Lp (r) €& 0(x) eV,

see proposition 3.57.

Let F, = FY" be the fixed field of U,. The proof of the analytic
side of the main conjecture is an application of deep results proven
by P. Deligne and K. A. Ribet, cf. [12]. In particular [12] implies the
existence of F},-adic Hilbert Eisenstein series F,, such that the constant
term of 2" E,,, r(n) = [F, : Q], is the p-adic zeta function &, (see [37]).
Let g,, be the restriction of E,, to the Hilbert modular variety of F'. Let
©(gn—1) be the restriction of the image of F,_; under a map induced
by the transfer homomorphism U, _1/V,-1 — U,/V,,. We show that
all non-constant coefficients of g, — ¢(gn_1) lie in I,,. Then, by the ¢-
expansion principle [12], the constant term 277(M¢, — 277 (= Dip(g, )
is also in I,,. We show that this is equivalent to &,p(&—1)7 € 1+ I,
and hence (&,), € Vg.
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CHAPTER 1

Preliminaries

1. Notation

We assume that all rings are associative and have a unit ele-
ment.
For two topological groups G, Go, we write G; <, G if Gy is
an open normal subgroup of Gbs.
For a ring R, let R[[T]] be the ring of formal power series in
one variable T" over R.
Let R be a commutative topological ring and let G be a profi-
nite group. We define

R[G] := lim R[G/U].

UG
Let p be an odd prime number. For a profinite group G let
A(G) = 2,[G]

be the Iwasawa algebra of G.

Let R be a ring. By an R-module M, we always mean a left
R-module.

For a group G let [G, G| := (ghg™'h~ g, h € G) be the com-
mutator subgroup of G. Let R be a ring and let A be an
R-algebra. We define the commutator R-algebra of A to be

[A, A] := (ab — bala,b € A)g,

where (%) g is the R-module generated by x.

2. Noncommutative Localisation

Let R be aring and X C R a multiplicatively closed subset (i.e. 1 € X
and z,y € X = xy € X).

DEFINITION 1.1. A right ring of fractions for R with respect to X is a
ring RX ! with a ring homomorphism ¢ : R — RX ! such that

o(r) € (RX H* forall z € X
RX™' = {p(a)p(z)~'|a € R, x € X}
ker p = {r € R|rz =0 for some z € X}

11



12 1. PRELIMINARIES

A left ring of fractions is defined analogously. (Notation: X !R)

DEFINITION 1.2. X is a right Ore set in R if for each x € X, r € R
there exist 2’ € X, v’ € R such that rz’ = xr’. A left Ore set is defined
analogously.

PROPOSITION 1.3 ([18, theorem 10.3, proposition 10.6, 10.7]). Assume
R is Noetherian and X s a right and left Ore set in R. Then the right
and left ring of fractions for R with respect to X exists and RX ' =
X'R. We denote it by Rx.

PROPOSITION 1.4 ([18, corollary 10.16]). Under the above assump-
tions, Rx is Noetherian.

DEFINITION 1.5. An element y of a ring R is called regular if whenever
ay = 0 or ya = 0 for some a € R, then a = 0.

Let R be a commutative ring. Let X be the set of regular elements of
R. Then X is multiplicatively closed. We write Q(R) := Ry for the
total ring of fractions of R, the localisation of R by X.

3. p-adic Lie Groups

A map ¢ = (¢;); : U — Zy', where U C Z; is an open subset, is called
(locally) analytic if we can locally represent it by power series over Q,:
Forally e U, j=1,...,m, there are h € N, a, € Q, such that

g0y+px Za,,” Ve eZ,

veNn

(with z¥ =[], 2} € Z,).

A p-adic analytic manifold of dimension n is a topological space M,
such that there is an open cover (U;);e; of M with homeomorphisms ¢;
of U; onto open subsets of Z, such that ;o @;lej(UmUj) are analytic.
We call such a family (U;, ¢;)icr an atlas of M. A global atlas is an
atlas with #2I = 1. A morphism of p-adic analytic manifolds is a map
f 1 M — N such that ¥; o f o p; " is analytic where it is defined for
atlases (Uy, p;)ier of M and (V},1;)jes of N and every i € I, j € J.

DEFINITION 1.6. A p-adic Lie group (of dimension n) is a group object
in the category of (n-dimensional) p-adic analytic manifolds. (I. e. it is
a p-adic analytic manifold with a group law, where multiplication and
inversion are analytic.) We denote the dimension of a p-adic Lie group

by dim(G).

We call a pro-p group G powerful if [G, G] C GP for p # 2 (respectively
|G, G| C G* for p = 2), where G" is the group generated (as an abstract
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group) by the elements ¢", g € G. We define inductively the lower p-
series

P(G) =G, Fin(G) = R(GPR(G) Gl

REMARK. For topologically finitely generated powerful groups, we have
Py(G) = G¥"" for i > 1, see [13, theorem 3.6].

DEFINITION 1.7. A topologically finitely generated powerful pro-p group
is uniform if the p-power map induces isomorphisms

Py(G)/Pii1(G) — Py (G)/Pria(G) for all i > 1.

PROPOSITION 1.8 ([13, theorem 8.36]). Let H <, G be an open uni-
form pro-p subgroup of the p-adic Lie group G. Then dim(G) is the
minimal cardinality of a topological generating set of H.

PropPOSITION 1.9 ([13, corollary 8.34]). A topological group G is a
compact p-adic Lie group if and only if there is an open normal uniform
pro-p subgroup U of G.

COROLLARY 1.10. For any compact p-adic Lie group G, the lwasawa
algebra A(G) is a semi-local ring.

PROOF. By [33, prop. 5.2.16], A(G) is semi-local if G has an open
p-Sylow subgroup. O

COROLLARY 1.11. For any compact p-adic Lie group G, the Iwasawa
algebra A(G) is right and left Noetherian.

PROOF. By proposition 1.9, there is an an open normal uniform
pro-p subgroup U of G. Then A(U) is right and left Noetherian (cf.
[13, corollary 7.25]). But this implies that A(G) = Dgy AU) is
right and left Noetherian as a module over A(U) and therefore over

AG). O

The following proposition is the reason for increased technical difficul-
ties when working with groups with elements of order p.

PROPOSITION 1.12 ([43]). Let G be a compact p-adic Lie group. The
p-cohomological dimension cd,(G) is finite if and only if G does not
contain an element of order p.

ProprosITION 1.13 ([27, V.2.5.8]). Let G be a p-adic Lie group with
cohomological dimension cd(G) < oco. Then G is a Poincaré group of
dimension dim(G). In particular, cd(G) = dim(G).

PROPOSITION 1.14 ([48, corollary 2.8]). Let G be a compact p-adic Lie
group. There is an open subgroup U of G such that A(U) is an integral
domain.
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4. K-Theory

Let C be a full additive subcategory of an abelian category, closed under
extensions. We assume that C has a small skeleton Cy (i.e., Cg is a
full subcategory of C such that the class of objects Ob(Cg) is a set
and the inclusion Cg, — C is an equivalence of categories). We define
the following K-groups by specifying generators and relations of an
abelian group. We denote the group law of Ky-groups additively and
of Ki-groups multiplicatively.

Ko(C) Generators: The objects M of Cg.
Relations:

o [M]=[N]if M =N,
o [Ms] = [M,] + [Ms] if there is an exact sequence 0 — M; —
M2 — M3 — 0.

K;(C) Generators: The pairs (M, f), where M is an object of Cg
and f an automorphism of M.
Relations:

o (M, gf)] = (M, f)]-[(M,g)],
o [(My, fo)] = [(My, f1)] - [(Ms, f3)] if there is a commutative

diagram

0 M, My M; 0

b

0 M, M, Ms 0.

Let P(R) be the category of finitely generated projective left R-modules.
We write Ko(R) := Ko(P(R)) and K1(R) = K1(P(R)).

REMARKS.
o Let Puigni(R) be the category of finitely generated projective
right R-modules Then
Ki(R) = Ki(Prigni(R))

for i = 1,2. This follows from K;(R) = K;(R°), where R
is the opposite ring of R (cf. [28, prop. 9.10]) and from the
isomorphism of categories P(RP) = Prigni(R).

e For x € R*, let

my:R— R, rw—rx
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be the left R-module homomorphism of right multiplication
by x. We can define the natural homomorphism

[lr: R — Ki(R), xvw [z]gr:=][(R,m.)].
Similarly, we get for every n > 1 the homomorphisms
[ lr : GL,(R) — Ki(R), =z [x]g:=[(R",r+— rz)].

We give an alternative definition of K;(R): For a € R, let e;;(a) €
GL,(R) be the matrix with 1’s on the diagonal, with an a in the (¢, j)-
slot and 0’s elsewhere. Define

E.(R) = (e;(a)la e R, i,j €{l,...,n}, i # j)
to be the subgroup of GL,(R) generated by such matrices. We de-
fine injections E,(R) — E,1(R) and GL,(R) — GL,+1(R) by g —

0 . .
g . ) and set Ex(R) = lim E,(R), GLx(R) = lim GL,(R),

where the limits are taken with respect to the above injections.

PROPOSITION 1.15 ([38, theorem 3.1.7]). Let R be a ring. Then

PROPOSITION 1.16 (Whitehead Lemma, [3, V.1.5 and V.1.9]). For
n >3,
En(R) = [En(R), En(R)]
and for any n > 1,
[GL,(R), GL,(R)] C Ean(R).
Hence

Ewo(R) = [Exc(R), Exo(R)] = [GLoo(R), GLoo(R)].

Thus we have isomorphisms
K1(R) = GLo(R)/Exc(R) = GLoo(R)/[GLxo(R), GLxo(R)],

where the inverse of the first isomorphism is defined by [f] — [(R", f)]
for f € GL,(R) C GL(R), n > 1.

Define the Jacobson radical J(R) to be the intersection of all left maxi-
mal ideals of R. A ring R is called semi-local if the number of maximal
ideals of R is finite. Equivalently, R/J(R) is semisimple or artinian
(see [3, II1.2]). Therefore, a ring R is semi-local if and only if R/J(R)
is isomorphic to a finite product of matrix rings over division rings.
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PROPOSITION 1.17 (Stable range theorem).

o Surjective stability theorem (Bass): If R is a finitely generated
module over an integral domain or if R is semi-local, then the
canonical homomorphisms

GL4y(R) — Ki(R), zw~ [z]g

are surjective for d > 1.
o [njective stability theorem (Bass, Vaserstein): For R as above,
there are isomorphisms
Ki(R) = GL4y(R)/E4(R)
K1(R) = GLa1(R)/[GLas1(R), GLasr (R)]
for any d > 2.
e If R is semi-local and R/J(R) is isomorphic to a product of
full matriz rings over division algebras such that none of these
matrix rings has order 16 and that no more than one of these

matriz rings has order 2 or if R is a commutative semi-local
ring or if R is a local ring, then

Ki(R) = R*/[R", R”]

(Vaserstein, Dieudonné, Bass).

PROOF. See [3, V.9.1, V.9.2], [11, 40.41, 40.44], [38, corollary 2.2.6]
and [47]. O

COROLLARY 1.18. For any compact p-adic Lie group G and d > 2,
K1(A(G)) = GLa(A(G))/ Ea(A(G))
K1(A(G)) = AG)/[AG)", AMG) 7).

PROOF. The the fact that the assumptions of proposition 1.17 are
satisfied for A(G) follows from corollary 1.10 and the fact that a Z,-
module (p # 2) has no quotient of 2-power order. O
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PROPOSITION 1.19. Let R be a ring and assume that there is a two-
sided ideal I C R such that R/I™ is finite of order a power of p for any
n > 1 and such that the canonical homorphism R — @ R/I™ is an

isomorphism. Let L be a set of ideals contained in J(R) such that R/L
is finite for L € L, (e, L = 0 and for Ly, Ly € L, there is Ly € L
with Ly C L1 N Ly. Then there is an isomorphism
K(R) = lim K, (R/L).
Lel

REMARK. The above assumptions on R are equivalent to the fact that
R/J(R)™ is finite for any n > 1 and that the canonical homomorphism
R — lim R/J(R)" is an isomorphism. In this case, R is semi-local.
(See [16, lemma 1.4.4].)

PROOF OF PROPOSITION 1.19. By [16, prop. 1.5.1],
K (R) 22 Jim K (R/J(R)").

For n > 1, there is L € £ with L C J(R)" (since R/J(R)"™ is finite
by the above remark) and for L € £, J(R)" C L for some n > 1
(since (), J(R)" = 0 by the above remark). Hence the proposition
follows. 0

LEMMA 1.20. Let I be a directed partially ordered set and let (R;, f;;) be
an inverse system of rings that satisfy the Mittag-Leffler condition (i. e.
for each k € I, there exists j € I such that the image of fr; : R — Ry
equals the image of fy; + R; — Ry, for all i > j). Put R := liLnI R;.
Assume that for some d > 2,

Ki(R;) = GL4(R;)/E4(R;)  for alli e I.
Then the canonical homomorphism
Ki(R) — lim Ky (R;)

el
15 surjective.

REMARK. The assumptions of the lemma are satisfied when R is a
semi-local ring and the homomorphisms f;; : R; — R; are surjective.
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PRrooOF. Consider the following commutative diagram

GLa(R) Ki(R)

| |

1 —— @ie[ Ed(RZ) —_— liinz'el GLd(RZ) —_— !iﬂliel Kl(Rz) — 1

The Mittag-Leffler condition is satisfied for the sets of generators
{exi(a)|a € R;, k,le{1,....d}, k#1}

of Eq(R;), i € I. Hence it is satisfied for Fy4(R;), ¢ € I. Using the
assumption on the Ki-groups we get that the lower row is exact.

We show that the the left vertical arrow

(1) GL4(R) — @GLd(Ri)

el

in the above diagram is an isomorphism. (We only need the fact that
it is surjective.) Then the right vertical arrow is surjective. Clearly,
there is a ring isomorphism

i€l
This shows injectivity of the homomorphism (1).
Let (z;); € lim,_, GLq4(R;) and let € My(R) be an inverse image of
(x;); under the isomorphism (2). For 7,5 € I with i > j, we get
fis(a; ) = fij(a;) ™t = 27t € My(R;)
Hence

y = (1, )ier € lim My(R;).
el

Then xy = yr = 1 and hence z € GLy(R). Thus the homomorphism
(1) is surjective. d

Let R — R’ be a ring homomorphism. We state Swan’s definition of
the relative Ky-group (cf. [48, §3]):

Ko(R,R') Generators: (M, N, f) where M, N are objects of P(R)g
and f: R ®z M — R ®p N an isomorphism in P(R).
Relations:

o [(L,N,gf)l = [(L, M, [)] + [(M, N, g)]
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[ ] [(MQ, NQ, f2>] = [(Ml, N17 fl)] + [(Mg, Ng, fg)] if there is a com-
mutative diagram

04>R/®RM14>R,®RM24>R/®RM34>O

b

OHR/®RN1HR/®RNQHR/®RN3HO

K;(R,I) Let R be aring and let I C R be a two-sided ideal. We
define

GL,(R, 1) = ker(GLn(R) — GL,(R/I))
En(R’I) = <6ij(a)|a S I7 Za] S {17 s ,TZ}, i 7éj>
and set GLo(R, ) :=1im GL,(R,I), Ex(R,I) =lim E,(R,I).

PROPOSITION 1.21 (Relative Whitehead Lemma, [3, V.1.5 and V.1.9]).
Forn > 3,
En(R, 1) = [En(R), En(R, 1]

and for any n > 1,
[GL,(R),GL,(R,I)] C Es,(R,I).
Hence

Ew(R, 1) = [Ex(R), Ex(R,I)] = [GLoo(R), GLoo(R, I)].

We define the relative K;-group
=GL(R,1)/|GL(R),GLx (R, I)].

PROPOSITION 1.22 (Stable range theorem for relative K-theory). Let
R be a ring and let I C R be a two-sided ideal. Assume that R is a
finitely generated module over an integral domain or that R is semi-
local or that I is contained in the Jacobson radical of R.

e Surjective stability theorem: The canonical homomorphisms
GL4y(R,I) — Ky(R,I)
are surjective for d > 1. If R is commutative, then there is an

isomorphism 1+ 1 = K (R, I).
o [njective stability theorem: There are isomorphisms

Ki(R,1) = GLy(R,I)/E4(R, 1)
Ki(R,I) = GLyy1(R,I)/[GLgy1(R), GLgy1 (R, 1))
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for any d > 2.

PROOF. See [3, V.9.1, V.9.2] and [11, 40.41, 44.17]. O

Let ¢ : R — S and ¢' : ¥ — S’ be ring homomorphisms and assume
that the diagram

Ry

]

RLSa

is commutative. We define the K-groups Ky(R, R') and Ky(S,S") cor-
responding to the vertical arrows in the above diagram. We define the
following homomorphisms of K-groups:

® v.: Ko(R) — Ko(S), [M]w— [S®,M]
o v, Ki(R) — Kq(5), [(M, [f)]l—[(S®,M,ids ®, f)]
i (90790/)* : KO(R7 R,) - KO(S7 S,)a

[(M, N?f)] — [(S ®<p M,S®<p N,idsl ®<p’ f)]

It is not difficult to see that these homomorphisms are well-defined: If
M € Ob(P(R)), then there is an R-module L such that M & L = R".
But then

(S ®, M)® (S®, L)~ S &, (M®L)=S5",

and hence S ®, M € Ob(P(S)). Since the tensor product commutes
with direct sums, the above maps are homomorphisms.

LEMMA 1.23 (Morita invariance, [28, 6.7, 9.11]). The homomorphisms

Ko(R) = Ko(My(R))
[M] +— [R"®pr M]
] [R" @, (r) N] « [N]
Ki(R) = Ki(My(R))
(M, f)] — [(R"®r M, idg: ®p f)]
[(R" @, (r) N, idge @nr,(r) 9)] < [(N, 9)]

are 1somorphisms.
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We now assume that S € Ob(P(R)) and S’ € Ob(P(R')). For any S-
module M, let rgM be the R-module obtained from M by restriction
of scalars. (This is the abelian group M with scalar multiplication
r-m = p(r)m for r € R, m € M.) We define:

o Tr: Ko(S) — Ko(R), [M]— [reM]
o N: Ki(S) — Ki(R), [(M,[)]w [(rrM,f)]
e ITr: Ko(S, S/) — KO(R; R/)u [(M7 N7 f)] = [(TRM7 TRN7 f)]

Clearly, the composition of two norm (trace) maps is again a norm
(trace) map.

REMARK. Assume that S is a finitely generated free R-algebra of di-
mension n. For z € R*, we have

N([p(2)]s) = [z]r € Ki(R),

where ¢, [—]s and [—]g are defined as above.

We give an explicit description of the above norm map when S is a
semi-local ring that is finitely generated and free over R and R is com-
mutative (e.g. if S = A(Wy), R = A(W,) are Iwasawa algebras, where
W5 is a commutative open subgroup of the compact p-adic Lie group
Wh).

We work with the matrix description K;(R) = GLy(R)/Ex(R). Let
{vi}iz1..n be a basis of the left R-module S. For x € S*, we define
the elements y;; € R by the equations

n
vir = E YijVi for j=1,...,n.
i=1

Let y = (yi5)i; € GL,(R) be the corresponding matrix. Then

(3) N([zls) = [ylr = [dety]r = [ > sgn(o) Hyi,v(i)]R'

O’GSn

The first identity follows from the definition of the norm map. The
second equation follows from [50, lemma III.1.4].

Let R, R, S, S’ be rings as above. We define the homomorphisms
82K1<R,)—>K0(R,R/), [(Rl@RMaf)]'_)[(MﬂM7f)]
)‘:K0<R’R/)_>K0(R)7 [(MaN7f)]'_>[M]_[N]7
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where M, N are finitely generated projective R-modules. (Note that
by proposition 1.15,

Ki(R) = ([(R)", f)lln € N, f € Endp ((R)"))
C([(R'®@r M, f)]IM € Ob(P(R)s), f € Endp (R ®@r M))
C Ki(R),
and hence 0 is well-defined.)

We get the following exact sequence (cf. [48, §3] or [45, theorem 15.5]):
(4) Ki(R) — Ki(R) 2 Ky(R,R') 2 Ko(R) — Ko(R).

REMARK. Assume that S’ 2 R'®gS and that S — S and ¢’ : R — &'
are the natural ring homormorphisms. Then there is a commutative
diagram

K1 (S) —= K1 (') —2 Ko(8,8') 2= Ko(S) —= Ko(S")

T R S N &

K\(R) — K1 (R) —2% Ky(R, R') 2~ Ko(R) —= Ko(R).

LEMMA 1.24. Let D* be a bounded exact sequence of projective R-
modules. Then the kernels and images of all coboundary operators d* :
Dt — D™ are projective and

D! 2 kerd @ imd'.

Proor. This is clearly true for i sufficiently large. Assume we
have shown it for some fixed i € Z. Then ker d* = im d*~! is projective.
From the surjection D! — im d*~!, we get the decomposition D=1 =
ker d=! @ im d*~!. Hence ker d"~! is projective. O

We now assume that R’ = Rg is the localisation of a Noetherian ring R
by a (right and left) Ore set S C R. An R-module M is defined to be
S-torsion if Rg @z M = 0. Let HE be the category whose objects are
finitely generated S-torsion R-modules which have a finite resolution
by finitely generated projective R-modules. Let CE be the category
of bounded cochain complexes D*® of finitely generated projective R-
modules such that Rg ®r D*® is acyclic (i.e. Rg ®r D*® is an exact
sequence).
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PROPOSITION 1.25. Assume that 0 : K1(Rs) — Ko(R, Rg) is surjec-
tive. Then there are natural isomorphisms

Ko(R, Rs) = Ko(HE) = Ko(CE).

We first prove the following lemma:

LEMMA 1.26. Let M be a finitely generated free R-bimodule.

(1)
(2)

Let f: Rs ®r M = Rs ®@r M be an isomorphism of left Rg-
modules. Then there is s € S such that f(M)s C M.
M/Ms is a left S-torsion R-module.

PROOF.

(1)

By [29, 2.1.8], for every element x € RY, there is s € S such
that xs € R™ C R%. Let {m;}; be a basis of generators of M
and let s; € S be elements such that f(m;)s; € M. By [29,
2.1.8], there are elements s € S and r; € R such that s = s;7;.
Then f(M)s C M.

By tensoring the exact sequence

Rs - R— R/Rs — 0
with Rg, we get the exact sequence
Rs ®r Rs — Rg — Rs ®gr R/Rs — 0

of Rg-modules. Since s € Rj, the left arrow is surjective.
Hence R/Rs is a left S-torion R-module. There is an R-
bimodule isomorphism €, R = M. This defines an isomor-
phism €, R/Rs = M/Ms of left R-modules. By tensoring
with Rg, we get

Rs@RM/MSZO. O

PROOF OF PROPOSITION 1.25. We first describe generating ele-
ments of these groups. Let M be a finitely generated free R-module

and let

fiRs®RMﬁRS®RM

be an isomorphism of Rg-modules. Since 0 is surjective, Ko(R, Rg) is
generated by elements of the form [(M, M, f)]. We endow M with the
natural R-bimodule structure.
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By lemma 1.26, there is s € S such that f(M)s C M. Hence we can
write f = gs~! with s € S and ¢ : M — M an R-homomorphism.
Let H € Ob(HE) be an object of HE with a resolution 0 « H « P,
of finitely generated projective R-modules. Then clearly P, € Ob(Cs)
(via reindexing: P’ = P_;).

Let D® be an object of C# and let
d,: Rgs ®r D' — Rg ®g D'

be the map induced by the coboundary operator d* of D*®. By lemma
1.24,

Rs®p D' = kerdé9 ®imd, = imdg1 @imd’é.

We define an isomorphism ¢ by the following commutative diagram:

Dy, Rs ®@r D* - Dz, Bs @r D*H!
| |
@iez (im d%@f A im dgg“) _— @iGZ (im dg“ @ im déf”)

The isomorphisms of the lemma are given explicitly as follows:

Ko(R, Rs) — Ko(Hg), [(M, M, f)] = [M/g(M)] + [M/Ms]

Ko(Hg) — Ko(C¥), [H] — [P)]

Ko(C§) — Ko(R. Rs), [D*] — [P D*, €D D**',¢]

i€Z i€Z
Since Rs ®p g(M) = Rs @r M, we get that M/g(M) is S-torsion by
tensoring the exact sequence
0—g(M)—M— M/g(M)—0

of left R-modules with Rg. By lemma 1.26 (2), M/Ms is a left S-
torsion R-module. Hence it is clear that the above homomorphisms
are well-defined.

We define the following homomorphisms corresponding to the above
maps 0 and \:

9 : Ki(Rs) — Ko(H), [(Rs®@r M, [)] — [M/g(M)] + [M/Ms],

0: Ki(Rs) — Ko(CH),

(Rs ®r M, )] — [M — M] +[M = M],
\: Ko(H§) — Ko(R), [H]— Y (=1)'[P],
i€z
A Ko(C§) = Ko(R), [D?] = (-1)[D].

1€Z
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By construction, the homomorphisms of the lemma commute with the
s and X's. Hence, for A, B € {Ky(R, Rs), Ko(HE), Ko(CE)}, the
diagram

Kl( 4>K1 RS 4>A4>KO HKORS
K1 (R) — K (Rg) 2— B —2 Ko(R) — Ko(Rs)
is commutative with exact rows. The five lemma implies A= B. 0O

Let M be a left R-module and let N be a right R-module. An R-
antihomomorphism is a group homomorphism f : M — N with the
additional property f(m)r = f(rm) € N for r € R and m € M.

Let
Tr: M,(R) — R, (a;)i— Za“

be the trace map. Clearly, Tr is a left and rlght R—module homomor-
phism.

DEFINITION 1.27. Let S be a ring and let R be a subring of S. Assume
that S is a finitely generated free left R-module. Let Endg(S) be the
right R-module of left R-endomorphisms of S. We define the trace
antihomomorphism

Tr: S — R

(from the left R-module S to the right R-module R) to be the compo-
sition of the maps

S — Endg(S) & M,(R) - R,
where the first map is the antihomomorphism that assigns to x € S the
homomorphism of right multiplication by z, the central isomorphism is
the natural isomorphism of right R-modules and the map on the right
hand side is the right R-module homomorphism defined above.

REMARKS.

o Let {v;}i=1. n be aleft R-basis of S. For x € S, we define the

.....

elements y;; € R by the equations

ij:Zyijyi forj=1,...n
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Let y = (y45)i; € M, (R) be the corresponding matrix. Then

n

Tr(z) = Tr(y) = Zyii € R.

i=1
(Compare this with the explicit description of the norm map.)
e Since Tr(zy) = Tr(yx) mod [R, R] for z,y € M, (R) and since
Ar =1\ forall \ € R, r € R/[R,R],
the trace map induces the left R-module homomorphism
Tr: S/[S,S] — R/[R, R].

If R and S are topological R-modules, we get the continuous
homomorphism

Tr: S/[S,S] — R/[R, R].
Now assume v; € S* fort=1,...,n . Let

m:S=EPRy; - Ry, = R
j=1
be the projection map. Then y;; = m;(v;2) = m(v;2v; ') and hence

n

(5) Tr(x) = Zy“' = ZWO(VﬂVfl)-

i=1

5. Homological Algebra

In this section, we only fix notation. For definitions and proofs, we
refer to the literature ([49] and [33]).

Let A be an abelian category. We write K(A) for the homotopy cat-
egory of chain complexes in A and D(A) for the derived category of
A. (We obtain D(A) from K(A) by localising quasi-isomorphisms.)
We denote by D*(A), D~ (A) the full subcategories of D(.A) that arise
from the category of cochain complexes that are bounded below or
above, respectively. (For the definition of these objects, see [49, §10.1
-10.4].)

Let A, B be two abelian categories and let F' : KT (A) — K(B) be a
morphism of triangulated categories. Let

RF : D*(A) — D(B)
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be the (total) right derived functor of F (cf. [49, def. 10.5.1]). We
dually write LF' for the (total) left derived functors of a right exact
functor F.

Assume that 4 has enough injectives (respectively projectives). Let F :
A — B be an additive left (respectively right) exact functor. We denote
the induced morphism of triangulated categories K (A) — K (B) also
by F. Let X be an object of A and X*® be the corresponding complex
concentrated in 0. When R"™ (respectively L™) are the classical right
(respectively left) derived functors, we get
H"(RF(X*)) = R"F(X)
(respectively H"(LF(X®)) = L"F (X))

(see [49, Corollary 10.5.7]).

We assume that A has enough injectives. Let A® be a cochain complex
in A and consider the right derived functor

RHom%(A®,—) : D" (A) — D(Ab),
where Ab is the category of abelian groups (cf. [49, def. 10.7.2]). If G
is a p-adic Lie group and A, B are left A(G)-modules, then Homgz, (A, B)
is a left A(G)-module, where the A(G)-module structure is given by
(9f)(a) == gf(¢97"a) for f € Homg, (A,B), a € A and g € G. Hence,
for a cochain complex A* of left A(G)-modules, we may define the right
derived functor

RHomj (A*,—): D*(B) — D(B),
where B is a suitable category of left A(G)-modules.
For a cochain complex B*® in A, we define the shifted complex B[t]°,
t € Z, by B[t]" := B with differentials d, := (—1)'dz". By [49,
§10.7], we get
(6) H"(RHom%(A*, B*)) = Hompa)(A®, B[—n]®)

and there is a similar equation for RHomyj .

For two cochain complexes A®, B® of R-modules, we define the complex

Tot®(A® @p B*)" = @ AP @p BY.
p+g=n
This defines the functor
Tot®(A®* ®p —)* : K(R-mod) — K(Ab),

where R-mod is the category of all R-modules. Since R-mod has
enough projectives, the left derived functor

LTot®(A®* @z —)* : D~ (R-mod) — D(Ab)

exists.
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DEFINITION 1.28. The total tensor product of A®* and B*® is
A® ®@% B* := L Tot®(A® @ —)(B*) € Ob(D(Ab))
(cf. [49, definition 10.6.1]).

Let G be a profinite group and let D(G) be the category of discrete
A(G)-modules. Let C(G) be the category of compact A(G)-modules.
By [33, lemma 2.2.5] D(G) has enough injectives. By Pontryagin du-
ality, C(G) is dual to D(G) and therefore, it has enough projectives.
The fixed module functor —¢ is a left exact functor from D(G) to
D(1) = Ab. The cofixed module functor —g (with Mg := M /{(gm —
mlg € G,m € M)z,) is a right exact functor from C(G) to C(1).

DEFINITION 1.29. We define
RT(G, M) := R(=%)(M) € Ob(D(D(1)))
for an object M of D(G).

REMARKS.

o R(=)(M") = L(—¢)(M)" (cf. [33, 2.6.9]),
e R(—%)(M) = RHomng)(Z,, M),
o L(—¢)(M) =12, ®H/§(G) M (cf. [49, lemma 6.1.1]).



CHAPTER 2

Noncommutative Iwasawa Theory for Totally Real
Fields

We fix a prime number p # 2. Our aim is to study the main conjecture
for field extensions F.,|F with the following properties:

ASSUMPTION 2.1.

e F|Q is a finite field extension.

o [ |F is an infinite Galois extension.

o G :=G(Fx|F) is a compact p-adic Lie group.

o Only finitely many primes of F' ramify in F.

o F, contains F(jye)", the mazimal real subfield of F(jiyee).
o [ 1s totally real.

o W(EF|F) =0 (cf. definition 2.27)

Let X be a finite set of primes of F' containing all primes ramified in
F|F. Let X = X5 (Fx|F) be the Galois group of the maximal abelian
pro-p extension of F.,, unramified outside ¥, considered as a A(G)-
module. X is a fundamental arithmetic object. Following [48], we
define an Ore set S C A(G) and conjecturally define the zeta function
£ =E(Fx|F) € Ki(A(G)g). The main conjecture states that essential
arithmetic information of X can be calculated from the zeta function
€.

REMARK. The main conjecture for elliptic curves is studied in [48] and
[8]. In this situation, the fundamental arithmetic object X is defined
to be the dual of the Selmer group.

1. Algebraic Part

Let P be a compact p-adic Lie group with a distinguished surjective
homomorphism P—»Z,. In this subsection, we recall the definition of
the subset S(P) C A(P) of [48] (in the form given in [8]) and show
that this set is multiplicatively closed and satisfies the Ore condition.
Hence, the localisation A(P)gp) exists. The ring A(P)gp is semi-
local with stable range two. The norm map N : A(P)gp) — AMU)sw)
for open subgroups U of P exists. For f € Kl(A(P)S(P)) and an

29
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Artin representation p : G — GL,(Q), we recall the evaluation of f
at p given in [48] and [8]. We need this later for the definition of
the p-adic zeta function. We show that the evaluation map behaves
naturally with respect to induction, inflation and direct sum of the
Artin representation. Finally, we prove that

0: Kl(A(P)S(P)) - KO(A(P)7A(P)S(P))

(the connecting homomorphism of K-theory) is always surjective.

DEFINITION 2.2. We define
S(P) = S(P,w)
= {f € A(P)|A(P)/A(P)f is finitely generated as a
A(ker w)-module}.
LEMMA 2.3. Let P be a pro-p p-adic Lie group with a surjective homo-
morphism w : P—Z,. Define
Yp  A(P) — NZp)—TF,[Z,] = F,[[T]]
to be the continuous ring homomorphism induced by w. Then

S(P) = A(P) \ ker ¢p.

PRroor. For f € A(P), we have the equivalences
fes(p)
<  A(P)/A(P)f is a finitely generated A(kerw)-module

& F[[T]/Fp[[T]J¢p(f) is finite

(see [8, lemma 2.1]). The last assertion clearly implies ¥p(f) # 0.
Assume f € A(P) \ kerip. Then, by the division lemma (cf. [4, ch.
VII, §3, no. 8]), F,[[T]]/Fu[[T]]¢p(f) is a finitely generated F,-module
and hence f € S(P). O

REMARK. The above set (for pro-p groups, in the form A(P) \ ker ¢)p)
was first defined in [48]. The description of definition 2.2 was first
given in [8].

LEMMA 2.4. In case P is one-dimensional (i. e. #kerw < c0), S(P) is
the set of elements f € A(P), whose image in A(P)/pA(P) is regular.
For P = Z,, we have S(P,idp) = A(P) \ pA(P).

Proor. We only prove the first assertion since the second one is
obvious. Let ¢ : A(P) — F,[P] be the canonical projection. For a
ring R, define the prime radical N'(R) to be the intersection of all left
prime ideals of R. From [1, §4.1], we get that F,[P] is semiprime,
i. e. N(F,[P]) = 0 (this result is due to Lazard). Then obviously
YN (F,[P]) = kervp = pA(P). We use [8, proposition 2.6] to com-
plete the proof. O
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Let Sz, be the category whose objects are compact p-adic Lie groups P
with a distinguished surjective homomorphism w : P—7Z, and where
the set of morphisms from (P, w;) to (P, ws) is the set of commutative
diagrams

P1 e P2
-k
Ly —— Zp,
where the lower homomorphism Z, — Z, is injective.

If (P,w) € Ob(Sz,) and U is an open subgroup of P and V' is a closed
subgroup of kerw, then imw|y = p"Z, and we can define the homo-
morphisms

wU:Uﬂp"Zp%Zp
wpy : PIV = 7Ly, gV — w(g).

Then (U,wy) is a subobject of (P,w) and (P/V,wpv) is a quotient
object of (P,w). Without further reference, we will always assume
that subgroups and quotients of P of the above type are equipped with

the above homomorphisms. In particular, we write S(U) := S(U,wy)
and S(P/V) = S(P/V,u)p/v).

THEOREM 2.5. S(P) satisfies the left and right Ore condition, i. e. the
localisation A(P)g(py exists. A(P) is S(P)-torsion free, and hence the
canonical homomorphism A(P) — A(P)gpy is injective.

PROOF. [8, theorem 2.4] O

COROLLARY 2.6. Let Rng be the category of rings and let Sg)) be the
category of pro-p groups in Sz,. There is a functor

Ag: Sg;) — Rng

that sends an object P of Sg;) to A(P)spy € Ob(Rng).

PROOF. The fact that Ag sends objects of Sg;) to objects of Rng
follows from the theorem.

Let ¢ : (P1,w1) — (Py,wy) be a morphism in Sg;). Put S; := S(P,w)
and Sy := S(Py,ws). Fori=1,2, let

i = p, : A(P) — T, [[T7]]
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be the homomorphism defined in lemma 2.3. Then there is a commu-
tative diagram

A(P) —L A(Py)
id’l lwz
Fp[[T]]—— F,[[T]].
For x € A(P,), x € kerv; implies f(z) € kert),. Hence
f(S1) C Ss.

Now the universal property of the localisation implies the existence of
a homomorphism

As(f) : A(P1)s, — A(P2)s, - O

PROPOSITION 2.7. The ring A(P)gp) is noetherian.

Proor. This follows from corollary 1.11 and proposition 1.4. [

PROPOSITION 2.8 ([8, proposition 4.2]). For (P,w) € Ob(Sz,), the ring
A(P)gpy is semi-local. In particular, we get for d > 2
K1(A(P)g(p)) = GLa(A(P) gp)) [ Ea(A(P) 5 p))

Ki(A(P)s(p)) = A<P>§(P)/[A(P)§(P)?A<P)§(P)]‘

PROPOSITION 2.9 ([8, proposition 2.3]). For a finitely generated left
or right A(P)-module M, we get: M is an S(P)-torsion module if and
only if M s finitely generated as a A(kerw)-module.

PrOPOSITION 2.10. Let U be an open subgroup of P. Then
A(P)sp) = MP)sw)

and this ring is a finitely generated free A(U)sn-module of dimension
(P:U).

ProoOF. We first show that S(U) is also an Ore set in A(P). The
proof of this fact is essentially the same as the one given for S(U) C
A(U) in [8, theorem 2.4]. We put H := kerwp and H' := kerwy =
HNU. Note that (H : H') < co. For f € S(U), the left A(H')-module
A(P)/A(P)f and the right A(H')-module A(P)/fA(P) are finitely gen-
erated. By proposition 2.9, for every x € A(P), there are elements
s,s" € S(U) with sx € A(P)f and zs’ € fA(P), i.e. the Ore condition
is satisfied.

For any multiplicatively closed Ore set S C A(P), define
Ssat == {x € A(P)|3y € A(P) such that yz € S}.

Then A(P)g = A(P)g_,- Since every p-adic Lie group contains an open
pro-p subgroup (see proposition 1.9), we have proven the first part of
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the proposition when we can show that S(U)su = S(P) for pro-p open
subgroups U of P. The following argument is due to R. Sujatha.

“C” Let x be an element of S(U)sa. Then there is y € A(P) such that
yr € S(U). We get the natural surjection

A(P)/A(P) - yz—A(P)/A(P) - x

of A(H)-modules. Since A(P)/A(P)-yz is finitely generated over A(H’)
and hence over A(H), this is also true for A(P)/A(P) - x. Hence x €
S(P).

“D” Let z € S(P). Since A(P)/A(P) - x is finite over A(U)/A(U) N
A(P) -z, this implies that A(U)/A(U)NA(P) -z is a finitely generated
A(H)-module.

Let ¢y : A(U) — F,[[T]] be the homomorphism defined in lemma 2.3.
Then S(U) = A(U) \ ker ¢oy. Assume & € S(U)gqe. Then S(U)NA(P) -
x = 0, or equivalently A(U) N A(P) -z C kerty. Hence there is a
natural surjection

A(U) /(A(U) NA(P) - :p) > A(U)/ ker by

But A(U)/ keryy = F,[[T]] is not finitely generated over A(H’), and
this yields a contradiction.

The fact that for any open subgroup U of P, A(P)gw is a finitely
generated free A(U)g)-module of dimension (P : U) is obvious. [

We will always write A(P)g for A(P)g(p), since, by the above lemma,
there is little chance of confusion.

COROLLARY 2.11. Let P, U be as in the preceding lemma. There is a
commutative diagram

Ki(A(P)s) —— K1(A(U)s)

Ki(A(P)) —= K (A(U)).

Let Q be an algebraic closure of Q. We endow Q _with the discrete
topology. In the following, we fix embeddings Q — Q, and Q — C.

DEFINITION 2.12. An Artin representation of a compact p-adic Lie

group P is a continuous representation P — GL,(Q), n € N.

REMARK. An Artin representation p : P — GL,(Q) factors through

P/U — GL,(Q), where U is an open subgroup of P. Hence, the image
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of pin GL,(Q) is finite. Let
L= QP({p(g)U’g € P> Z?] = 17 cee 7n}>

be the field obtained by adjoining all entries of elements of the image
of p. Then L is a p-adic number field (i. e. a finite extension of Q,) and
we can realize p over L. Hence p is isomorphic to a representation

p:P— GL,O),
where O is the ring of integers of L.

Let P be a compact p-adic Lie group with a surjective homomorphism
w: P—»Z =17, Put S := 5P w). We will now define the evalua-
tion of an element f € K(A(P)g) on certain representations of P (cf.
8, section 3] or [48, section 5.2]). Let O be the ring of integers in
some p-adic number field L and let p : P — GL,(O) be a continuous
representation. Then p extends to a continuous ring homomorphism
p:A(P)— M,(O). Set

Ao(P) :== O[P] = lim O[P/U] = O @y, A(P).

U<,P

Let Qo(Z) := Q(Ao(Z)) be the quotient field of Ap(Z). We extend
the group homomorphism

P — (M,(0) @2, A(2))* = GL,(Ao(2)). 0 = p(0) © (o).

to the continuous ring homomorphism

8, : A(P) = M,(O) &2, A(Z) = My(Ao(2)).
By [8, lemma 3.3], this extends to a ring homomorphism

3, A(P)s — My(Qo(2).

Let € : Ap(Z) — O be the augmentation map and define

p = kere, Ao(2), = (Ao(Z)\ p) Ao (2).
Then € extends to a map

e:No(Z), — L.

We can now define a map as the composition
(1) K(AP)s) — Ki(Ma(Qo(2))) = Qo(Z2)* — LU {o0}.

Here, the first map is the homomorphism induced by ®,, the isomor-
phism in the middle is given by Morita invariance and the third map
is © — e(x) for v € A(Z), and x — oo for x & A(Z),.

DEFINITION 2.13. The evaluation of an element f € K;(A(P)g) at the
continuous representation p is the image f(p) € L U {oco} of f under
the homomorphism (7).
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REMARK. We get the following basic property of the evaluation map:
If g is an inverse image of f under the natural map

A(P)Z N A(P) — K1 (A(P)s),
where A(P)§ = (A(P)s)*, then f(p) = det(p(g)).

LEMMA 2.14. Let f be an element of K1(A(P)s) and let O be the ring
of integers in a finite extension of Q,. We get the following properties
of the evaluation homomorphism:

(1) Let U C P be an open normal subgroup and let x be a one di-
mensional representation of U. Let N : K1(A(P)g) — K1(A(U)s)
be the norm map. Then

N(£)(0) = f(indp(x))-
(2) Let U be a normal subgroup of P contained in the kernel of
wp and let p, : Ki(A(P)s) — K1(A(P/U)s) be the projection
map. Let p: P/U — GL,(O) be a continuous representation.

Let infi/U(p) : P — GL,(O) be the composition of the natural
surjection P — P/U with p. Then

Fnfr Y (p)) = pa(£)(p).

(3) Let p, p' be two continuous representations of P. Then

flo®p) = flp)f(p).

PROOF. (1) Recall that the groups P and U are equipped with
the surjective homomorphisms wp : P — Z and wy : U — 7/,
where Z' C, Z = 7Z,. Since wp|U = wy, we may denote both
maps by w. Put p :=ind%(x) and n := (P : U). By definition
of the evaluation map, it suffices to prove the commutativity
of the diagram

Ki(A(P)g) ——— K1 (Qo(2))
Ki(A(U)s) ———— K, (Qo(2"))

Let (v4)i=1,.n be a system of representatives of P/U in P.
Then it is a A(U)-basis of A(P) and a A(U)g-basis of A(P)g.
It determines the isomorphisms

AP) = AU)" AP)g = AU

of A(U)-modules and A(U)g-modules, respectively. We con-
sider O as a A(U)-module via y. For any right R-module M,
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let Endg (M) denote the left R-module of right R-homomorphisms
on M. Then the above isomorphisms induce the isomorphisms

o Endy@ s (A(P)g) — M, (A(U)s)
B Auto(A(P) @xw) O) — GL,(0)

of A(U)g-modules and groups, respectively. Let N be the com-
position

A(P)g = Endyp) (A(P)g) — Endaw)s(A(P)g)
— M,(A(U)s)

and let p be the homomorphism
p: P — Auto(A(P) @51 O) - GL,(0).

Put

151

A= € M,(Qo(2)).

VTL
We show that there is a commutative diagram

®p

A(P)g M, (0) ®@z, Q(Z)

lN lXHAXAl

M) MO @2, QZ1) > M, (O @7, Q(Z)).

Since all maps in the above diagram are continuous ring ho-
momrophisms, it suffices to prove commutativity for elements
o € P. For every i € {1,...,n}, there is exactly one j €
{1,...,n} such that

V,0 = Tijyj

for some 7;; € U. For all other j, we put 7;; := 0 € A(U)s.
Then N(o) = (755)ij € M,(A(U)s) and hence
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b= (w0n) (x %>w<a>)ij(w<uj>—l)ij

= (o)l )
o)

- (Mn<¢>x> oN) (o),
where equation () follows from the definition of 7;; (cf. equa-
tion (8)). This completes the proof of (1).
(2) We write p : P/U — GL(V) and inf%(p) : P — GL(W). The
diagram

Thus we get

q)mfP(p)

A(P)s —> M,(Qo(Z))

|

(P/U)SHM (Qo(Z

is clearly commutative. By passing to the corresponding K-
groups, we get the commutativity of the diagram

K\(A(P)s) — K (M, (Qo(2)))

g
Ki(A(P/U)s) —% Ky (Mo(Qo(2))).

(3) This follows directly from the definition of the evaluation ho-
momorphism. Il

REMARK. Let x : U — O be a continuous character and put V :=
A(P) ®@xwy O, where x induces the A(U)-module structure on O. Let

p: P —Endo(V), g+ (z@y— (92) ®y)

be the representation induced by x. Then there is a commutative
diagram

Ki(A(P)) P K (Endp(V))
Kl(EndA(U)A(P)) —— K1 (End@ (U) O))
Ki(A(U)) - K1(0),

where the two lower isomorphisms are given by Morita invariance. The
above lemma generalises this fact.



38 2. NONCOMMUTATIVE IWASAWA THEORY

LEMMA 2.15. Let P be a compact p-adic Lie group with a surjective
homomorphism w : P—Z := Z,. Then the connecting homomorphism
of K-theory

0 : Ki(A(P)g) — Ko(A(P), A(P)g)
is surjective. In particular, proposition 1.25 holds for R = A(P) and
Rs = A(P)4.

PROOF. We use a generalisation of [8, proposition 3.4], given in
24, lemma 1.5].

We define a homomorphism 1 on Ky(A(P)) and show that 7 is injective
and no A =0. Then A =0 and we get the exact sequence (cf. (4))

9)  Ki(A(P)) = Ki(A(P)s) 2 Ko(A(P), A(P)s) — 0.

Let W be a pro-p open normal subgroup of G and set A = P/W. Let
V be the set of irreducible representations of A over @p and let L be
a fixed finite extension of @, such that all representations in V can be
realised over L. We define n to be the composition of natural maps

Ko(A(P)) ™ Ko(Zy[A]) & Ko(Qy[A]) ™ Ko(LIA]) * [ ] Ko(L).
peV
Here, 7, is the isomorphism Ko(L[A]) =[], Ko(M,, (L)) = ], Ko(L)
(n, is the dimension of p), where the first map is induced by the Wed-

derburn decomposition of L[A] and the second map is Morita invari-
ance.

We will prove injectivity of n; in a short lemma below. Injectivity of
ne and 713 is well known (see [42, chapter 16, theorem 34, corollary 2]
and loc. cit. §14.6, respectively).

In order to show 1o A = 0, we give an alternative description of

n= (), : Ko(A(P)) — [ ] Ko(L)

peEV
by writing 7, as the composition

(10)  Ko(A(P)) ™ Ko(Ao(P)) % Ko(Ao(2)) = Ko(0) & Ko(L),
where the composing maps are defined as follows: The homomorphisms
£z, €1 and j are induced by the natural surjections Ap(P)—Ao(Z),
Ao(Z)—O and the injection O — L, respectively. For a representa-
tion p: P — GL,(O) and a finitely generated projective A(P)-module
M, we set

tw,(M) = M @, O,
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and endow tw,(M) with the diagonal action, i.e. o(m ® z) = (om) ®
(p(o)z) for 0 € P, m ® z € tw,(M). Obviously, this induces a homo-
morphism

tw, : Ko(A(P)) — Ko(Ao(P)).
It is easily verified that the composition (10) indeed equals 7,.

Let U be an object of HQ(P) and choose a finite projective resolution
Qe of U. Then

ez 0w, 0 MUT) = 3 (-1 W (@era] 2 (~ 1) [Hi(tw,(Qu)iers)]

— Z(—l)i[Hi(kerw,th(U))]

where the identity () follows from [50, chapter II, proposition 6.6] and
the last identity follows from the definition of homology groups.

By [8, lemmata 3.1 and 3.2], H;(kerw,tw,(U)) are finitely generated
torsion A(Z)-modules for all ¢ > 0. Since Ky(Ap(Z)) = Z via the rank
map,

[Hi(kerw, tw,(U))] =0 € Ko(Ao(Z))
for all i > 0. Hence no A([U]) = 0. O

LEMMA 2.16 ([8, lemma 3.5]). Let W be a pro-p open normal subgroup
of P and put A = P/W. Then the canonical map

Ko(A(P)) — Ko(Zy[A])
18 1njective.
PROOF. By [28, proposition 4.3], we can write every element of
Ko(A(P)) in the form [M] — [A(P)"], where M is a finitely generated

projective A(P)-module and n € N. Assume that [M] — [A(P)"] is an
element of the kernel of this map. Then there is an isomorphism

a: My @ Z[A] = Z,[A] ™,

where My = M/(oc —1|loc € W)M is the module of W-coinvariants.
Since M is projective, « lifts to a homomorphism

B:M®AP) — AP)T".

It suffices to show that (3 is an isomorphism. Since (-)y is right exact,
(coker )y = 0. Since W is pro-p, the augmentation ideal I(WW) is
contained in the Jacobson radical

JAW)) = pA(W) + 1(W)
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of A(W) (cf. [33, proposition 5.2.16]). Hence, by the topological
Nakayama lemma, coker = 0. We take W-homology of the short
exact sequence

0—ker — M@®AP) — AP)™" — 0.
Since A(P) is a free A(W)-module of finite rank, we get
Hy(W,A(P)"™) = 0.
This yields the short exact sequence
0 — (ker B)w — My & Z,[A]" = Z,[A]"™ — 0,

and we get (using again Nakayama’s lemma) ker 3 = 0. U

2. Arithmetic Part

For a number field K, we denote by K¢ the cyclotomic Z,-extension
of K. (K% is the fixed field of the torsion part of G(K (pp=)|K)
in K(pp).) Let Fo|F be an extension of number fields that satis-
fies assumption 2.1. Put G := G(Fx|F), I' :== G(F¥|F) and S :=
S(G,G—TI"). If G has elements of order p, then X = Xs(F|F)
may not have a finite resolution by finitely generated projective A(G)-
modules. This prevents us from mapping X in the K-group

Ko(AG), A(G))-
In our situation, where G may have elements of order p, we define a

cochain complex which is closely related to X and plays a role similar
to that of X in case G has no element of order p.

Let ¥ be a fixed finite set of primes of F', such that all primes which
ramify in F,.|F are contained in 3. For any field F', F' C F' C Fy,
we denote the set of primes of F’ lying over primes of ¥ also by .

LEMMA 2.17. ¥ contains all primes of F which divide p.

PROOF. Let P be a prime of F,, which divides p, ' := P N Fve
and p := PN F. By [33, proposition 11.1.1 (ii)], P’ ramifies in F|F,
and hence P is ramified in F|F. That is, p € X. O

Let Q,/Z, be the A(G)-module with trivial action of G. For any A(G)-
module M, we define the associated complex M® (concentrated in 0)
by M° := M and M* := 0 for i # 0.

DEFINITION 2.18. Let

C* = Cxy(Fg|F)*
-~ Roms, (RI?,(Spec Or [1/T).Q,/Z,). (Qy/2,)")
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be the object of the derived category D(P(A(G))), where Q,/Z, is the
locally constant sheaf on the étale site of Spec Op,_[1/X].

For an intermediate field F” of F. | F, let (F')s(p) be the maximal pro-p
extension of F” unramified outside X. We put Gy := G((Fxo)n(p)| Fxo)-

Let My, be the maximal abelian pro-p extension of Fj, unramified out-
side 2. We set

X = Xz(FOO‘F) = G(ME|FOO) = Gz/[Gz, Gz]

For 0 € G(F|F), let 6 be an inverse image of ¢ under the natural
map G(Mg|F)—G. By setting o -z := 626~ ! for 0 € G, x € X, we
give X a A(G)-module structure.

LEMMA 2.19. The cohomology groups of C* are given as follows:
HO(C.) = Zyp
H ' (C)=X

H'(C®*) =0 fori¢{0,—1}

PrOOF. For any A(G)-module M, we set M := Hom(M,Q,/Z,).
Since Q,/Z, is a direct limit of finite abelian groups of p-power order,
we get

(11) RT4(Spec Op[1/X],Q,/Z,) = RI'(Gx,Q,/Z,).
Hence

Hi(C.) = Hii(GZa Qp/zp)v-

Let U be a pro-p open subgroup of G and let Fy C F,, be the fixed
field of U. Then F,.|Fy is a pro-p extension unramified outside ¥ and
hence

(Foo)s(p) = (Fv)s(p).
By [33, cor. 10.4.9(iii)],

scdy G((Foo)s(P)|(Fu)™%) = sedy G((Fu)s(p)[(Fy)™) < 2.
Since Gy, = G((Fy)s(p)|F) is a closed subgroup of
G((Fo)s(p)| (1))
we get (using [33, proposition 3.3.5])
scd, Gy, < 2.
This implies (since H(Gyx,Q,) = 0 for j > 1 by [33, 1.6.2¢])
H'(Gx,Q,/Z,) = H™(Gx,Z,) =0 for alli #0,1.
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We get
. : 1
HO(O ) = (Qp/Zp)v = (hLQ EZ;D/ZP)V
1
= li_(_an/Zp)v = liLnZ/an = Zyp.
We have H™!(C*) = (GY)Y = X. O

Let U C G be an open subgroup and let V' C U be a normal subgroup.
Let Fy C F, be the fixed field of V.

DEFINITION 2.20.
CY(.LV = RHom%p (BT (Spec Or, [1/X], Qy/Zy), (Qp/Zp)*)
€ Ob(D(P(A(U/V)))).

LEMMA 2.21.
AU/V)® ®]/L\(U) C*=Chy

PRrooOF. Recall that
RO(W, A)" = R(=")(A)" = L(-w)(AY) = Z, ®f ) A’
for a group W and a A(W)-module A. Hence, due to (11),
C* =17, ®H/;(Gz) Ly
Chy =2y ®%(G’E(Fv)) Ly,
where Gx,(Fy) := G((Fv)s(p)|Fv). Since A(U/V) = Zpy@acv)A(U), we
have A(U/V)® = Z, ®H&(v) A(U). Since Fy|Fy is pro-p and unramified
outside X, we get the exact sequence
1—>G2—>G2(Fv>ﬁv—>1
By the Hochschild-Serre spectral sequence (with respect to the above
exact sequence), we get (cf. [49, exercise 10.8.5])
Cov = Ly OXGy(ry)) Lo

= Zy ®%(V) Ly ®]}\(Gg) Ly

= (Z, @5y AMU)) @50y (Zp @Ky Lp)

= AU/V)* @5 C°. O

We fix the following objects assigned to our extension F,.|F:

o [:= G(F™|F)~1Z,
o H :=G(Fx|F¥) = ker(G—T)
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o S :=95(G,G—T) ={f € AG)|A(G)/A(G)f is finitely gen-
erated as a A(H)-module} C A(G)

Let K |K be a Z,-extension over a totally real number field and let ¥
be a finite set of primes of K that contains all primes lying over p. Let
K, = K%% be the fixed field of p"Z, and let ¥, be the set of primes
of K,, lying over a prime of ¥. For any prime p of K, let UP := le{n,p
be the group of units of K, . Put U, := [[,cx UF. Let Ej, be the
image of O , the group of units of K,,, under the diagonal embedding
in U,. Let E, be the topological closure of E,,.

DEFINITION 2.22. The Leopoldt defect of K, is defined to be the inte-
ger 0,, such that the Z,-rank of the pro-p part of E, is [K,, : Q] —1—J,.

CONJECTURE 2.23 (Leopoldt). We say that the weak Leopoldt conjec-
ture holds for K. |K when 6, is bounded independent of n. We say
that the Leopoldt conjecture holds for K when &y is zero.

For n € NU {00}, let L, be the maximal abelian unramified extension
of K,, and let M,, be the maximal abelian extension of K,, unramified
outside X,,.

The following two lemmata are applications of [51, §13.1].
LEMMA 2.24. Forn € N, G(M,|L,) = U, /E,.

PROOF. By class field theory,
C(My|L,) = U,/ (U, 0 BT
where U, := ]y, U}. Hence it suffices to show that
U, NK*U! = E,,.

The inclusion D is plain. We prove the other inclusion. Since

KXU' = (O K>*U,Uy

and B
it suffices to show that
U, N KXU'U™ c E,U™
forallm > 0. Let x € K*, v € U] and u € U} be such that zu'u € U,,.

Then zu' € U,. Since the p-component of elements of U, at p € ¥ is
1, this implies x € E,,. Hence zu' € E,. Thus we get

zu'u € E,UT. O
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LEMMA 2.25. Assume that the weak Leopoldt conjecture holds and that
K containes Q. Then the pro-p part of G(Ms|Ls) is a finitely
generated Z,-module.

PROOF. For m € N and p € %, let U"? := {z € UP|z = 1 mod
p”}. Then for p € X, p|p, there is m > 0 such that the logarithm
homomorphism induces the isomorphism

MP A~ T A ~ ey f
Un 2 p 2 OKn,p 2 pr P’

where e, is the ramification index and f, is the inertia degree of p over
Q. Hence there are integers a,,, € N such that

Uﬁ = M(Kn,p> X U:an = Hg—1 X Hpamp X Zzpfp7

where () is the group of roots of unity of * and g is the group of [-th
roots of unity. Since K, is totally real, we have u(K,) = {£1}. Hence

<H M(Kn,p)(p)> x ZH O x Qy

ped,

I

Un

I

En ZLKn:Q]flftsn % Q2,n

(H ,l/bpan»P) X Zzl,+6n X (Ql,n/QQ,n)7

peESn

I

Un/E,

where @)1, and ()2, are profinite groups with trivial pro-p part. Since
G(My|Loo) = llnn G(M,|L,), this implies

14600
G(Meo| Loo) = (lin H Np‘““") X (@Zp> X (lin Ql,n/QQ,n) )

nopeX, n n
where 0o, = lim,,_., 0, < co. Clearly, linn Z, is always a subgroup of
Z,, and hence has finite Z,-rank. Let p € X be a prime. By the follow-
ing lemma 2.26, p is finitely decomposed and hence @n Hpnlp T
(where the product is over all primes p,, € ¥, lying over p) is a quotient
of Zy, r < oo. O

LEMMA 2.26. There is no prime q € Q that is completely decomposed

in Qve.

PRrROOF. Let ¢ € Q be a prime number. Since ¢ # 1 mod p" for
some n > 1, ¢ is not completely decomposed in Q(pp~) (cf. [51,

theorem 2.13]). Hence G(Q(pp=)qQ,) # 1 and G, is the pro-p part of
this group.

Assume that ¢ is completely decomposed in Fy. Then every prime
qlg of Q(u,) is completely decomposed in Q(p,n), i.e. splits into p™~*
distinct primes. Let f, be the minimal positive integer such that ¢/ =
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1 mod p™. By [51, theorem 2.13], ¢ splits into % primes in Q(fim ).
Therefore,

o(p") -l ©(p)

fn fl
or equivalently f, = f; for all n > 1. That is, ¢/* = 1 mod p" for all
n > 1 and hence ¢ € {+1}. Contradiction. 0

For any field K, let Lx be the maximal abelian unramified pro-p ex-
tension of K.

DEFINITION 2.27. The Iwasawa p invariant of F..|F' is defined to be
zero if and only if there is a pro-p open subgroup H’ of H such that
G(Lp,,|Fg) is a finitely generated Z,-module. In this case, we write
1(F|F) = 0.

CONJECTURE 2.28 (Iwasawa). For any number field K, the p-invariant
w(KY\K) is zero.

Ferrero and Washington proved this in case K|Q is abelian (cf. [15] or
[51, theorem 7.15]).

REMARK. There are non-cyclotomic Z,-extensions such that x> 0 (cf.
[23]).

PROPOSITION 2.29. X = Xy (F|F) is an S-torsion module if and
only if W(Fw|F) = 0.

ProoF. We follow the proof given in [24, lemma 1.7].

By proposition 2.9, X is S-torsion if and only if X is a finitely generated
A(H)-module. By [33, proposition 5.2.16], A(H') is a local ring and
hence, by the topological Nakayama lemma (cf. [33, lemma 5.2.18]),
X is a finitely generated A(H)-module if and only if X is a finitely
generated Z,-module.

Let Fy := (F)x(p) be the maximal pro-p extension of Fj, unramified
outside . There is the five term exact sequence
0 — H'(H') — H'(G(Fs|Fir)) — H'(G(Fe|Fo)™ — H*(H')

of cohomology groups with coefficients in Q,/Z,. We dualise this se-
quence and get the exact sequence

HQ(H/,ZP) i XH/ — G(M2|FH/) — Hl(Hl,Zp) i 0,

where My is the maximal abelian pro-p extension of Fys (equivalently
of F,) unramified outside 3. Since

Hi(H',Z,) = TOI"A(H/)<ZP7 Zy)

i
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(cf. [33, proposition 5.2.6]), and since Z, has a resolution by finitely
generated projective A(H')-modules (cf. [46, theorem 5.1.2]), the Z,-
modules H;(H',Z,) are finitely generated for all ¢ > 0. Hence Xy
is finitely generated over Z, if and only if G(Mx|Fy) is finitely gen-
erated over Z,. Let K be an intermediate field of Fy/|F' such that
G(Fu|K) = Z,. (K exists since there is a surjection G/H'—Z,.) By
(33, theorem 10.3.25], the weak Leopoldt conjecture is true for Fy|K.
Hence G(Msx|Lp,,) is a finitely generated Z,-module (see lemma 2.25).
Since G(Lp,,|Fg') is a finitely generated Z,-module if and only if
w(EFy|F) = 0, this proves the theorem. O

REMARK. If Iwasawa’s conjecture is true, then X is always an S-torsion
module.

COROLLARY 2.30. If i(F|F) = 0, then C* € Ob(CQ(G)) and hence we

can write

(C*] € Ko(C5“) = Ko(A(G), A(G)s).

REMARK. Let A(G)-modg.ors be the category of finitely generated S-
torsion A(G)-modules. For any ring R, let gl.dim R € NU {oco} be the
global dimension of R, i. e. the supremum of the set of projective di-
mensions of all R-modules. (The projective dimension of an R-module
M is the minimal length of a finite projective resolution of M, if such a
resolution exists, and oo otherwise.) Let cd,(G) be the p-cohomological
dimension of G. By [6, theorem 4.1],

gl.dim A(G) = gl.dim Z,, + ¢d,(G).

Assume that G is a compact p-adic Lie group which contains no element
of order p. By proposition 1.12, this implies ¢d,(G) < co. Since Z,, is
a principal ideal domain, we have gl.dim Z, = 1. Hence gl.dim A(G) <
o0o. That means

HAD = A(G)-mods.gors.

By corollary 1.18, every element in K;(A(G)g) may be represented by
a 1 x l-matrix. We then get

I[(A(G)g, )]) = [coker f] = [MG)/A(G) f] € Ko(A(G)-mods.tors)
it f e AG)ZNA(G) (cf. 48, §3]).

LEMMA 2.31. Assume that G has no element of order p. Let D*® €
Ob(Cé\(G)) be a cochain compler. Then the image of [D*] in KO(HQ(G))
is Y ez (—1)'[H'(D®)].

PROOF. Let H be an object of HQ(G) and let 0 <« H «— P, be a
projective resolution of H. By proposition 1.25, the map

p 1 Ko(H5' ) — Ko(Cg'@),  [H]w— [P)]
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is an isomorphism. Put
¥ Ko(C') = Ko(HE' D), [D*] = > (~1)/[H(D*)].
€L
We have seen above that Hg\(G) = A(G)-modg.iors. Hence H'(D®) €

Ob(Hg(G)) for all i € Z. Obviously, 1) does not depend on the choice
of representatives. Hence 1 is a homomorphism. Since

Yo p([H]) = Z(—l)i[Hi(P-)] = [H°(R)] = [H],

1 o p is the identity map on KO(HQ(G)). Since ¢ is an isomorphism,
P =L U

Using lemma 2.19, we get the
COROLLARY 2.32. If G has no element of order p, then
—[C*] = [X] — [Z,] € Ko(A(G)-mods_iors)-

3. Analytic Part

In this subsection, we give the definition of the p-adic zeta function
& for Fo|F with respect to X (if it exists). It is defined to be an
element of K;(A(G)g) that interpolates the Artin L-function of F|F,
with the Euler factors at ¥ removed, for all Artin characters and all
odd negative integers.

Let P ¢ 3 be a prime ideal of Fi, and put p := P N Op. Since Pp
is unramified, the decomposition group Gy of B over F' is generated
by the Frobenius element o € G(F|F). (ogp is defined by ogzr =
2#OF/P mod P for all 2 € Op_.) Let 1,, € GL,(Q) be the unit matrix.

DEFINITION 2.33. For a representation

p:G— GLy(Q) C GLn(C)

and s € C with Re(s) > 1, the complex Artin L-function with respect
to X is defined by

Ls(s,p) = [ ] det(L, — plog)9(p) )" € C.
pEx

where the product is over all prime ideals p of F with p ¢ X and
where for each p, P C Op,_ is a prime ideal with P|pOp_. (This is
the ordinary Artin L-function, with the Euler factors at ¥ removed, cf.
(31, ch. VII, def. 10.1].)
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For Re(s) > 1+ d with 6 > 0, the Artin L-series converges abso-
lutely and uniformly (cf. [31]). The characteristic polynomial det(1,,—
p(ogp)t) € C[t] depends only on p, not on ‘B. Hence Lx(s, p) is well-
defined.

PROPOSITION 2.34. (1) Let p: G — GL,(Q),p' : G — GL,,(Q)
be two Artin representations of G. Then

LE(Sa p D p,) = LE(Sv p)LE(S7 IO/>‘

(2) Let }~7|~FOO be a Galois extension and set G := G(F|F). Assume
that G is a compact p-adic Lie group. Let infg(p) G —

GL,(Q) be the Artin representation that factors through p :

G — GL,(Q). Then
Ls(s, p) = Lx(s,infg(p)).
(3)

Let U be an open normal subgroup of G and let p : U —
GL,(Q) be an Artin representation. Then

Ls(s, p) = Lx(s,indg:(p))-

PrROOF. We use the proof given in [31, 10.4], which we can obvi-
ously apply to our situation.

(1) This follows from
Aet(Lusm — (9 ) (o)1) = det(L, — plo)t) det(L — (o)1),

(2) Let P'|%B|p be prime ideals of F|Fy|F, lying one above the
other, with p & . The natural projection G — G induces the
homomorphism Ggy — G, which maps og to og. Hence

det(1, — inf&(p)(og)t) = det(1, — p(op)t).

(3) We write p : U — GL(W), ind%(p) : G — GL(V), where
V = ind%(W). Let Z := FY be the fixed field of U. Set

f=(G:U)=[Z:F] <.

Let p € ¥ be a prime ideal of F'. Let q1,...,q, be the prime
ideals of Z lying over p. For ¢ = 1,...,r, let ; be a prime
ideal of Fii lying over q;. Let G; := Gy, be the decomposition
group of P, over p. Then U; := G; N U is the decomposition
group of B; over q;. Put f; := (G, : U;). Then

N(q:) = N(p)",

where 91(+) denotes the norm of an ideal. Let 7; € G be el-
ements such that 7;(B;) = PB1. Then G; = 7, 'G17y, op, =
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7';10'1;17'@ € G; and af;;l_ € U; is the Frobenius homomorphism
of P; over Z. Set 0 := ogp,. We need to show

det(1,y — indfi(p) (o)t V) = [ ] det(1, — p(ogs )t/ W),
=1

We reduce this to the case G; = G. Foreachi € {1,...,7}, let

-----

in G;. Then {«;;7;};; is a set of representatives of G/U in G.
Thus V = @ij a;;;W. We put

fi
V; = @ OéijTiW
7j=1

and get the decomposition V = @;_, V; of the Gi-module V.
Hence

det(L,s — indg(p)(o)t; V) = [ [ det(Lny, — indg;, (p)(0)t; Vi),
i=1

and since det(1, — p(a%i)tfi; W) = det(1, — p(afi)tli; ;W) it
suffices to prove

det(1,y, — indg (p)(0)t; V;) = det(1, — p(a?)tl; ;).
1-

We may assume G = Gy, V = V; and f = f;. Then
G = (o) and hence
f-1
V =@ ind(c")W.
i=0
Let A be the matrix of p(o/) with respect to a basis wy, . .., w,
of W. Then
0 1,
o1,
A 0

is the matrix of ind%(p)(o) with respect to the basis
{indg(p)(ai)wj}i.:{,l ,,,,, 0.
]:

Hence

det(1,; — ind%(p)(o)t) = det
.
—tA 1,

= det(1,, — p(ath).
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(We get the last equation by adding the t-fold of the first
column to the second column, etc.) U

For o0 € G, let ¢ € G(F(upy=)|F) be an element, whose image under
G(F (pp)|F) — G(F(ptpee)t|F) coincides with the image of o under
G — G(F(jp=)*|F). Let p: G — GL,(Q) be an Artin representation
and let & : G(F(puy~)|F) — Z, be the cyclotomic character. For even

integers r, we define the continuous representation

pr" G — GL,(Q,), o p(0)k(5)".
We fix an isomorphism C, = C and hence we may define f(pr") € C
for f € K1(A(G)g).

CONJECTURE 2.35. There is a unique element § € K1(A(G)g), such
that

{(pr") = Ls(l—r,p) €C
for any Artin representation p of G and any even integer r > 2.

DEFINITION 2.36. If the element ¢ = &n(F|F) in conjecture 2.35
exists, it is called the p-adic zeta function for F.|F with respect to 3.

4. The Main Conjecture and Burns’ Theorem

The mysterious connection between the p-adic zeta function and the
complex [C*] is conjectured as follows (cf. [25]):

CONJECTURE 2.37 (Main Conjecture). Assume the p-adic zeta func-
tion for Fy|F with respect to ¥ of conjecture 2.35, §& € K1(A(G)g),
exists. Then

9(§) = —[C°] € Ko(MG), AM(G)s).

THEOREM 2.38 (Main Conjecture of Commutative Iwasawa Theory).
Assume that G is an abelian group. Then the main conjecture for G is
true.

PROOF. Assume that G is one dimensional as a p-adic Lie group.
Then this well-known theorem follows from deep results of Kubota and
Leopoldt, Iwasawa, Deligne and Ribet, Mazur and Wiles among others.
The case dim(G) > 1 can be reduced to the case dim(G) = 1, cf. [24,
theorem 1.15]. O

REMARK. K. Iwasawa first constructed a p-adic zeta function and for-
mulated a main conjecture for Q%¢|Q, following work of T. Kubota
and H. W. Leopoldt. J. Coates formulated certain hypotheses under
which the p-adic zeta function for the cyclotomic extension of arbi-
trary totally real number fields exists. Deligne and Ribet and also
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P. Cassou-Nogues proved these hypotheses. The main conjecture in
this situation was formulated by Coates and R. Greenberg. The main
conjecture for Q¢|Q was proven by B. Mazur and A. Wiles, after deep
results in this direction by Iwasawa. K. Rubin gave another proof using
V. Kolyvagin’s Euler systems. For the cyclotomic extension of totally
real number fields, the main conjecture was proven by Wiles.

We try to deduce the noncommutative Main Conjecture from the Main
Conjectures for all abelian subquotients of G. In the following, we
specify an upper bound for the set of subquotients that we are going
to consider.

Let P be a compact p-adic Lie group with a surjection w : P—Z,.
Let T = Z(P) be a set of pairs (U,V), where U is an open normal
subgroup of P and V is a closed subgroup of kerw, such that V is a
normal subgroup of U and U/V is commutative.

Let Z be such a set for G with the surjection G—I". For all (U,V) € Z,
we define
vy : Ki(AG)) — AMU/V)™
to be the composition of homomorphisms
N: K (A(G)) — K1 (A(U)) and
. Ki(A(U)) — KL (A(U/V) = AMU/V) ™

(The latter identity follows from proposition 1.17 and the commutativ-
ity of U/V.) This induces the homomorphism

0:K(AQ) — ] AUV 2 Ouv(@)wwer

(UV)eZ

We define
Osuy : Ki(A(G)s) — AU/V)g
to be the composition of homomorphisms
N: Ki(A(G)s) — Ki(A(U)s) and
pe t Ki(A(U)s) = Ky (A(U/V)s) = AU/V ).
(The latter identity follows from proposition 2.8.)

Then we get the following homomorphism:

bs: Ki(MQ)s) — [ AMUNV)E 2+ (Bsuv (@) wviez
(UV)eT

REMARK. Let f € K;i(A(G)g) and let x : U/V — Q" be a one-
dimensional Artin representation. By lemma 2.14,

Os.uv(f)(x) = f(indZ(infy/" (x)))-
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By corollary 2.11, there is a commutative diagram

Osu,v

Ki(AMG)g) —= A(U/V)5

T Ou,v

K (AMG)) —= A(U/V) ™.
PROPERTY 2.39. Let
vs < [[ AW/v)s
(UV)eT
and
v< [ aw/vys
(UV)eT
be subgroups. We assume that the following holds:

1) v = \I'SmHUv €T (U/V)X

) im (fs) C \IJS

) 0: Ki(A(G)) — ¥ is an isomorphism.

) Every Artin representation p of G is — interpreted as a vir-
tual representation — a Z-linear combination of induced rep-

resentations 1ndU o 1nfU’/Vl(XZ») with (U;,V;) € I and with
Xi: Ui/ Vi — Q a character of finite order.

(
(2
(3
(4

For (U,V) € T let
Sov = Es(Fy|Fy) € Ki(A(U/V)s) = AMU/V)s C QU/V)

be the p-adic zeta function for Fy/|Fy with respect to 3. The following
theorem is due to D. Burns and K. Kato (cf. [25]).

THEOREM 2.40. Let ¥ < [[;A(U/V) and ¥s < [ A(U/V)g be sub-
groups for which property 2.39 holds and such that (§yv)wvyer € Ys.
Then the p-adic zeta function & = Es(Foo|F) for Fx|F (with respect to
¥) exists uniquely and the main conjecture 0(§) = —[C] is true.

REMARK. In chapter 3, we define groups ¥ and W for a certain class of
Galois groups G and show that they satisfy property 2.39. In chapter 4,
we deal with certain congruences of the zeta functions £y in order to
show (fav)z € Ug.

PROOF. Surjectivity of 0 : K1(A(G)g) — Ko(A(G),A(G)g) (cf.
lemma 2.15) implies that there is f € K;(A(G)g) such that 9(f) =
—[C]. For (U,V) € Z, we define

fov i =bsuv(f) € A(U/V)s and
uyy = fU,Vf(Z%/ e A(U/V)5.
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Consider the commutative diagram

Ki(AG)g) U)s AU/V)s

I

Ko(A(G), A(G)s) —= Ko(A(U), A(U)s) —= MU/V) 5 /MU/V)*.
[

By lemma 2.21, the image of —[C] under p, o Tr is —[Cyy]. Hence
INfov) = [C’U,V} Theorem 2.38 (the main conjecture of commutative
Iwasawa theory) implies

I(&vv) = —[Cuy].
Therefore uyy € kerd = A(U/V)*. Property 2.39 (2) implies

(fU,v)(U,V)eI € Us.
Using the assumption ({yv)w,vyer € Ys, we get that
(uuv)wvyer € ¥sN H AU/V) =0.
(UV)eT

By property 2.39 (3), there is a unique element u € K;(A(G)), such
that
Ouy(u) =uyy forall (UV)eT.

By property 2.39 (3) and the commutativity of the diagram

Ki(A(G)g) === T AUV

]

K (A(G) — 5 TI A(U/V)

the natural map K;(A(G)) — Ki(A(G)g) is injective. We identify
K, (A(G)) with its image in K;(A(G)g). Now, we can define
§=uf € Ki(A(G)g).
Then
9() = d(uf) = o(f) = —[C]
(since u € K1(A(G)) = ker 0 by the exact sequence (4)) and
Osuv (&) = Osuyv(u)isuv(f) =uvyfov = Eov
for all (U, V) € I (0suv(u) =0y (u) by corollary 2.11).

Now, we will show that {(pk") = Lg(1 — r,p) for r > 2 and all
Artin representatlons p of G. By property 2.39 (4), we can write
p=>>",nindf -(X:). By proposition 2.34,

Le(1—r.p) = [[ Le(t = rindg ()™ = [[ Le(t = rx0)™

1=0 i=0
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For two characters x, x’, we have {(x + x') = £(x)&(x) by lemma 2.14.
Therefore

€ (o) = [T € ndff (o))"

Let ky : G(Fy(pp=)|Fu) — Z, be the cyclotomic character of the field
Fy. By the remark after the definition of 0g (see also lemma 2.14), we
have

¢ (inde; (xa)r") = 050 (&) Oakyy) = Eov (xikty)-
The interpolation property of {yy in the commutative case implies
Sov (Xiky) = Le(1 — 7, X3).
This proves the existence of the p-adic zeta function. We will now show
its uniqueness.

Let € be another element that satisfies the conditions of the main con-
jecture. Then A(€€") = 0 and hence €67 € K;(A(G)). By the unique-
ness of the p-adic zeta function in the commutative case, we get that
957U,V(§) = &yv. Hence 9(55_1) =1, and thus & = £. O



CHAPTER 3

K; of Certain Noncommutative Iwasawa Algebras

Let P be a pro-p p-adic Lie group with a surjection P—»Z, that is a
quotient of the product of the p-adic Heisenberg group and a commuta-
tive p-adic Lie group. In this chapter, we show the existence of groups
U and Vg that satisfy property 2.39.

We consider the following more general situation: Let R be a topolog-
ical ring and let ¢ be an index set. For n € ¢, let R,, C R be a subring
such that R is a free finite dimensional R,-module and let .J, C R,, be
a two sided ideal. Define

0, : Ki(R) > Ki(R,) & Ki(R,/J,)
0= 0n)n: Ki(R) — H K\(R,/J,).

nec

We will define a trace homomorphism

Tr: R/[R,R] — R,/|Rn, Ry)

and put

T : R/[R, R| = R,/ [Ry, Ry
Z (R o) [[(Ru) ), (Ra/ J0)]
T = (Tn)n : R/m - H (Rn/Jn)/[(Rn/‘]">’ (R”/Jn)]

nec

We set W :=1im# and 2 := im 7. Assume that the following holds:

(1) 7 is injective.
(2) There is a commutative diagram

K\(R) —% R/[R, R]

of abelian groups.
(3) ker £ Nkerd = {0}

55
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Then, by the snake lemma, there is a commutative diagram of abelian
groups

1 —ker.¥ — Ki(R) % R/[R, R] — coker.¥ — 1

(12) |« b E

1 — O(ker ¥) v—2 Q) 7(coker &) — 1

1%

and the five lemma implies that 6 is an isomorphism.

For n = ¢, we will define certain open normal subgroups U,, of P. Put
Vo := [Up, Uy,]. We will prove the above assumptions for

R=AP) R,=AU) J,=IV,)AU,).

It is not difficult to show assumption (1). In this setting, the homomor-
phism .Z of (2) is called the integral logarithm. For its definition, we
need the fact that P is pro-p. We will use an explicit description of ¥

and €2 in terms of certain generators of U, to define .Z. For the proof
of assumption (3), we use the fact that ker & = p, ; x P which
follows from a theorem of R. Oliver.

Now assume that
R = A(P)S R, =AU,)s I = 1(V)A(U,)s,

where R is endowed with the discrete topology. In general, R is not
p-adically complete, and hence the above logarithm may not exist. We

A\ N —~
will define completions (R/ R, R]) and (g containing the correspond-

ing p-adic completions (cf. definition 3.10 and corollary 3.13). We will
show that there is a commutative diagram

K\(R) 2= (R R])

P,

Wy s,

where Ug and (g are groups defined in analogy to the explicit descrip-
tion of U and Q. Then property 2.39 (2) is plain and property 2.39
(1) follows from the definition of V.

Property 2.39 (4) (for groups P as above) is a consequence of a well-
known fact of the representation theory of finite groups.
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1. The Heisenberg Group

Let p be an odd prime. Let H be the p-adic Heisenberg group, i.e.

1 Z, 7Z,
H=10 1 Z,
0 0 1
Define
110 1 00 1 01
a=10101}, 6=1011], v=1010 € H.
001 0 01 0 01

We first observe some group theoretic properties of H and P. By direct
calculations, we get the following useful identities (with i, j, k,l € Z,):

N 1 i ij+k
(1) aipif=[01
0 0 1

(i3, o l] N L

(5) o (@'B)a* = (a'F )y, M a'3)B7F = (a'F7)y "
REMARK. H is a p-adic Lie group. There is a global atlas of H:

H — Z,, — (i, j, k)

o O =
O = .
—_ s,

Let P be a compact pro-p p-adic Lie group with surjective homomor-
phism w : P—17Z,.

ASSUMPTION 3.1. We assume that there is a commutative p-adic Lie
group N and a surjective homomorphism of p-adic Lie groups

s:HxN—P.

REMARK. We will prove the main conjecture for extensions Fi|F sat-
isfying assumption 2.1 such that G = G(F|F) with the surjection
G—T satisfies assumption 3.1.

Henceforth, we denote the elements s(a,1),s(3,1),s(y,1) € P by
a, 3,7v. To simplify notation, we define the following constant ¢ =
c(y) € NU{oo}: If 7 is of finite order we require

ord(v) = p*.
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If v is of infinite order, we set ¢ = oo. For n € N, we define n :=
{0,...,n} C N and put 0o := N.

For a group W, we define the centre of W by
Z(W):={g € W|gh = hg for all h € W}.

For n € N, we define the following subgroups of P, where ( - ) denotes

13 ”.

the closed subgroup of P, generated by “ - 7:
Uy = (o, 8", Z(P))
Vi 1= [Un, Un] = <7pn>
'<I[‘he las]‘c> identity follows from V,, = {[g, h]|g,h € {a, 7"} U Z(P)) =
a, P ]).

We calculate the centre Z(P). Any element x € P can be written in
the form z = a'3'y*2 with z € s(1 x N). The element

(i Fyfz, iy 2] = A7
is trivial for all 7, 7, k € Z,and all Z € s(1 x N) if and only if 4, j € p°Z,
for c < o0 and i = j = 0 for ¢ = co. Hence
(13) Z(P) = {a”, ", 7,5(1 x N))
if we put g?" := 1 for ¢ = oo and ¢ € P. We will later use the facts
that [P, P] C Z(P), and that (P : Z(P)) < oo if and only if ¢ < oco.

Now, we get

min{n,c}

Un:<a7ﬁp 7,}/78(1><N)>'
We set Uy := (), Un = (@, 7,7, s(1 x N)).

LEMMA 3.2. The group U, is an open normal subgroup of P, V, is
a closed subgroup of kerw and a normal subgroup of U, and U,/V,
is commutative. Hence the definition T := Z(P) := {(Un, Vo) }nee is
consistent with the notation in the previous chapter. -

ProoF. U,, is an open normal subgroup of U, for n < m, since
gU,ng~!' C U, for every generator g of U,,. For m,n € ¢, we get that

Un/Un 22 (Un/Usc)/(Un/Uso) 2= (B7) /(")

is a finite cyclic group of order p"~™ (since ord((3) > ord(7)), generated
by the image of 3*". In particular, U, is an open subgroup of Uy = P,
and we have the identity

G/Un = (B)/(8") = Z/p"L.
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Since Z, is commutative, we get V,, = [U,,U,] C kerw. The fact that
V,, is a normal subgroup of U,, and that U, /V,, is commutative follow
directly from the definition of V/,. U

REMARK. For n € ¢,

Un/V = {a, 7y, 5(1 x N)) /(57").
Hence there is a surjection

Ze % (Z]p"ZL) x 5(1 x N)—» Uy [V,
The kernel of this map depends on s.

LEMMA 3.3. Assume that Leopoldt’s conjecture is true for F and that
G = G(F|F) with the surjection G—T" satisfies assumption 3.1. Then
G s of dimension 1 as a p-adic Lie group.

PROOF. Since F' is totally real, Leopoldt’s conjecture implies
(14) dim G* = 1.

Since G = G/(v), it suffices to show that ~ is of finite order. By
equation (14), the homomorphism

Zi — G (m,n)—amp"

is not injective. Let (m,n) be a non-trivial element of the kernel.
Without loss of generality, we may assume that m # 0. Since [G,G] C
Z(G), the commutator map

[—,—]:GxG—G
factors through G x G and hence
1=[a"g", 5l =" € G. O

2. The Additive Homomorphism 7

We start with some heuristics that lead us to the definition of the
additive version 7 of 6. Let W be a finite p-group and assume that £y,
is a homomorphism defined on

Ky (A(W)) = AW)™ /TAW) ™, A(W) 7,

with values in a quotient of A(WV), that generalises the usual logarithm
on Z, . It seems natural that its codomain should be

AW)/TAW), A(W)].
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If W is a p-adic Lie group, we demand that %} commutes with the
inverse limit functor. Let Z,[Conj(1¥)] be the Z,-module topologically
generated by the conjugacy classes of W. There are the isomorphisms

Ky (A(W)) = lim A(W/U)* [IAW/U)*, AW/U)]

Zp[Conj(W)] = lim A(W/U) /[AN(W/U), AW/U)],
U
where the limit is over all open normal subgroups U of W. Hence the
integral logarithm is of the following form:

L Ki(A(W)) — Z,[Conj(W)].

Let P be a group that satisfies assumption 3.1. We define the homo-
morphism

T = (Tp)n : Z,[Conj(P)] — Q C HA(Un/Vn)

in analogy to the homomorphism 6. More precisely, we define it to be
the composition of a trace map
Trpjy, : Zp[Conj(P)] — Z,[Conj(U,)]
and a projection homomorphism
7 Zy[Conj(Uy)] — Z,[Conj(U,/ V)] = AU,/ V,).

We use the following construction to define a “localised version” of
Z,[Conj(P)] (note that Z,[Conj(P)] is not a ring): If the centre Z(P)
of P is an open subgroup of P, then A(P)g = A(P)g4p)- In this case,
it is natural to define

Zy|Conj(P)] g :== A(Z(P))s @n(z(p)) Zp[Conj(P)].
We show that every object P of Sz, can be written as an inverse limit
P= lim P/W,
%
Wep

where Qp is a set of normal subgroups of P such that P/W is a
quotient object of P with open centre for all W € 2 p. Hence we can
define

Z,[Conj(P)]5 == lim (Z,[Conj(P/W)]s)"  and

Welip

(A(P)S)A = lim (A(p/W)S)(m
Wewp

for all P € Ob(Sz,), where —®) denotes the p-adic completion. Note
that the structure of (A(P))" was studied in [41]. We define

7s 1 Zp[Conj(P)]5 — Qg C H (AU /Vi)s)"
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to be the homomorphism induced by the composition of a trace map
and a projection homomorphism.

Let R be a commutative ring. We start with the definition of the R-
module R[Conj(W)] for a group W. For o € W, we set class(o) :=
classy (o) := {vov~! v € W} and Conj(W) = {class(c)|c € W}. We
define

R[Conj(W)] := @ RS.

SeConj(W)

In general, the multiplication on W does not transfer to Conj(IV).
(Assume 0,7 € W, 0 # 7, class(c) = class(r). Then class(o7!) #
class(r771) = {1}.) However, the map

Conj(W) — Conj(W), class(c) — class(c®)

is well-defined for any k > 0: For o, 7,v € W with ¢ = v7v™", we have
k 1)k k,,—1

of = (vrv™1)* = v7Fr~! and hence class(o*) = class(7%). For k = p,
we define the induced R-linear map

¢ : R[Conj(W)] — R[Conj(W)], class(o) — class(a?).

1

Let W be a group and let W5 be a normal subgroup and W5 a quotient
group of Wy. Let {v;}ie; be a set of representatives of Wi /Wy in Wh.
We define the R-module homomorphism

Try, jw, : R[Conj(W;)] — R[Conj(W>)],

_ classy, (viov; ') if o € WL
classy, (o) — { Ozzel W ( ) it o Wz

This map is well-defined since for any two elements o, 7 € W, that are
conjugate in W7y, there is ¢ € I such that we get the identity

classy, (o) = classy, (7).

The following R-module homomorphisms are clearly well-defined:
¢ : R[Conj(Ws)] — R[Conj(W})], classy,(o) — classy, (o)
7 : R[Conj(W1)] — R[Conj(W3)], classw, (o) — classw, ()

Peonj : R[Wi]|—R[Conj(W1)], o+ classy, (o)

LEMMA 3.4. Let W be a group. Then peon; tnduces the isomorphism
RWlw = RW]/[R[W], RIW]] = R[Conj(W)]

of R-modules, where [—, —| is the commutator R-algebra. For a monoid
W, we have

(gh — hglg,h € W)gr = [R[W], R[W]].
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PROOF. In a first step, we show that
T = <g - ngillgﬂ/ S W)R = kerpconj

for a group W. Then inclusion “C” is obvious. Let

n
T = Z Zig; € kerpconj

=1

with z; € R, g; € class(g) for all i and some fixed g € W. For n = 1,
trivially x =0 € T. If n > 1, we assume that we have already proven
it for n — 1. Then

n—2
T — mn(gn - gnfl) - Z ZiGg; + (:Cnfl - zn)gnfl € T7
i=1

by hypothesis. Hence x € T.

In a second step, we show that

for a monoid W. The inclusion “C” is obvious. For a generating element
of the module on the right hand side, we have

(Z agg) (Z bhh> - (Z bhh> (Z%g) = > agbu(gh—hg),

geW heWw heWw geW g,heWw
where ag, b, € R, and a4 = 0, b, = 0 for almost all g,h € W. This is
an element of the module on the left hand side.

Since gh — hg = gh — h(gh)h™, we have shown that kerp,; =
[R[W], RIW]] for a group W and this proves the lemma. O

Let W be a profinite group and let R be a commutative ring. Let
{Wy} be the set of open normal subgroups of W. For W, C W,, we
have a natural map

R[Conj(W/Wi,)] — R[Conj(W/W,,)],
classwyw, (o) — classyw,, ().
With respect to these maps, we can define the R-module

R[Conj(W)] := lim R[Conj(W/W})].

We set classy (o) := (classww, (0)), € R[Conj(W)].

Let W7 be a profinite group and let W5 be an open normal subgroup
and W3 a quotient group of Wi. Let {v;}; be a set of representatives of
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Wy /Wy in Wy. The following homomorphisms of R-modules are clearly
well-defined:

¢ : R[Conj(W;)] — R[Conj(Wy)], classw, (o) — classy, (oF)
Try,w, + R[Conj(W1)] — R[Conj(Ws)],

> classy, (vov; ) if o € Wo
dassin (o) - { 2 o g0,

¢ : R[Conj(W3)] — R[Conj(W1)], classw,(c) — classwy, (o)
7 : R[Conj(W})] — R[Conj(W3)], classw, (o) — classy,(7)

We get the following homomorphism from the map p..,; defined above
by passing to the inverse limit:

Peonj : A(W)—Z,[Conj(W)]

LEMMA 3.5. Let W be a profinite group. Then Deon; induces the iso-
morphism

AW)/TAW), AW)] = Z,[Conj(W)]

of Z,-modules, where [—, —] is the commutator Z,-algebra.

PROOF. Let {W,}, be the set of all open normal subgroups of .
Since the inverse limit functor is left exact, we get

ker (A(W) — Zp[[COHJ(W)]D

—

— lim ker (ZP[W/WA] = Zp[Conj(W/WA)D.

Now lemma 3.4 implies
ker (Z,[W/ W] = Zy[Coni(W/Wx)]) 2 [Z,[W/ W], Z,[W/ W]
Let my : A(W) — Z,[W/W,] be the natural projection. Then
Zo[W/ WAL, Z, W/ W3] = ma (IAOW), AOW)]).
By [36, corollary 1.1.8],

tim . ([A(W), A(W)] ) = TAGW), A(W)]
Hence

ker (A(W) - Zp[[Conj(W)]]> =~ [A(W), A(W)]. O

LEMMA 3.6. [A(W),A(W)] c A(W) is a closed subgroup if (W :
Z(W)) < oo. (In particular, this is the case for groups P that sat-
isfy assumption 3.1 and for which ord(y) < cc.)
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PrROOF. Put n := (W : Z(W)) and let {w;}i—;
representatives of W/Z (W) in W. We define

» be a set of

.....

1<i,j<n

Then imt = [A(W),A(W)]. Since A(Z(W))" is compact and since
1 is continuous, im 1 is compact and hence closed as a subgroup of
A(W). O

Let W be a profinite group. We endow A(W) with the W-module
structure defined by g -z := gzg™* for g € W and x € A(W). We
define the continuous homology groups by

H,(W,A(W)) == lim H,(W/U,A(W/U))

(cf. [33, prop. 1.2.5, thm. 2.6.9, ch. II §7]). Then
Ho(W,A(W)) = lim A(W/U)/[AW/U), A\(W/U)] = Z,[Conj(W)].

The following lemma will elucidate the A(Z(P))-module structure of
Z,[Conj(P)].

LEMMA 3.7. Let W be a p-adic Lie group. Then Z,[Conj(W)] is a
AN(Z(W))-module. There is a surjective homomorphism

AZW)IW/ZW)] — Zy[Conj(W)]
of A(Z(W))-modules.

Let P be a group that satisfies assumption 3.1. For g € P, let
A(Z(P))classp(g) C Z,[Conj(P)]

be the A(Z(P))-module generated by classp(g). If P/Z(P) is finite,
then

(15) Z,[Conj(P)] = €P A(Z(P))classp(g).
ger/Z(P)
PrROOF. The A(Z(P))-module is defined by
z - classy (g) = classy (z9) for z€ Z(W) and g € W.
(This is clearly unambiguous.) Let
s:W/Z(W) —-W

be a continuous section of the natural projection W—W/Z(W) of
topological spaces. We can define

[ AMZW)IW/ZW)] — Z,[Conj(W)],

z - g classy(z - s(g)),
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where z € Z(W) and g € W/Z(W). This is obviously a surjective
A(Z(W))-homomorphism.

Now, we prove the isomorphism (15). For g € P, define
Z(P)classp(g) := {classp(zg)|z € Z(P)} C Conj(P).

Since [P, P] C Z(P), we can write Conj(P) as a disjoint union
Conj(P) = U Z(P)classp(g)

geP/Z(P)

of compact subsets. Since P/Z(P) is assumed to be finite, this implies
(15). O

LEMMA 3.8. Let P be a compact p-adic Lie group with a surjection
w: P—Z,. Let 2p be the set of all closed normal subgroups W of P
that are open subgroups of H :=kerw. Then (P/W )weaw, is a directed
system and
P = lim P/W.
Wewp

In other words, every object of Sz, is a projective limit of quotient
objects with open centre.

PROOF. Since H € Wp, we get Wp # (. For two groups Wi, W €
Wp, we get Wi N Wy € Wp. Hence it suffices to show that

(16) (| W={1} and
W ep

For n € N, put N,, := ﬂ[H:U}:n U if there is a subgroup U of H with
[H : U] = nand set N,, := H otherwise. Then N, is a normal subgroup
of P and a closed subgroup of H. We show that N,, C H is an open
subgroup. Since H contains a pro-p open subgroup, we may assume
that H is a pro-p group and n is a power of p. Since subgroups U of H
with [H : U] = p are maximal, the Frattini group ®(H) is contained in
N, and hence (since ®(H) is an open subgroup of H by [13, proposition
1.14])

[H: N, <[H:P(H)| <oo.
(The Frattini subgroup of a group is defined to be the intersection of its
maximal proper subgroups.) Now assume that N,» is an open subgroup
of H for some n > 1. Every subgroup U of H with [H : U] = p"*! is
contained in a subgroup U’ of H with [H : U'] = p". Then ®(U’) C U.
Hence we get

Nps= (] UD [] @)
[H:U]=pnt1 [H:U'|=p™

Since, by hypothesis, H/N,» is finite, there are only finitely many sub-
groups U’ C H of index p™. Since ®(U’) is an open subgroup of H
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for every open subgroup U’ of H, the intersection (i, (U’) is a
finite intersection of open subgroups of H. Hence Ny.+1 C H is open.

Since
(| We(No= () U={1}.
Wewp neN U<oH
we have proven equation (16). U

DEFINITION 3.9. Let L be a Z,-module. We define the p-adic comple-
tion

L% :=1im L/p"L.

n

Let ‘U be a cofinite subset of Wp. Let C' be a map that assigns to
every group V' € U an open subgroup C(V) C Z(P/V'). Assume that
for Vi C V4, the image of C'(V1) in P/V, is a subgroup of C'(V3). Let
Cvi.v, be the group of all elements of P whose image in P/V; lies in
C(V;) for i = 1,2 and let Cy be the set of all elements of P whose
image in P/V lies in C'(V) for all V' € . Let M¢ o be the category
whose objects are the projective systems (My )yey of abelian groups
such that My carries a A(C(V'))-module structure and for Vi C V3, the
transition map My, — My, is A(Cy, 1, )-linear. The set of morphisms
from (My )y to (Ny)y is defined to be the set of tuples

(fv: My = Ny)yey s
where fy is a A(C(V))-linear map for all V' € ¥ and the diagram

fv
]\4\/1 1 NV1

|

My, —— Ny,

is a commutative diagram of A(Ch, v, )-modules for all Vi, V, € U with
Vi C Va.

DEFINITION 3.10. Let P € &z, be a group whose centre is an open
subgroup of P. Let M be a A(Z(P))-module. We define

Mg = A(Z(P))S ®A(Z(p)) M.
For general P € Sz, and U C Wp, C' as above, we define the functors

(=) : Moy — A(Cy)-mod and
(—)s: Mgy — A(Cy)-mod
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as follows: Let M = (My )yveq be an object of Mco. We put
(M)/\ - @(M\/)Qﬁ

Vey
(M)} = lim (My)# = lim (A(C(V))s @y Mv)
Vey Vey

Let f : M — N be a morphism of the category M¢ . The homomor-
phisms
fV My — Ny, V ey

induce the homomorphisms
(My)? = (N)? and - (My)# — (Ny) 2.

Since (—)" ((—)s, respectively) is the composition of lim , _ —and (—)®

(lim ,_ - and (=), respectively), f naturally induces the homomor-

phisms
()Y M» - N" and (f)s: M — N§.
Thus we have defined the functors (—)" and (—)%.

REMARKS. e The group Cy and the A(Cy)-modules (M)" and
(M)%5 do not depend on the cofinal subset U of QWp.
e We will apply the above definition to the objects

A(P) = <A(P/W)> ,

WwWelip

2, [Coni(P)] = (Z,[Coni(P/W)]) | _ .
Q[Conj(P)] = (QyConi(P/W)),

of M¢ay,, where C(W) := Z(P/W) for W € 2p. (We use
the same notation for the projective system and the corre-
sponding projective limit.) For groups P € Sz, with open
centre, we get
Z,[Coni(P)s = A(Z(P)s @z ZyIConi(P)]
Qu[Conj(P)] 5 = A(Z(P))s @nazpy Qp[Conj(P)]

and for general P € &y,

NP)g= Jim (A(P/W)s)"
Z,[Conj(P)]5 = lim (Z,[Conj(P/W)[¢)" .
Wedp

Since the p-adic completion of a Q,-module is always trivial, we need
the following
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DEFINITION 3.11. Let P € 8z, be a p-adic Lie group. We define

Q;[[Conj(P)]]g = lim ((Zp[[Conj(P/W)]]S)<p> Rz, Qp)

QIPL = lm ((Z[P/W]5)" @, Q)
Wewp

LEMMA 3.12 ([41, lemma 3.4]). There is an isomorphism

A(P)g = lim A(P)g/J(A(P)g)".

n

COROLLARY 3.13. The natural homomorphisms

—

A(P)g — (A(P)S)<p> and A(P)g — A(P)g

are injective.

Proor. This follows from the fact that A(P)g is Noetherian by
proposition 2.7 and hence

NP"AP)s € (JAP)g)" = {0}, 0

REMARK. In general, A(P)y & (A(P)S)@'> S /@ For example,

when P = Zi and w : ZI% — 7, is the projection to the second factor,
we may identify A(P) = Z,[[T}, T]] and get

S =2,[[1, I (p, Th)
(cf. lemma 2.3). Hence

> () € KPR\ AP,

Z (%i) € (A(P)9)" \ A(P)s;

When P is one-dimensional, it suffices to work with the p-adic comple-
tion (cf. [24], [21]).

—

LEMMA 3.14. The ring A(P)q is semi-local. In particular, when P is
one-dimensional,

18 semi-local.

PROOF. By [40] and [41, thm. 3.7, prop. 2.26, lem. 1.11],
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Hence, using lemma 3.12; we get
A(P)s/J(A(P)g) = (A(P)g/T(A(P)5)) @airys AlP)g

— A(P)y/ (J(A(P)Q@)

= A(P)g/J(A(P)g).
Since A(P)4 is semi-local, this implies that /@ is semi-local. 0
LEMMA 3.15.
AN D) . (p)
A(P)s = lm (AP/W)szpmwy)”
We20p
ProoF. By definition,
AN DY . (p)
A(P)s = lim (A(P/W)sppm)) ™.
We20p

By proposition 2.10,
APIW)siwy = MP/W)szp/wy)
for W € 0p. 0

LEMMA 3.16. We will now apply definition 3.10 to the object
M := (AP A(P A(P .
(ACP/W)s/IAP/W)s. AP/W)S])
of Mc.an,., where C(W) = Z(P/W). There is an isomorphism
Z,[Conj(P)]g = (A(P)s/[A(P)s, A(P)s])" := M"
of A(Z(P))-modules. If the centre of P is open, then we get the iso-
morphism
Zy[Conj(P)[ s = A(P)s/[A(P)s, A(P)s]

PrOOF. Using lemma 3.5, lemma 3.6 and the fact that A(Z(P))s
is a flat A(Z(P))-module, we see that it suffices to show

(17) A(Z(P))s @azpy [AMP), AP)] = [A(P)s, A(P)s]
for groups P, where Z(P) C P is open.

Let s7' ® [a,b], a,b € A(P) and s € S(Z(P)) be a generating element
of the module on left hand side. We define [as™!,b] to be its image
in [A(P)spy, A(P)s(p)). By proposition 2.10, the module on the right
hand side is generated by elements of the form [as™!, bt~ with a,b €
A(P), s,t € S(Z(P)). We define (st)™' ® [a,b] to be its image in the
module on the left hand side. We defined two maps that are the inverse
of each other. Hence, they are isomorphisms. U
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Let P € Sz, be a p-adic Lie group, let U C P be an open normal
subgroup of P and let V' be a normal subgroup of ker(P — Z,). The
trace and projection homomorphisms

Trpw : Zp[Conj(P/W)] — Z,[Conj(U/W)] and
7 Zp[Conj(U/W)]| — Z,[Conj(U/VW)],
where W € 20p N Wy, induce the morphisms

Tep ¢ (Z,[Coni(P/W) | — (Z,[Coni(U/W)])

OO ., (BT,

in Mc, aupnam, and M, gy, , respectively, where Cy (W) = Z(P/W) N
Z({U/W) and Co(W) = Z(P/W) for W € 20p N Wy By definition
3.10, they induce the homomorphisms
(Trp|U) : Zp[Conj(P )]]g — Z,[Conj(U)]5 and
(m)s : Zy[Conj(U)]g — Z,[Conj(U/V)]g

WeWpNAWys

of A(Z(P) N Z(U))—modules and A(Z(U))-modules, respectively. A

similar statement for (—)" also holds. The fact that these maps are
well-defined follows from the following lemma:

LEMMA 3.17. Let U be an open normal subgroup of P. Then 0 pNAWy
15 cofinal in Wp and in Wy . In particular,

(18) (M(P))g=(N(P))g and (M(U))g=(N(U))g,
where

MU'y = (Z [Conj(U’ /W] € Ob (Mcran,,)

) e,
)

N(U') = (Z [Conj(U’ /W] — € Ob (Mg ampnay )
forU =U orU" =P, C'"(W) = Z(U' /W) and C;(W) = Z(P/W) N
Z(U/W).

PRrROOF. Let W be an element of 90p. Then W N U is a normal
subgroup of P and of U and an open subgroup of ker(P—»Z,) and of
ker(U—Z,). Hence W NU € Wp NWy. Thus Wp N AWy is cofinal in
Wp.

Let W € 2y and set V := (), .p W, where W7 := {ogo~!|g € W}.
Since W is normal in U, V is a finite intersection of open subgroups
of ker(U—Z,). Clearly, it is a normal subgroup of U and of P. Hence
V e QpNWy. Thus Wp N Wy is cofinal in ;.

The equations (18) follow from proposition 2.9. O
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DEFINITION 3.18. Let P € &z, be a group that satisfies assumption
3.1. For n € ¢, the homomorphism

T+ Zy[Conj(P)] — AU,/ V,)
is defined to be the composition of the two maps
Trpiy, : Zy[Conj(P)] — Z,[Conj(U,)] and
7 Zy[Conj(Uy)] — A(Un/Vi).
The homomorphism
Tus  Lp[Conj(P)]g — A(Un/Va)§
is defined to be the composition of the two maps
(Trp|Un)g : Zp[[Conj(P)]]g — Zp[[Conj(Un)]]g and
()5 : Zy[Conj(Un)]s = A(Un/Va)s-

We define the homomorphisms

7 : Z,[Conj(P)] — HA(Un/Vn)7 T = (70 () )ns

nec

7s : Lp[Conj(P)]g — [[AU/Va)g: 2= (Tas(@))n,
nec
of A(Z(P))-modules. (Recall that Z(P) = (¢, Z(Uy,) since Z(P) C
Uy, for alln € ¢.) )
REMARKS. e For W € Wp, let cpyw be the natural number

defined by the relation ord(%) = p»/W, where 7 is the image
of v in P/W. Since W C U, for n € cp/w, the homomorphism

7 induces a morphism

me (ZudConi(PWT) = | TT AWL/VW)
nGCpﬂ

WwWelip

in M gy,, where C(W) = Z(P/W) for W € Q0p. By defini-
tion 3.10, this induces the homomorphism

(7‘)@ : Zp[[COHJ(P)]]g - H A(Un/vn)g

necp

of A(Z(P))-modules. This is just the homomorphism 75 de-
fined above.
e If ord(y) < oo, we can define the homomorphism

75 Z,[Conj(P)]g — [[A UL/ Va)s, 2@ x> (02 @ 7(2))ns
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where z € A(Z(P))s and = € Z,[Conj(P)] (since Z(P) C
Uso). In this case, 7 is A(Z(P))s-linear.

As mentioned above, we are interested in an explicit description of the
image of 7. We start with calculating the image of 7,, n € ¢. For
this purpose, we will need the definition of the following elements: For
1 €n, we set
= i
hni= Y A7 € MULIV).
j=0
For i,j € Z,, n € ¢, we set

0 if n > wv,(j) }
Cijn = "1 . . €A Un Vn .
’ { Yyt if n < () (On/ V)

Let 1,j € Z, and s,t € Z;. The s-power map permutes the set
{1,79,...,9"" "'} C U,/V,. Then for n < v,(j) = v,(jt),

pr—1 pr—1
Cijn = 7T = Z V" = Cis jtm-
r=0 r=0
For n > v,(j), clearly ¢;j, = 0 = ¢;s ji.n. Hence
(19) Cijn = Cis,jt,n
for all n € N.

For 0 <k <n,n € ¢, put Uy = (Z(P), apk,ﬁpn>. Note that we have
a descending chain of subgroups U,, = U, o D U,1 D ... D Uy, where
each subgroup is normal in P. By (13), U,,./V, = Z(P/V,,).

LEMMA 3.19. The image of T,, n € c s

Ly = (P'higli € n, g € Uni/Va, 9 & Unic1/Va if © <) A, V)
the AU,/ Vy)-submodule of A(U,,/V;,) generated by the elements p'hy, ;g
mentioned above. The image of T, s is

I = <pihn,ig‘i €En, g Uni/Vi, 9 € Unyiv1/ Vi if 1 <) aw,.0/v)s
= (In)S(Un/Vn) C AUn/Va)s-

PrOOF. Clearly, is suffices to determine the image of 7,. Since
im7y = A(Up/Vp) = Iy, we may assume n > 1.

By lemma 3.7, the image of P/Z(P) in Conj(P) topologically generates
the A(Z(P))-module Z,[Conj(P)]. If we write &, § for the images of
a, B in P/Z(P), respectively, we get

P/Z(P) ={a'@i,j € Z,}.
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Since of", 37" € Z(P/V;) = Up.n/Vy, this implies
m7, = <Tn(dass(aiﬁj))|i7j S ZP>A(Z(P/Vn))
= (1, (class(a’B))]i,j = 0,...,p" — L) AU /Vi)-

Note that we have found a finite generating set of the (abstract)
AN(Z(U,, 1/ Vs))-vector space im 7.

(20)

Using (19), we get for 0 <7 < p"

p"—1 p"—1

w(class(a E Btk = E aly” R — e ion0 = Cionat'.

For 0 <i<p" and0<] <p" (1.e.ﬁJ€Un),weget
Ta(class(a’#)) = 0 = cijna’ 3.
Hence
im7, = (cijn@ )i, 5 = 0,...,0" — L)a@w,./va)
= (p””(i)hnmp(i)aﬂi =0,...,0" = ) AW vi)-

Since o € Un,v,i) and ol & Un,wy(iy41 for vp(i) < m, we get im 7, C I,.
Since U, i) = (&, Up), this inclusion is an identity. O

We have seen that im7 C [] _.I,. We will use the trace homomor-

phism defined in definition 1.27 for the description of im 7 as a subset

of Hneg I,

Let W5 be an open subgroup of the profinite group Wj. Then there is
a trace homomorphism

Tr = r_[‘l"m/l“/v2 : A(W1> — A(WQ)
Equation (5) clearly implies the following

nec

LEMMA 3.20. For m <n, m,n € ¢,

TI‘plUn

Zyp[Conj(P)] Zyp[Conj(Un)]
Zy[Conj(P/ V)] == A(Un/V;n)

is a commutative diagram of A(Z(P))-modules (i.e. 1, = Tromw). O

We make the following observation:
LEMMA 3.21. For m,n € ¢, m <n, let
Tryn = Tr: AUpn/Vin) — MU/ Vi)
Trmpn,s = (Tr)g : MU /Vin)s = MUn/Vin)s
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be the trace homomorphisms and
Pnm,s = (P*)S : A(Un/Vn)S - A<Un/vm)5

be the projection homomorphisms.

We define the A(Z(P))-modules

P R Trmn xm) pn m(xn)
Q:=Qp =< (2,) El;[] form < m

Trmn Tm) = Pnm,S\Tn
QS = QP,S = (J}n) < HI”’S ’ 75;07”2)1 <pn’ ’S( )
nec -

Assume that 7 is of finite order ord(y) = p¢. Then

im7 CQ and im7g C Qg.

Proor. Clearly, it suffices to prove the inclusion im 7 C Q.

Let m,n € ¢ with m < n. The maps Tr,,, and p,, are A(Z(P))-
linear. By (20), it suffices to prove the claim for the generating set
{r(class(a’3%))|i,j = 0,...,p° — 1} of the A(Z(P))-module im 7.

If n < w,(j), we calculate

prm_q pm—1
Wonlesmal )= 3 7" (z waw) g
n m 1pm71
Z Z Zﬂj ik—p™ti
=0 —
=" " Cijma ‘3 (note: AP = 1)

and
p"—1

k=0 k=0

—-m i Q7
=D CijmQ 3.

If v,(j) < n, we have
Trm,n(cijmaiﬁj) =0 and
pn,m(cijnaiﬁj) = pn,m(o) =0.

Hence Ty, (Cijm@' 37) = ppm(cijna’37) in both cases. O
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LEMMA 3.22. The elements
classp(a'() € Z,[Conj(P)] and c;ju,) € MU, )/ Vo)
for i,7 € N have identical A(Z(P))-annihilators:

Annyzpy) (classp(a’3)) = Annaz(p)) (¢ o))

PROOF. Put z := classp(a’(?), Z := Z(P) and let
Y={ze€Zlzx =2z}

be the stabiliser of z in Z. There is an exact sequence of A(Z)-modules

0 — Annyz)(z) — A(Z) -5 Z,[Conj(P)],
where f is given by f(z) = zx for z € Z. Clearly, f factors through
A(Z/S) = Z,[Coni(P)].
This map is injective since Z/% < Conj(P), z + zz is injective. Hence
Annyz)(z) = ker(A(Z) — A(Z/%)) = I(X)A(Z).
Since
S ={['#,gllg € P} = Vauin{o, )01}
we get Annyz) () = I(Viningo, ()0, )} ) A Z)-

We will now determine Anna(z)(cijo,))- If vp(1) > v,(j), we get
Ciwy() = P9 and hence

AIlIlA(Z)(CiJ,vp(j)) = I(‘/U (j))A(Z) = ADHA(Z) (ZE)
Thus we may assume v,(i) < v,(j). Put

1

b S e AUy V).
V(i) V(s ” p
# ()/ p(7) gEVUp(i)/va(j)

Then ¢ = p~**Uc; ;, (;) is an idempotent with
Anny7)(€) = Annaz) (€50, )-
Since z = ¢z + (1 — ¢)x for x € A(Z), we get

Annyz)(¢) = (1 = ¢)A(Z)
= 1(Vo,))A(Z) = Annyz) (). O

THEOREM 3.23. The homomorphism
7 : Z,[Conj(P)] —
is an isomorphism of A(Z(P))-modules.
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ProoF. We first have a quick look at the heuristics that lead us
to the definition of the inverse homomorphism. Let x € 2 and assume
that we can write & = (¢;;,a' 3’ 2,,),, With some elements z, € A(Z(P))
and i,j < p°. (Note that ¢, are independent of n.) We want to find
z € A(Z(P)) such that 7(a'37z) = x. We believe that z = z,, for suit-
able n will work. It seems reasonable to demand that classp(a(37z) €
Z,[Conj(P)] and c;jna’ z, € A(U,/V,) have the same annihilators.
Since o' € A(U,/V,)* and hence

Annp(z(py) (i’ 37) = Annpz(py) (Cijn),

this leads us to the following definition of a possible inverse map of 7:

71 Q= Z,[Conj(P)],  (tn)nec — D 7a(@n),

nec

where 7/ is the A(Z(P))-linear map

/ . i i classp(o’(7) if n = v,(j
7y o Iy — Zy[Conj(P)],  cijna’ (' +— { 0 e if n # 7;8;

with i,7 € {0,...,p° — 1}.

We first assume that v is of finite order ord(y) = p°. Then the A(Z(P))-
module Z,[Conj(P)] is generated by

{o'Fi,j=0,...,p° =1}

(cf. lemma 3.7). Clearly, 7" o 7 = idg, [conj(p)] is the identity and hence
7 is injective. It suffices to show that 7’ is injective.

Let © = (z,), € 2 be an element of the kernel of 7. We can write

p—1
_ iJ
= E CijnC ﬁjzijm

1,j=0

For 0 <,j < p° we have 0 < v,(j) < ¢ and hence

c c p—1
. /
_ Tn(xn ngna Zzgn
n=0 n=0 7,7=0

p—1
— Z class(a’37) 21 j.u, ()

1,7=0

By the direct sum decomposition of Z,[Conj(P)] (cf. (15) in lemma
3.7), we get class(o’(7)z; ., = 0 for all 4,5 € {0,...,p° —1}. By
lemma 3.22, this is equivalent to ¢; ., (j)2ij.0, () = 0-
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We need to show c¢;jnzijn = 0 for all 7,5 € {0,...,p° — 1} and n € c.
For n > v,(j), clearly ¢;;, = 0 and hence ¢;j,2;j, = 0.

For n < k, we get from the calculation of Tr, x(z,) and py,(zx) in
lemma 3.21

p°—1 p—1
Z pkincijnazﬁjzijn = Z pkincijnazﬁjzijk
i,j=0 i,j=0
k<vp(4) k<vp(4)
and hence
CijnZijn = CijnZijk € NUp/Vin)
for all i,j € {0,...,p° — 1} with k < v,(j).
That means we have for n < v,(j)
CijnZijn = CijnZijuy(j) = 0-
Thus we have shown that 7/(z) = 0 implies z = 0.
Now assume that v is of infinite order. Since [, V. = {1},
Z,[Conj(P)] 2 lim Z,[Conj(P/U)] 2 lim Z, [Conj(P/ V)],
U<,P n

In the next lemma, we will see that Qp = llnn Qp/v,. We have seen
above that

Zp[[CODJ(P/Vn)]] = QP/Vn
for any n € N. Hence we get an isomorphism
Zy[Conj(P)] = Qp.

Since the other two isomorphisms are the natural ones, this isomor-
phism is the homomorphism 7. U

LEMMA 3.24. The canonical map defines the isomorphism

Qp = lim Qpy,

nec

of AN(Z(P))-modules.

PROOF. For any group W that satisfies assumption 3.1, let ¢y =
ceNUooand L =1; <Zp[[Conj(W)]]> be the corresponding objects

defined above. We define Iy := [[" Lw. Then I, pyy, = I; p and
hence Ipy, = [[iy Li,p for n < c. Thus we get

Ip = lim Ipyy,.

n
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We have the following commutative diagram with exact rows

0 Qp Ip Hizj AU/V;)

| ] )

0 —lim Qpy, —1lim Tpy, —lim [[,..o; AU/V),

where the map Ip — [[;; A(Ui/V}) is given by
(@) = (Trja(zy) — pij(@:))-

Hence Qp = liLnneg Qpyy,. O

COROLLARY 3.25. If we apply definition 3.10 to the objects
QP = (QP/W>W€QIIP cmd QP,S = (QP/W7S)W€QHP’
of Mcg,, where C(W) = Z(P/W) for W € Qp, we get the identities
()5 = lim (AZ(P/W))s @aczrwn )

Welip

(Qps)" = lim (Qpyws)"”
WwWep

Then these two groups coincide. We denote it by (/2; There is an
1somorphism

Ts Zp[[Conj(P)ﬂg — Qg
of A(Z(P))-modules.

Proor. If ord(y) < oo, the identity
Qps = AZ(P))s @azpy) Qp
follows from proposition 2.10. By passing to the p-adic completion, we
get
(Qp)g = (ps)" .
This implies the first assertion. Since Z,[Conj(P)] = Qp by theorem
3.23, application of (—)4 yields the second assertion. O

3. Construction of the Integral Logarithm

Let P be a pro-p p-adic Lie group. In this subsection, we will-define
the integral logarithm

Zp : K1(A(P)) — Z,[Conj(P)].
We start with the investigation of convergence properties of the ordi-
nary logarithm series log on A(P). The homomorphism property will

follow from a general property of formal power series. We will compose
log with another homomorphism to get the integral logarithm Zp.
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Assume that there is a surjective homomorphism w : P—7Z, and put
S := S(P,w). In this case, we will define a localised version

L5+ Ki(A(P)s) — Z,[Conj(P)]3.

of Zp. In general, the logarithm series does not converge on K3 (A( )s)

We will show that it suffices to define Zp g on A(P)* and A(Z(P/W))3

for all W € 20p.

LEMMA 3.26. Let W be a pro-p p-adic Lie group. Then
AOV)* = iy g X (1+ 7).

where J := J(A(W)) denotes the Jacobson radical of A(W) and p,—1 C
Z,, is the group of (p — 1)th roots of unity.

PrOOF. Clearly, p,—1 C A(W)*. Let ¢ : A(W) — Z, be the
augmentation map. By [33, 5.2.16], A(W) is a local ring with maximal
ideal

J={z € A(W)l|e(z) € pZ,}.
(This is not true for p-adic Lie groups that are not pro-p.) Thus,
A(W)/J = Z/pZ and we have an exact sequence

1—-14+J—=AW) - (Z/pZ)* — 1.

Since the image of p,_; under the projection map is (Z/pZ)*, the
above sequence splits. Since p,—1 lies in the centre of A(W)*, the
lemma follows. U

Let W be a commutative profinite group. We recall the definition of
¢ AW1) — A(W1), o — 0P

Let W5 be a commutative p-adic Lie group with a surjection w : Wy —
Z,. Since (W) is an open subgroup of W, ¢(S(W)) C S(W). Hence

¢ induces the homomorphism
@ AW)s — AW)s.
LEMMA 3.27. For x € A(W),
2P = ¢(x) mod pA(Wh).
Fory € (A(Wy)s)",
y" = p(y) mod p (A(Wa)s)".

PrROOF. We first assume that W is finite. We get
¥ = () € Fp[W1]

for the image = of x in F,[W;]. By taking inverse limits, we get the
general result for profinite groups.
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Note that the second statement is not trivial since S N pA(W2)s = 0.
Let a € A(W3) and s € S(Ws). Then

a? = p(a) mod pA(W3) and s? = ¢(s) mod pA(Ws).

Since
A(W2)s/pA(Wa)s = (A(W2) /pA(W2))s ,

this implies

a\P a
(;) = (;) mod pA(Ws)s.
By passing to the inverse limit, the second assertion follows. O

LEMMA 3.28. Let Ry = A(Wy), where W is a p-adic Lie group and let

Ry = A(W3)s, where Wy is a pro-p p-adic Lie group with a surjection
w: Wy—2Z,. Put

R} == Qu[W1] or Rj:= Q;HWQ]]S.

then the series ‘
xl

ogl—2)=-S L ek,

Og( x) i>1 Z 1

converges for x € J; == J(R;), 1 =1,2.

PROOF. Fixi =1or i = 2. We first assume every element of J; /pR;
is nilpotent. Hence for x € J; and n € N, there is k£ € N such that
x*" € p"R;. Let |*] be the largest integer < *. Then 2" € pl™"/* R; and
2 ¢ Lpln/kR;. But vp(pwkj) — o0 for n — oo which proves £~ — 0
for n — oo. (The above argument comes from [34, lemma 2.7].)

Clearly, the above assumption is satisfied for Ry = A(W;) when W is
a finite group. Let W5 be a one-dimensional p-adic Lie group with a

—

surjection w : Wo—»Z,, and assume Ry = A(W;)s. By lemma 2.4,

A(Wy)s/pA(W2)s = Q(F,[Wa]) =: Q.

Since every regular element of IF,[W5] becomes a unit in @, every
element of J(Q) is a zero divisor. Since kerw is a finite p-group, there
is an integer k such that (¢*"|g € W) = Z, . Since [Wy, Wy] C kerw,
the p"-th power map defines a surjective homomorphism W-—Z,. By
corollary 2.6, we may define the ring homomorphism

W Q—Q, g g forgeWs.

This map induces a surjective ring homomorphism Q—Q(F,[Z,]).
Then ¢*(J(Q)) is isomorphic to a proper ideal of Q(F,[Z,]). Since
F,[Z,] is an integral domain, this implies ©*(J(Q)) = 0. By lemma
3.27, o¥(x) = 2" for 2 € Q and hence R, satisfies the above assump-
tion.
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Let U; be the set of all open normal subgroups of W; and let Us be the
set of all open subgroups of ker w that are normal in W;. We get the
general case by passing to the inverse limits

lim A(W1/U) = A(Wh), lim Q,[W1/U] = Q,[Wh],
Uel Uell
lim (A(W,/U)s)" = (A(W2)s)",  lim Q,[W>/U]5 = Q,[Ws]5.0
Uelds U€els

Let R be a commutative ring and let R((X,Y")) be the ring of for-
mal noncommutative power series in two indeterminates. Let W, C
R{(X,Y)) be the set of formal (ordered) monomials of length n in two
variables X and Y. Define

O Wy —W,, ay...a, — apaiag---a,_1 for a; € {X,Y}.

For v, w € W,,, we define the equivalence relation ~ by setting v ~ w
if there is a cyclic permutation that transforms v into w, i.e. if there
is | € N such that 8’ (v) = w. We extend this relation linearly to
R((X,Y)) as follows: Let W, :=J, W, and ¢,¢ € R((X,Y)). Then
¢ ~ 1 if and only if there is a map A : W, — W, with A(w) ~ w for
all w e W, and

(1) o=t =3 aulw—Aw))

weEW
LEMMA 3.29. Let R be a commutative topological ring. Let S be a
topological R-algebra and let x,y € S* be units. In case of convergence,
the evaluation homomorphism

R{(X,Y))/ ~—S5/[S,S], Xz, Yy

does not depend on the choice of representatives modulo ~.

PROOF. For p,¢ € R((X,Y)) with ¢ ~ 1, we write ¢ — 1 as in
(21). For w € W,, we can obviously find v € W, such that A(w)v = vw.
Then v(z,y) € S* and

w(z,y) — Mw)(z,y) = w(z,y) — vz, y)w(z,y)v(z,y) ' €[S,S]

Hence @(I,y)—@U(%,y) € [S,S] O
We call a ring R divisible if R — R, x +— max is surjective for all
m € Z\ {0}.

PRroOPOSITION 3.30. Let R be a divisible commutative topological ring
and define the power series log(1+T) € R[[T]] by

log(1+7)=>_ =07

- 1
i>1

T
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Then, in R{({X,Y)), we have the relation

log[(1+ X)(14+Y)] ~log(l+ X)+log(l+Y).

PROOF. We use the argument given in [34, lemma 2.7] to prove
our (more general) proposition.

For w € W, let k(w) be the number of occurrences of XY in w. Let
r(w) be defined by the relation

(22) log(1+ X +Y + XY) = Y r(w)w.

weW,

Let r;(w) be defined by the relation (X +Y +XY)/ =% . r;(w)w.
Any summand w € W, of (X +Y + XY/ has exactly n — j factors
coming from the XY -summand and 2j —n factors coming from the X-
or Y-summands of X +Y + XY. As there are (l;(i”}) ways of choosing
n — j out of the k(w) occurrences of XY in w (and hence expressing
w in the above form), we see that r;(w) = (Z(i”])) Clearly,

©  1\j-1 k(w) _1\n—j—1 w
(23) T(w):Z( 1)? rj(w)zz—( :L)_j (k(J )).

For C € W,,/ ~, we define ¢,k € N by
#C = % and k= max{k(w)lw € C}.

Since Z/nZ = {d.|l € Z} operates transitively on C, we get by the
orbit-stabiliser theorem that ¢ is the cardinality of the stabiliser of any

element of C. (In particular ¢ = 2% € N.) If w € C with k(w) = £k,

then we have a t-to-one correspondence of occurrences of (XY')'s in w
and elements Y --- X € C with k(Y --- X) =k — 1. Hence

#{wEC|k‘(w):k:—1}:§ and

#{weC]k(w):k}:#C—gzn;k.
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Using (23), we get for any C € W,/ ~

S =2 S () ()
LS5 [0+ (0)

(0 k>0
Tl S k=0 (sot=n).

For every C' € W,/ ~, we choose an element we € C. Combining the
above result with (22), we get

log(1+ X +Y + XY)~ > <Zr(w))wc

CeW,/~ \weC

n

_ i D" n o ymy
~ log(1+ X) + log(1+ Y). 0

In the further argument, we will not need the following interesting
corollary to the above proposition.

COROLLARY 3.31. Let R be a divisible commutative topological ring.
Let U C R{{X,Y))* be the subgroup of power series with constant
term 1 (i.e. U = {w € R{(X,Y))*|w(0,0) = 1}). The power series
log induces a homomorphism

log: U — R{{X,Y))/~

PrROOF. We endow R((X,Y)) with the natural topology. For ¢ €
U, clearly log(v)) converges. By lemma 3.29, the map

log: U — R((X,Y))/[R{(X,Y)), R(X,Y))], ¢ — logop

does not depend on the choice of a representative of
log] € R((X,Y))/~ .

By proposition 3.30, it is a homomorphism. By lemma 3.4 (applied to
the monoid W,.), we have

(v —wlv,w € W,,v ~w)gr =[R(X,Y), R{(X,Y)],
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where R(X,Y) = R[W,] is the ring of noncommutative polynomials in
two variables. Taking quotients modulo the topological closure of this
group in R((X,Y)), we get

R(X,Y))/~ = R{X,Y))/[R{{X,Y)), R((X,Y))].
This finishes the proof. U

COROLLARY 3.32. Let W be a pro-p p-adic Lie group. There is a
homomorphism

log : Ki(A(W)) — Qp[Conj(W)[, [1—a]— [ Z ~l

If 1 C J:=JWN\W)) is a two sided ideal, we get a homomorphism
log" : Ki(A(W), 1) — Q, ®z, I/[A(W), I].

PROOF. Let U C Z,({X,Y))” be the subgroup of power series with
constant term 1. By lemma 3.29, in case of convergence, evaluation at
r,y €14+ Jorz,y€l+ I induces the maps

Zp({X,Y)) )~ — QPHW]]/[QPHW]L QPHW]” = QPHCOHj(W)H
LZp((X,Y)) [~ — Qp @z, I/[A(W), 1].

By lemma 3.28, log converges on 1+ J and by proposition 3.30, we get
homomorphisms

log: 14 J — Q,[Conj(W)]
log" : 1+1 — Q,®z, I/[AW),]].

We put log(¢) = 0 for ¢ € pp—1. (This is the unique homomorphism
tp—1 — Q,[Conj(W)].) By lemma 3.26, this induces the homomor-
phism

log : A(W)* — Q,[Conj(W)].
Since the images of log and log’ are commutative groups, the homomor-

phism log (respectively log’) is well-defined on K (A(W)) (respectively
Ky (A(W), 1)). O

PROPOSITION 3.33. Let R be a divisible commutative topological ring
and let U be as above. We define the power series

exp(T) := Z Zl'TZ € R[[T]).

Then

exp(X)exp(Y)exp(—X —Y) € [U,U] C R({X,Y)).
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Proor. We define the Campbell-Hausdorff series
O(X,Y) € R((X,Y))
and the commutator Campbell-Hausdorff series
U(X,Y) e R{(X,Y))
by the relations
exp(P(X,Y)) = exp(X) exp(Y) and
exp(V(X,Y)) = exp(—X) exp(—=Y) exp(X) exp(Y).
(For a proof of existence and uniqueness of these series, see [13].)
Clearly, exp(¥(X,Y)) € [U,U] and
(X, (Y, 7)) =d(P(X,Y),2)
(X, —X) =0
O(X,0) = X.
By [13, theorem 6.28],
20 O(X,Y) - X —Y € [RUX,Y)), R{(X,Y))]  and
U(X,Y) € [R{(X,Y)), R{((X,Y))].
For n € N, let degn C R{{(X,Y)) be the R-module generated by the
monomials of degree > n. Then
(25) O(X,Y)=X+Y mod deg2 and
U(X,Y) = XY — VX mod deg3.

For any power series

p(X,Y) =) [ari] € [RUXY)), RUX. YD), giri € RU(X,Y)),

7

there is a power series ¥(p) € R((X,Y)) such that U(p)(X,Y) =
> ¥(gi, ). If p e degn, n > 1, then by (24) and (25)

O(p, —¥(p)) € [R{(X,Y)), R{(X,Y))] Ndeg(n +1).
Hence for each p as above, there is
q € [R((X,Y)), R{((X,Y))] N deg(n + 1)
such that
exp(p) exp(q) ! = exp(®(p, —q)) € [U,U].

By induction, we get exp(p) € [U, U].
Since ®(P(X,Y),—X —Y) € [R{(X,Y)), R((X,Y))], this implies
exp(X) exp(Y) exp(—X — Y) = exp (<I)(<I>(X, Y),—X — Y))

e [U,U]. O
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COROLLARY 3.34. The power series exp induces a homomorphism

exp: R((X,Y)) — U/[U,U]J.

LEMMA 3.35. Let W be a pro-p p-adic Lie group and let I < A(W)
be a both sided ideal and assume that there is & € Z(A(W)) such that
I C EA(W) and & € pEA(W). Then the logarithm series induces the
homomorphism

log : Ki(A(W),I) — I/[A(W), ]

If1* C plJ, J := J(A(W)), then log is an isomorphism whose inverse
map

exp : [/[AW), 1] — K1 (A(W), I).

18 1nduced by the exponential series exp.

(This is a slight generalisation of [34, theorem 2.8].)

PROOF. By assumption, I? C &PA(W)NI C pl and hence I™ C nl
for all n > 1. This implies log(1 + I) C I and proves the first part of
this lemma.

Now assume [P C pl.J. We show convergence of the exponential series.
Let n > 1 be a natural number. The identity

| n
wit) =3 |5
= LP
is well known and can be verified easily. Let £ € N be the number such
that p* <n < p**'. Then
n n k n
el cpE=bH g conir gt

Thus 4/" C I and since A(W) is noetherian (cf. corollary 1.11)
N, 1" € ), 1J" = 0. Hence exp(x) converges in 1+ 1 forz € I. 0

Let P be a compact p-adic Lie group with a surjection w : P—7Z,.

LEMMA 3.36. Assume that Z := Z(P) C P is an open subgroup. FEvery

X

unit x € /@X can be written as a product v = uv with u € A(Z)g
and v € A(P)*.

PROOF. By lemma 2.10, we can write every element of A(P)g as a

product z = wv with u € A(Z)g and v € A(P). When z is a unit, then
u,v are units, too (u is a right unit and since it is central, it is also a
left unit). O

The following proposition defines the integral logarithm.
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PROPOSITION 3.37. Let P be a compact p-adic Lie group. There is a
well-defined group homomorphism

Zp : Ki(A(P)) — Z,[Conj(P)], @ (1-p ') olog(x)

Assume that there is a surjective homomorphism w : P—7Z,. Let 2Wp
be as in lemma 3.8. Then we can define

Lrs: Ki((A(P)s)") — Z,[Coni(P)]5,
to be the composition of the natural homomorphism

K ((A(P)s)") — lim Ky ((A(P/W)s)")

and the homomorphism

lim K ((A(P/W)s)"™) — lim (Z,[Coni(P/W)]5)".
Wep wew

which is induced by the maps
KL ((A(P/W)s) ") — (Z,[Conj(P/W)]) ",

1 _ 1
[x](A(p/W)S)@) — ];log(UPQO(u) 1) + (1 - 2;90) © 1Og([v]/\(l"/VV))>

for all W € Qp, where we write an element x € ((A(P/W)S)(p>) " in
X
the form x = uv with u € <(A(Z(P/W))S)<p>) and v € A(P/W)*.

REMARK. If P is commutative, the integral logarithm has the form

X o ——

Lo A(P)* — A(P)  Zps:AP)s — AP)s.

Proor. Note that by lemma 3.36, the decomposition z = uv exists
and by lemma 3.27, wPp(u)™' € 1+ p(A(Z(P/W))s)®. Since ¢ is a
continuous ring homomorphism, we get

L p -t olog(u
ﬁlog(u p(u)) = (1 psﬁ) log(u).

for u € ((A(Z(P/W))S)<p>> N A(P/W)*. Hence Zp)w,s is indepen-
dent of the decomposition x = uwv.

It suffices to prove the existence of Zp g in case Z(P) C P is an open
subgroup. Since

log(1 +p (MZ(P/W)$)™) € p (AZ(P/W))5)".
it suffices to show that Zp is integral. Put R := Z,[Conj(P)].
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For any x € J, we have

fp(l—x):—z%_i_zw('xi).

i>1 > P
i n n—1 . .
For i € Z\ pZ, n > 1, clearly % € R and :’;Ln — go(xppn—_l) € R implies
ur n—li
”;pnz. — (“;)pn,li ) € R. Hence, we only have to show

Vs

[ =z )]

forall n > 1, x € J. We write the image of x in R in the form

T= Zriclass(gi), ri € N(Z(P)), ¢; € P,

el

where [ is a finite index set. We put ¢ := p™. Then
74 = Zril -1 class(gi, -+ - gi,) = Z s; € R.
ielq icld

Let 0, : 19 — I be the map defined by
Sq((it, - ig)) = (igriv .. ig_1).

Let C' € 19/ ~ be an equivalence class, where the relation ~ is defined
by i ~ j < s; = sj. Definet = ¢t(C) € N by #C = p"*. Then
S5ty = si for all s € C and hence

HO)
HC) e ’ pt©)
— .
r? = Z p H T class ((gil o 'gipn_t(c)> )
cela/~ j=1
_HC) ~pH©) pt(©)
=: Z p" t(c)rpct class <gg >€9ﬁi

Celd/~
with 7o € A(Z(P)), go € P. For t(C) = 0, we get p"[>_ oy. We

calculate

pla™) = Y 90(7"1-1~~7"z'pn71)dass((gil."gi”"71>p)

ierpm !

= Z pn—t(C)gp(fc)Pt(C)flclass (Qg(m).

Cell/~
t(C)>0

Thus, we only need to show
[p”’tfptclass (gp‘> — p”’tgo('ﬁ)pt_lclass (gpt)]

for ¢ > 0. This follows from lemma 3.27. O

n

p
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LEMMA 3.38. Let P be a compact p-adic Lie group. Then
K(A(P)) 2= lim K (A(P/0)
U

where the limit is over all open normal subgroups U of P. Assume that
there is a surjective homomorphism w : P—Z,. Then

Ki((A(P)s)")— lim Ki((A(P/W)s)™)
Welp

18 surjective.

PrOOF. The isomorphism follows from proposition 1.19. (The as-
sumptions of proposition 1.19 are satisfied by [16, 1.4.2].) Since for the
ring (A(P)g)" is semi-local by lemma 3.14, the second assertion follows
from lemma 1.20. g

4. Kernel and Cokernel of the Integral Logarithm

We use techniques developed by R. Oliver to prove the exactness of the
sequence

1= ppo1 x P — [ (A(P)) <5 Z,[Conj(G)] — P — 1,

where P is a pro-p p-adic Lie group. This is a consequence of the
following theorem:

THEOREM 3.39. Let W be a (finite) p-group. Define
w = wy : Z,[Conj(W)] — W

to be the group homomorphism induced by classy (o) — [o] for o € W,
Then, the sequence

1 — Ki(A(W))tors — Ky (AW)) 2% 7, [Conj(W)] = W — 1
18 exact.

PROPOSITION 3.40. Let W be a p-group. Let z € Z(W) be an element
of order p. Put L := (1 — z)A(W). Then the sequence

(26) 1— (2) — Ki(A(W),L) 8 LJJAW), L] %> Z/pZ — 1

is exact (where the map " will be constructed below) and
(27)

[(1 = 2)Z,[Conj(W)] - Zw (1 + L)] = {

1 if z is a commutator
p otherwise
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PROOF. We give a more detailed version of the rather short proof
in [34, prop. 6.4].

We have
1=2!=[1-(1-2)]P=1-(1-2)” mod pL
and hence (1 — 2)? € pL. By lemma 3.35, there is a homomorphism
log" : K1 (A(W), L) — L/[A(W), L]
and an isomorphism
log™ + K{(A(W), LJ) — LJ/[AN(W), LJ].
The following diagram is commutative:

K\(A(W), LJ) — K (AW), L) — K, (2 L)y 1

LJ ' LJ
(28) =~ | JogLd log” llogo
0— LJ/[AW), LJ] — L/[A(W), L] — L /[2W) L]0,

where log, is the homomorphism induced by log”. The first row is
exact by [30, remark 6.6]. From the inclusion

[AW), A(W)] = (gh — hglg,h € W)z,
=((1—=9)h—h(1—g)lg.h € W)z, C [A(W), J],
we get
LIN[A(W), L] = [A(W), LJ]

and hence the second row is exact.

Since Z/pZ is commutative, we can define

o Ky(AW),L) — Z/pZ, 1+ (1-2z) ani — Zr
o L/ANW), L] = Z/pZ, (1 - =) ani = Z?’

where r; € Z,, g; € W and 7; is the image of r; in Z/pZ. By Vaserstein’s
identity (cf. [34, theorem 1.15]) and the description of J in lemma 3.26,
these maps induce the isomorphisms

AW) LY _ L J[AW) L7 _

We will now evaluate o (log”(1 + (1 — 2)rg)), where r € Z,, g € W.
Since (1 — z)P € pL, we get for n > p
(1—2)"
n

€ p(1 — 2)A(W)
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and hence a”(%r”g”) =0. For n > 1, ptn, clearly

Oé”( (1 — z)n

It remains to calculate o (%r”g”). The set

1
2_9((1 —XP—-14+XP)+ (1 - XP)Z,[X] C Z,[X]
is the set of all polynomials such that evaluation for X = z gives %.
The image of
l1-Xxy—-1+Xx7 1— XP
A ) ) N 2[X]
1—-X 1—-X
1
=—((1=XP' 1= = XP )+ (14 + XPHZ,[X]
p

under the evaluation homomorphism Z,[X| — Z/pZ, X +— 1 is
{—1}. Hence'

o' (logh(1+ (1 = 2)rg)) = (1 = 2)(rg — rPgP)) = 7 — 7 = 0.
Thus, the diagram (28) is just
Ky(AW), LJ) — Ky (AW), L) — Z/pZ — 1
Nllogl"l ilogL J{o
0—— LJ/IN(W),LJ] — L/[A(W), L] ——Z/pZ — 0.
Now the snake lemma yields the isomorphisms
ker(logh) = Z/pZ and  coker (log") = Z/pZ.
Since o/ (2) = —1 and z € ker(log®) (L/[A(W), L] is p-torsion free), we
have ker(log") = (z). Hence the sequence (26) is exact.
Let
p: L/[AW), L]=(1 = 2)Zy[Conj(W)] C Z,[Conj(W)]
be the natural projection. For £ € A(W),
log"(1+ (1= 2)§) = (1 - 2)n
for some n € A(W). Since p((1 — 2)n) = (1 — 2P)p(n) = 0, we get
Lw(1+ (1= 2)¢) =pologh(1+ (1 - 2)f).
By (26), the group
(1= 2)Z,[Conj(W)]/Lw (1 + L) = (1~ 2)Z,[Conj(W)] /polog"(1+ L)

INote that (1—2z)2 1 %. The above argument does not work for %(1 -X)Pe
Qp[X].
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is a quotient of Z/pZ. 1t is the trivial group if and only if kerp # 0.
But this is equivalent to the existence of some x € A(W) with

v & [AW),AW)] and (1= z)x € [A(W), A(W)].
Equivalently, z is a commutator. This proves (27). O

LEMMA 3.41. Let W be a p-group. Then Ko(A(W)) is torsion.

PROOF. By [26, theorem 7.2.7], K5(Z[W]) is finite. By [26, theo-
rem 7.2.2], the homomorphism

Ko (Z[W]) — Ky(Q[W])

induced by the natural inclusion Z[W] — Q[W] has finite kernel and
torsion cokernel. Hence Ky(Q[W]) is a torsion group.

By Maschke’s theorem, Q[WW] is a semisimple Q-algebra. As it is finite
dimensional, it is Artinian. Hence we get the Wedderburn decomposi-
tion

QW] = HMnxD,-),

where D; are finite dimensional skew fields over Q. By [39, Satz 2],
we get that the D; are actually fields. By tensoring with Q, and using
the isomorphisms D; ®q Q, = Hv‘ p(Di)U, where the product is over all
primes v of D; lying over p, we get the isomorphism

QW] =[] Mo (Di 0 @) = [T ] M (D2))
i=1 =1 wvlp

of Q,-algebras.
Using the fact that for two rings R, S, we have K3(R x S) = Ky(R) @
K5(9) (cf. [28, proposition 12.8]) and Morita invariance, we get
K> (Q[W]) = @KQ(Di)
i=1

r

Ky (Q,[W)) = D € Ka((Di)o).
=1 olp
By [2, theorem 5.2], the homomorphism

K3(Di) — @ Ks((Dy)w),

where the direct sum is over all primes v of D;, has finite cokernel.
Hence K»(Q,[W]) is a torsion group.
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Q,[W] is a semisimple Qp-algebra that contains the maximal order
Z,[W]. Hence, by [26, theorem 7.1.1 (c)]

Ko (Zp[W]) — Ka(Qp[W])
is injective. Therefore, we get that Ky(Z,[W]) is a torsion group. [

Let A be a semisimple Q,-algebra and let A C A be a Z,-order (i.e. a
subring A of A with A = Q,A which is finitely generated over Z,). We
define

SKi(A) :=ker(K;(A) — Ki(A)),

where the homomorphism on the right hand side is induced by the
natural inclusion A C A.

THEOREM 3.42 (Wall). Let O be the ring of integers in a finite exten-
sion of Q, and let W be a finite group. Then

Ki(Ao(W))iors = p(O) x W x SK;(Ap(W)),

where p(O) := O]

tors

is the group of roots of unity of O.

PROOF. [34, Theorem 7.3] O

LEMMA 3.43. Let W be a p-adic Lie group. The map
1 . :
1- 2_990 : Qp[Conj(W)] — Q,[Conj(W)]

is injective and hence ker(Zy ) = ker(log).

PROOF. There is a descending sequence of subsets
Conj(W) D p(Conj(W)) D ¢*(Conj(W)) O ...

with (1, ¢"(Conj(W)) = 1. Let z be an element of the kernel of
1 - %gp. If € Qulw, then there is a maximal n such that z €

Q,[¢™(Conj(W))]. Then
1 . n .
AR Q™ (Conj(W))] and = & Q™" (Conj(W))].
This is a contradiction to the identity = — i(p(x) = 0. The restriction
of 1 — I%cp(x) to Q,lw is trivially injective. O

PROOF OF THEOREM 3.39. We extend the rather short proof given
in [34, theorem 6.6]. In particular, we provide a proof for the exactness
of the left column of diagram (29).
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Firstly, we consider the case W = 1. We have log(1 + pZ,) = pZ, and
hence log(K1(A(1))) = pZ,. This implies

L (A1) = (1 - %@aog(Kl(A(w») — (- }9><pzp>

= Zp = kerw,.
Clearly, ker £ = pp—1 = K1 (A(1))sors-

We will show, that wy 0 £y = 1 for a p-group W # 1. Commutativity
of the diagram

Lw

K (A(W)) Zy[Conj(W)] —— e 1
\L gwab i Wyyab
Ky (A(W)) —— Z,[Conj(W®)] Wab 1

implies that we may assume W = W2 without loss of generality.

Let I = I(W) be the augmentation ideal of A(W¥). Since

Ka(A(W)) 2 iy % (141 +pA(W))
by lemma 3.26, it suffices to show Ly (1 + I) C kerwy and Ly (1 +
pA(W)) C kerwy. We get the latter inclusion from the inclusion

log(1 + pA(W)) € pA(W) and the fact that wy (z) = ww(éw(:c)) for
x € pA(W).

Let u € 14 I and write w = 1+ > ri(1 — 7)o; with r; € Z,, and
0;,7; € W. Using the congruence

7=1-1-7)P=1-p(1-7)—(1—-7)" modpl*
we get
uP =1 +p2ri(1 — 7)o + er(l — 7;)P0F mod pI?
=1 +pim(1 — 7)o + iﬁ(l — 7;)P0? mod pI?
=1 —I—pZn(l — 7)o + Zri[(l —17) = p(l — 7))ot
=1+ eri(l — 7)o —|—pzZ7"l-(1 —71)(0; — o?).

J/

-~

—~
=p(u) €pl?



4. KERNEL AND COKERNEL OF THE INTEGRAL LOGARITHM 95

Consequently, u? = ¢(u) mod pI?. Since pI? is an ideal, this is equiv-
alent to #Z) € 1+ pI?. Then

L () = }Dlogw) - %w(log(U))

11g( v
= -1lo
p o p(u)

On the other hand, we get for r € Z,, 71,72, 73 € W

)€ T2

ww (r(1 = 71)(1 = 2)73) = ww (r(73 — 1173 — T2T3 + T17273))
=T13(1i73) " (12m3) (TiTeTs) =1 € W,

Hence I? C kerwy and Ly (1 + I) C ker wy.

Let z € Z(W) be an element of order p which is a commutator if W is
not abelian. (The existence of z follows from theorem [34, prop. 6.5].)
Define W := W/(z).

We will prove the theorem by induction on the order of W. For W =1,
we have already shown everything. Now, we assume that we have
already proven the theorem for W. Let

a:W =W

be the natural projection. For an abelian group K define K/tors =
K/KtOTS . Put
L:=(1—-2z)AW)cCAW) and
Leonj = (1 — 2)Z,[Conj(W)] C Z,[Conj(W)].
We consider the following commutative diagram (where the maps %
and wy are induced by £y and wyy, respectively):

1 1 1
1 — K (A(W), L)/tors % Leonj — = ker a® —= 1
(20) 1 —— K (A(W))/tors 2> 7, [Conj(W)] > prab 1
K(a) H(a) a®
. Ly g “w_os
1 —— K (A(W))/tors —= Z,[Conj(W)] Wab 1
1 1 1

We show that the left column is exact. First note that by [3, corollary

A

I11.2.9], GL(A(W)) — GL(A(W)) is surjective and hence induces the
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surjections

Ki(AW)) — K (A(W))  and

A

K (A(W))/tors — K1 (A(W))/tors.

If W is noncommutative, the kernel of W — W is generated by a
commutator and hence [35, lemma 14] implies that

A

SKi(A(W)) — SKi(A(W))

is surjective. Since SK;(A(W)) = 1 if W is commutative (cf. [10,
proposition 45.12]), this map is also surjective for commutative groups
W. Hence by Wall’s theorem (cf. theorem 3.42), the upper row in the
commutative diagram

A

Kl (A(W)a L)tors - Kl (A(W))tors - Kl (A(W))tors —1

|

1—= Ki(A(W), L)/ Ky —— K1 (A(W))

Ki(AW)) —1,

is exact. The lower row, where Kj denotes the image of Ky(A(W)) in

~

Ky (A(W), L), is also exact. Since Ky(A(W)) is torsion by lemma 3.41,
the snake lemma yields the exact sequence

1 — K{(A(W), L) /tors — K(A(W))/tors — K (A(W))/tors — 1.

The right column in the diagram (29) is exact by definition of a®.
The exactness of the middle column follows from the exactness of the
sequence

A

1—-L—AW)—-AW) -1

Obviously, wy is surjective. By proposition 3.40, % is injective. We
have already shown that im (%) C ker(wg). By proposition 3.40, we
get that

1 if z is a commutator
p otherwise

# coker £y = { } = # ker a®,
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i. e. the upper row is exact. By our induction hypothesis, the lower row
is exact. From wy o %y = 1 and the 3 x 3 lemma? (cf. [49, Exercise
1.3.2]), we deduce that the middle row is exact. O

COROLLARY 3.44. Let W be a pro-p p-adic Lie group with
SK\(Zy[W/U]) = 1
for every open normal subgroup U of W. Then the sequence
1 — gyt x W — K (AW)) 2% Z,[Conj(W)] L% W — 1

18 exact.

Proor. Write W' = lim W/U where the limit is over all open
normal subgroups U of W. Then
W =W/[W, W] = lim(W/U)/[W/U,W/U] = lim(W/U)*".
U U
Since SK(Z,[W/U]) = 1, Wall’s theorem (cf. theorem 3.42) implies

Ei(AW/U))tors = pp—1 x (W/U)™.
Since the inverse limit functor is left exact, we get from lemma 3.38
and theorem 3.39 the isomorphism
ker Ly = liinker Ly = pp—1 X web,
U
Theorem 3.39 implies that the sequences

Lwu ww /U

1 — K (AW/U))/tors —5 Z,[Conj(W/U)] =5 (W/U)™ — 1

are exact for all open normal subgroups U of W. Since Z,[Conj(W/U)]
is compact for all U, we get the short exact sequence

1 — lim K, (A(W/U)) /tors 2% 2, [Conj(W)] — W — 1

U
(cf. [51, lem. 15.16)). O
2The 3 x 3 lemma says that if in the commutative diagram

1 1 1
b | |

1 Ay By Ch 1
b | v

1 Ay By Co 1
v | v

1 As B3 Cs 1
b | ¥
1 1 1

in an abelian category, all columns, the top row and the bottom row are exact and
the composition Ay — By — (Y is zero, then the middle row is exact.
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COROLLARY 3.45. Let P be a pro-p p-adic Lie group that satisfies as-
sumption 3.1. Then, the sequence

1= pp_1 x P — Ki(A(P)) 25 Z,[Conj(P)] <2 P — 1

18 exact.

PROOF. For every open subgroup U of P, [P/U, P/U] is the central

cyclic group generated by the image of v in P/U. Then a theorem of
R. Oliver (cf. [34, theorem 8.10 (ii)]) implies SK;(Z,[P/U]) =1. O

5. The Multiplicative Homomorphism ¢

Let P be a group that satisfies assumption 3.1. In this subsection,
we will define subsets U C [, A(U,/V,)* and Vg C ], A(Un/V0)3S
and show that imf = ¥ and imfAg C Vg for the homomorphisms
0: Ki(A(P)) — [, AU,/V,)* and Og : K1(A(P)g) — [1, AUn/Va)s-

We use the relation Trolog = log oN to prove the following relations of
the integral logarithm with the homomorphisms 7 and 6 for all n > 1:

(L (2)) = log(0p(2) (0,1 ()" for all x € K;(A(P))
Tus(Ls(x)) = log(0,.5(2)(6n 1.5(x)) ") for all & € K, (A(P)s).
To prove the inclusions
imf C ¥ imfg C Vg,
we need the facts that 1 4 [, is a group and
log:1+1,—1,
is an isomorphism. We show that 6 surjects onto W. As we have already
pointed out, we do this by proving that diagram (12) is commutative
with exact rows.
Define 6,, : K1(A(P)) — A(U,/V,)™ to be the composition of
N : Ki(A(P)) — Ki(A(U,)) and
pr: K (A(Un)) = Ky (A(Un/Va)) = A(Un/Vi)"

Form <mn,m,n € ¢,let Ny, : AU,/ Vi) — AU,/ Vin)™ be the norm
map and py, 1 AU,/ V) — A(U,/Vi)* be the projection map. For
n > 1, define

©0:Up 1 /Voy = Up/Vy, o+ d”.

From

(o7)P = oP7P[T, a]ép(p*l) =oPr? € U,/V, foro,re€U,1/V,
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we get that ¢ is a continuous group homomorphisms. Let
QO . A(Un_l/Vn_l) ad A(Un/Vn)

be the continuous ring homomorphism induced by the group homomor-
phism ¢. We define

U= {(z,) € [ AU/ V)]
:(l) Nonn (Tm) = Ppm(25) for m <n, m,n € ¢

(i1) pp(n1) ' €1+ 1, forn>1, nech

Forn >m,n,m € ¢,1et Ny : AU /Vin)g — A(Un/Vin)s be the norm
map and py, : AU, /V,)s — AUy, /Vin)$ be the projection map.

By corollary 2.6, the group homomorphism ¢ induces the continuous
ring homomorphism

(Yol A(Un_l/vn_l)s — A(Un/Vn)S
We define

Vg = {(7y)n € HA(Un/Vn>§|

nec
(1) Npn(2m) = pom(zn) form <n, m,n € ¢

(i1) wpp(r, 1) ' €1+, sforn>1,n¢€ c}.

Define 6, s : K1(A(P)s) — A(U,/V,)§ to be the composition of
N: K (A(P)s) — K1(A(U,)s) and
P+ Ki(A(Un)s) = Ki(A(Un/Vi)s) = AUn/Va) s
Define
0s : Ki(A(P)s) = [[AWUL/VR)E. 2= (Bn,5(2))nx0.

n>0

LEMMA 3.46. The map ¢* : P — VU, g — (¢™(g))n>0 is a well-defined
maultiplicative map with ¢*(g) = 0([g]ap)) for all g € P.

PROOF. Let (1,4P",...,3®" "~YP™) be a basis of A(U,,/V,,) over
AU,/ Vy). Then

0 B

Noa(3") = det | 1 U= =
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From p,.(37") = 87" and " = ("), we get that ¢*(f8) =
(ﬁpn)neg € V. Obviously, ¢*(g) € ¥ for g € U, and hence

©"(9) = (6" )n = (On([9]))n
for all g € P and ¢*(P) C . O

The main result of this chapter is the following theorem:

THEOREM 3.47. The homomorphisms 0, n € N (0 <n < ¢ in case y
is of finite order p°) induce an isomorphism
0: Ki(AMG) — U, z— (6,(2)).

REMARKS. o If G is abelian, K;(A(G)) = A(G)" = ¥ (note

c=0and Vy=1) and

0=id: A(G)* — A(G)™
is the identity isomorphism.
e It is not obvious that ¥ and Vg are groups (I, C A(U,/V,)

and I, s C A(U,/V,)s are not ideals, generally!) and that
imf C ¥, imflg C Ug.

LEMMA 3.48. Let Wy be a p-adic Lie group and let Wo be an open
subgroup of index n of Wy. Assume that Wy is commutative. Let

Tr : Qp[Conj(Wh)] — Q,[W5]

be the trace homomorphism induced by Tr : Q,[Wh] — Q,[W2]. Then
the following diagram is commutative:

log

Ki(A(W1)) —= Q,[Conj(W1)]

iN . J/TT
A(Wy)* Q,[Wa].

In particular, the following diagram is commutative for any n € N:

log

K1(A(P)) —2 Q,[Conj(P)]
(30) len l
AU Vo) —2> Q,[Un/Va].

PROOF. We use parts of the proof of [34, theorem 6.2].

We assume first that WW; is a finite group. Since W, is commutative,
we have the description (3) of the norm map. Hence

N(1 +p"z) =1+ p"Tr(z) mod p**!
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for x € A(W7) and n > 0. Thus
log(N(1 + p"z)) = log(1 + p"Tr(x))
= p"Tr(z) = Tr(log(1 + p"z)) mod p*"*

Let w € 1+ J(A(Wy)). Then the image of w in F,[W;] is of finite
order and hence there is & € N such that v”* € 14 pA(W;). Then
" e 14 prtA(WA) for all n > 0. Thus we get for n > k

log(N(u)) = p~"*log (Tr(w""))

up

(n+1)—1

2
e k+n p n—
=p " Ty <log(up )> mod T = pn il

= Tr(log(u))
Since this holds for any n > k, we get the equality
log(N(u)) = Tr(log(w)).

We prove this identity for not necessarily finite groups W; by passing
to the inverse limit over all finite quotients of W7 and W5.

From the commutativity of the diagram

A(P) M, (A(Un))

| i

AP/V3) —— M (A(Un/V2)),

we get that the diagram
Ki(A(P)) ——— E1(A(U,))
(31) J{p* J{p*

Ki(A(P/V,) — Ki(A(U,/V2))

is commutative. Recall that by lemma 3.20, 7,, can be written as the
composition

T : Qy[Conj(P)] = Q,[Conj(P/V;)] — Q,[Un/ Vil

We have already shown that the diagram

log

K <A<f/vn>> — % Q,[Coni(P/V,,)]
AU Vo) —=— Q,[Un/ V]

commutes. Since p.(log(z)) = log(p«(z)), this implies the commuta-
tivity of (30). O
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LEMMA 3.49. For m,n € ¢, m <n, There are the following commuta-
tive diagrams of Z,-modules:

Z,[Conj(P)] —= Z,[Conj(P)]  A(Un-1/Vin-1) == AU/ Vim)

lpﬁh—l lﬂl ij}mlml lqymm

A(Un—l/vn—l) L> A(Un/vn) A(Unfl/vmfl) i) A(Un/vm)

Zy[Conj(P)]§ — = Z,[Conj(P)]s  A(Um-1/Vin-1)s —>= MU/ Vin)s

lp'Tn—l,S iTn,S’ \LTrm—l,n—l lTrm,n

(AU /Vaet)s)" > (AU Vi)s)" AUuct/Vinor)s == AU/ Vin)s

PROOF. We have
n—1 n—1

gr oPpTP =P € AU, /V3)

1

for o € U, since [a?, 37" | € V,,. Thus for 0 € U,,_1,
p"—1

pn71—1

Tn 0 p(class(o)) = Z class(B'o?B™") = p Z class(B'o? 37"
i=0

=0
pnTi-1
=p-p| D cass(3op7)
1=0

=p-porT,_1(class(o)).
For o € P\ U,,_1, clearly
Tn 0 p(class(o)) =0 =p- @ o, 1(class(o)).

Since T, T,—1 and ¢ are Z,-linear and continuous, we have proven the
commutativity of the top left diagram. Since 7g is A(Z(P))gs-linear for
groups P with open centre, this also implies the commutativity of the
bottom left diagram.

Since
0 ANUpn-1/Vin-1) = AU/ Vi)

sends the A(U,_1/Viu_1)-basis (1,37 ", ..., 37" "~1) of the domain to
the A(U,,/V,,)-basis (1, 37", ..., 37" ~1) of the codomain, the top right
diagram is commutative. Using the same argument, we get the com-
mutativity of the bottom right diagram. O

LEMMA 3.50. Forn € ¢, n > 1, we have
70 (Lo () = 10g(0n(2)p(6n 1 (x)™")  for all z € Ky(A(P)),
T5(Los () = 1086, 5(2)p(On_15(x) ™) for all z € Ky(A(P)s),
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ProOF. We first prove the second equation. Since ¢ is a continuous
ring homomorphism,

logp(l—y)=—) == 20 _ of1og(1 - y)

1>1

for y € J (A(Un/V))s)").

— X X

For z € A(P)g , we write 2 = wv with u € ((A(Z(P))s)")" and
v € A(P)™ (cf. lemma 3.36). Note that Z(P) C U, and hence (by the
remark after the definition of the norm map)

On5(u) =@ € (A(Un/Va)s)")"
Using lemma 3.48 and lemma 3.49, we get
10g (0,5 ([])p(Bn-1,5([2])) ™)
=log(@" (@) ™") +log b 5([v]) — log @ 1.5([v])

zlvloans((upw( ))) + s log([v]) — @ra1,5log([v])

_%so%mgww<> %+%sbﬂ[b—ﬂw0%¢obﬂbb

1
=Tns © Zps([U]) + 75 0 (1 = —) o log([v])
=Tn,s © Zps([z]).
A similar argument proves the first part of the lemma. O
PROPOSITION 3.51. Let n € ¢, n > 1 be an integer. Then
(1) 1+ I, is a multiplicative group.
(2) The logarithm induces an isomorphism

log:1+]ni>.fn.

Our proof of the proposition uses K. Kato’s sketch in [25].

We will first provide some lemmata, which we require for the proof of
proposition 3.51. We recall the definition of h,; before lemma 3.19.

LEMMA 3.52. If0 <1< 75 <n,
hn,ihn,j = pnijhn,i-

PROOF. Define

’rL s_1

Bs(T) = (TP" = 1)(T? Z " € Z|T
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for 0 < s < n. Since 7 < j, we have (T*" — 1)|(T?"* — 1) for any t > 0,
and hence

prI—1
hag(T) = = 3 (P —1) € (17 — 1),
=0
Obviously, h,,;(T) € (?;njll) Therefore,

Substituting v for T' (and noting v7" € V,,), we get Ay ihn; = p" I hni.

O
LEMMA 3.53. Fori < j <n, we have hy j|h,; in A(U,/V,).
PROOF.
pn—i_l pn_j—l pj_i—l
h,; = ,ypik _ ,ypi(rpj‘“rS)
k=0 r=0 s=0
P10
— h’n,j ,}/pls ‘:’
s=0

LEMMA 3.54. Let G and H be profinite groups with normal subgroups
G=G, DGy D ...and H = H, D Hy D ... such that ﬂizlGi =
1, (Nis1 Hi = 1. (Note that this implies G = lim G/G, and H =
lim H/H,, see [36, corollary 1.1.8].) Let
—n

p:G—H
be a continuous group homomorphism such that o(G;) C H; for all
1 > 1, and the induced maps

0 Gi/Gis1 — Hi/Hiy1 Vi>1

are isomorphisms. Then ¢ is an isomorphism.

PROOF. Let x € kerp, x ## 1 and ¢ > 1 such that z € G, * € G;11.
Then ;(z) =1 € H;/H;;1 and hence x = 1 € G;/G,41, contradicting
T & G

Let x = xy € H. We inductively define sequences (zx)k>1, T € Hg
and (yx)k>1, Yx € Gy such that

o 7.p0(yx) "' € Hpy1 (The existence of y; for a given xy, is clear
since ¢y, is bijective.)
o Tpp1 = Trp(yr) "

Then o(yg---y1) = a:,;ilxk---x;lxl = a:,;{lxl. Since (xy)g>1 and
(yr)k>1 converge to 1, y := limg_ o0 yx - - - 1 exists and p(y) = . O



5. THE MULTIPLICATIVE HOMOMORPHISM 6 105

PROOF OF PROPOSITION 3.51. (1) For i < j, let &y € U,,,
X1 g Un,i+1 if 1 < n, o € Un,j, T ¢ Un,j+1 lfj < n. From
lemma 3.52 and lemma 3.53, we get

Pihn,ifﬁ 'pihn,j@ =p" 'pihn,ix1x2 clrl,
and hence I,,1,, C I,,. Thus
(1+L)1+1,)=1+2L,+I:C1+1,

ie.1+1,1is multiplicatively closed. For x € I,,, we have
(1—2x) Z xel+1,,
>0

i.e. every element of 1+ 1, is invertible. So 1+ 1, is a subgroup
of AU, /V,,)*.

(2) By corollary 3.32, log is well-defined on 1+1,, and log(1+1,,) C
Qu[U,/V,]. For x € I,,, n > 1, we need to show z*/k € I,, for
all £ > 1, or equivalently

F e p»®p forall k> 1.

For z € I,,, 2% is a A(U,,,/V;)-linear combination of elements
of the form

k
szrhn,irgcra Ty € Un,irv Ty ¢ Un,ir—‘rl if Z.’/‘ <n.
r=1
We may assume g < 47 < ... < 4. Then, by lemma 3.52,

k—1)n ;
szrhnzrxr - ( Zohn7i0$

with z = kal Z, € Un io- Thus
2F e ph=2rp cp® ]

log,, : (14 1,)/(1+ I,™") — L,/ 1"
be the homomorphism induced by log We get

log, (1 —x) =
k>2

Hence the maps log, are isomorphisms for all n > 1. By
lemma 3.54, log is an isomorphism. U

We will denote the inverse map of log by
exp: I, —1+1,.
LEMMA 3.55. Let 17/1, = <hn77;.731, p$2| xr| € Um/Vn, X1 ¢ UW-H/Vn, 0<L

i <n, x2 € Upn/Via) as A(Upn/Vy)-submodule of A(U,/V,). Then we
have:
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(1) 1, c I

(2) I'1'crI

(3) 141/ is a group.
4) I, C I,

PROOF. (1) This is obvious.
(2) This follows from the fact that the elements

P iy = p”_jhm (for i < j), phyj, p2 (for i =n)

are divisible by p and h,,j for 1 <k < n.

(3) The inclusion (2) shows that 1 + I’ is multiplicatively closed.
Since (1 —z)™' =Y .. 2" € 1+ I for x € I, we get that
14 I" is a subgroup of A(U,/V,)*.

(4) Let hy, jx1, pra be generators of I and p'h,,;y be a generator
of I, (terminology as in the definition of I/ and I,). Then,
using lemma 3.52, we get for i < j:

(hm]xl)(pzhn,ly) = pn—j ' pihn,ixly € In
For ¢ > 7, we have:
(hn,le)(pzhn,zw = pnii ' pihn,j‘xly S In
Obviously, (pxa)(p'hniy) € I,. Therefore, I, C I,,. O

The following lemma will be needed in the next chapter, where we
calculate certain congruences for zeta functions.

LEMMA 3.56. Let (2,,) € [],50 A(Un/V0)* be an element that satisfies
condition (i) in the definition of V. Then x,, = ¢(x,_1) mod I,, for all
n > 1 if and only if v,o(x,_1)"t € 1+ 1, for alln > 1.

PROOF. “=" Since p(hy;) = ?Z(;_l fypiHj = hgt1i41 for all k €
¢ with k > 1, @ < Kk, it follows that ¢([}/) C Ij/,;. Since z =
©(xk—1) mod I}/ for all k£ > 1 (cf. lemma 3.55), we get

o — " (o) = Y " F(wn — p(wxa)) € 1.
k=1

Since ¢™(xg) € A(Un,/Vy) and since 1+ 1)) is a group (cf. lemma 3.55),
we have the equivalences

Tn = ¢"(x0) mod I

& xo"(xyt) €1+ 1
& x " (vg) €1+ I/
& 2, =¢"(zy") mod I”



5. THE MULTIPLICATIVE HOMOMORPHISM @ 107
Hence,

v o(r,q) — 1
=— (2" — ¢"(2 ) (@0 — P(¥n-1)) — " (@5 ") (@0 — P(n-1))
ell'l, + I, =1,
or equivalently (using proposition 3.51) z,¢(z, 1)~ € 1 + I,.

“«" Since ¢ is a ring homomorphism, ¢(I}/) C I}/, implies (1+1I}]) C
1+ I}/,,. Using lemma 3.55, we get

n

zap" (o) = [ [ " Fanplara) ) € 1+ 1.
k=1

Since ¢"(z9) € AU,/ Vy) and since 1 + I, is a group, we get
P(Tn-1) = Tn

=(25 — ¢"(20)) (2 P(2-1) = 1) + " (z0) (2, p(20-1) — 1)
e, +1,=1, O

PROPOSITION 3.57. O(K1(A(P))) C ¥ and 85(K1(A(P)g)) C Vg

PrOOF. Let x € K;(A(P)). Then 6(z) satisfies the first condition
in the definition of W since the diagram

Ki(A(Un)) == A(Un/V7)"

Ky (A(Un)) =57 AU/ Vi) *

commutes (see diagram (31)). A similar diagram shows that for y €
Ki(A(P)g), 0s(y) satisfies the first condition in the definition of Wg.

Define
G Ki(A(P)) = AU /Va)*, @ On(@)p(0 1 ().

By lemma 3.50, 7, 0 Zp(z) = log(g,(x)) for all x € K;(A(P)). We will
show that ¢,(z) € 1+ I,,, i.e. the second condition in the definition of
U is satisfied. It suffices to show that

log : im (g,) — I,

is injective, since then (by proposition 3.51) g,(z) = exp olog(¢,(z)) €
1+ 1,.
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Assume that log og, (z) = 0. Then 7, 0 Zp(x) = 0. Using the fact that
T, is an isomorphism and the description of ker Zp in corollary 3.45,
we deduce

x € ker Lp = 1,1 X P,
But then clearly g,(z) = 0.

We will now prove that

Ons(y) - (On1,5(y) " €1+ 1,5
for y € Ki(A(P)g). For W € 2y,, let § be the image of y in
K ((A(P/W)S)<p>>. Let 0, s(P/W) (respectively I, s(P/W)) be the

homomorphism 6, ¢ (respectively the module I, g) assigned to P/WV.
Since the diagram

Ky(A(P)s) — = Ki(A(U)s) —— AU/ Vi)

| | |

Ky(A(P/W)s) — = Ki{(AU/W)s) > AU, /WV,) %,

is commutative, the image of 0,, s(P)(y) in A(U,/WV,,)§ is 0, s(P/W)(y).
Using the fact that

I, s = m Tn,S (Zp[[Conj(P/W)]]S): m I, s(P/W),
WGQ’,UUn WGQUUH

we get that it suffices to show that
(33)  Ous(P/W)(@) - ¢ (On1,s(P/W)(@)) " € 1+ Lys(P/W).

By lemma 3.36, we can write § = wv with v € A(Z(P/W))§ and
v € A(P/W)*. We have already shown that equation (33) holds for
y = v. Since 0, s(P/W)(u) = u*" and

p"NZ(P/W)g) C I, s(P/W),

it suffices to show that u”"o(u?""")~" € 1 + p"A(Z(P/W))s. But this
follows from lemma 3.27. g

PROOF OF THEOREM 3.47. We define
Dé—/ﬂ\; U — Q, (xn>n = (yn)n7
where yo = Ly, v, (7o) and y, = log(z,p(z,—1)7") for n > 1. We need
to show that this map is well-defined, i.e. that

oy, €1, forallnec

® Tt n(Ym) = Prm(yn) for all m < n, m,n € c.
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The first condition follows from lemma 3.51 and the definition of ¥
(recall that Iy = A(Uy/Vp)). By lemma 3.48 and lemma 3.49, we get
form,nec, 1<m<n

Tt 0 (Ym) = Trim o 0 log(z,) — Trpmm © @ 0 log(@m—1)
=1log oN,, n(Tm) — 9 0 Trm_1.n-1 0 log(Zm_1)
= log oNyy (@) — @ 0 10g(Nyy—1 n—1(Tm—1))
= Pmm ©10g(2,) — @ 0 Pu_1.m_1 0 log(z,_1)
= Pmn ©108(20p(2n-1)) = Py (Yn)-

Now, it suffices to prove the second condition for n > 0, m = 0. Since
Non(0) = pno(zs), we get (using lemma 3.48) that

Tro,(log(2o)) = pro(log(zn)).
Using lemma 3.49 and the above equation, we get

Tro, (5 o optan) ) = p(Thoa (o)

= (pnfl,OGOg(xnfl)))
= Pno (log osa(xn_1)> :
Therefore, we have
1
Tron(yo) = Tro., (10g(xo) — ]glog(so(xo)))

= pno(log () = log((@a-1))) = Proyn)

We define the continuous continuous group homomorphisms
0:Q—=Uy/Vo, (xn)n>or xoif g € Uy/Vy C AUy /Vh)
0:pp1x P =0, (¢,9) = (¢ nee

By lemma 3.46, 6 is well-defined.

Now, we claim that the following diagram is commutative with exact
rOwWs:

1> ftp1 X P = K1 (A(P)) 2 2, [Conj(P)] ~> pob — 1

(34) ia ~l7
=y x PP — sy o % U V1

The left square is commutative by lemma 3.46. Commutativity of the
middle square follows from lemma 3.50. The right square is trivially
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commutative. The upper row is exact by corollary 3.45. We need to
show that the lower row is exact.

Injectivity of 6 is obvious.

The exactness of the upper row in diagram 34 implies im@ C ker Zp.
Let © € ker Zp. Since log : 1+ I, — I, is injective for all n > 1
(cf. proposition 3.51), we can write © = (¢"(20))n>0 for some xy €
A(Uy/Vp)*. Since x € W, the image of ¢™(z¢) under N : A(U,,/V,,) —
A(U,,/Vy) coincides with ¢™(zg) € A(U,/Vy,) for all m < n. Let y be
an inverse image of zo under p, : K1(A(P)) — A(Uy/Vp)*. Then the
commutativity of the diagram

Kl(Al(P)) — K1<Al<Un>>
AUo/Vo)* —= A(Un/Vo)*
implies 0,,(y) = p« o N(y) = Nop.(y) = N(zo) = ¢"(20), i.e. O(y) ==

Since x € ker £p and 7 is an isomorphism, we get y € ker Zp, i.e.
y = [Cgl], ¢ € pp-1, g € P, and this gives rise to an inverse image of x

under . Hence im 6 = ker Z.

We now show exactness at 2. By corollary 3.45, im Zpa = ker wpas.
This clearly implies im Zp C ker @. Since 7 is an isomorphism,

7(im %p) = im (Lp 0 0) C im . Zp
and 7(kerw) = ker @, and we get the inclusion ker © C im Zp.
Surjectivity of @ is obvious.

By the five lemma, # is an isomorphism. O

COROLLARY 3.58. Let P be a p-adic Lie group that satisfies assumption
3.1. Then
Ki(A(P)) C Ki(A(P)g).

Proor. This follows from the commutativity of the diagram
Ki(A(P)g) — Vs

]

Ki(A(P)) — .

COROLLARY 3.59.
Os| ki (apy) = 0
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PROOF. By corollary 2.11 the norm on K;(A(P)) is the restriction
of the norm on K;(A(P)g). O

LEMmMA 3.60.
VN [[AU VL) =T

nec

ProoF. This follows from the fact that the homomorphisms N,
p. and ¢ in the definition of ¥ are restrictions of the corresponding
homomorphisms in the definition of Wg. O

LEMMA 3.61. For every irreducible Artin representation p of P, there
is n € ¢ such that p is induced by a one dimensional representation x
of U,. (Then p maps ~y to a p"-th root of unity.)

PROOF. Let p : P — GL(Q) be the irreducible Artin representa-
tion. Let W C P be an open normal subgroup of P such that p factors
through P/W. Put W, := W NU; for i € NU {oco}. Then

(35) P/W = Uso/Wee 3 (8)/(5")

for some n € N. By [42, proposition 25|, p = indgn(x) is induced by
an irreducible representation x of Uy, /W.

Since Uy, is abelian, x : Uy /Wy — Q" is a character. Assume that
n in (35) is minimal. Then Uy /Wy = U, /W,. By composing x with
the projection

we can regard x as a character of U,.

Since v*" = [a, B”"] € W C ker p, the image of v under p is a p"-th
root of unity. O

We summarise what we have proved in the following theorem:

THEOREM 3.62. Let P be a p-adic Lie group that satisfies assumption
8.1. Then the set T of pairs (U,,Vy), n € ¢ and the subgroups ¥ and
Vg satisfy property 2.39.






CHAPTER 4

Hilbert Modular Forms

Deligne-Ribet [12], Wiles [52] and Kakde [24] have proven existence
and uniqueness of the p-adic zeta functions

&n = Es(Fy, |Fy,) € AMUL/V,)g,  nec

for Fy, |Fy, with respect to X (recall definition 2.36). In this chapter,
we will show that (§,)ne. € ¥s. The main difficulty is to prove that

(36) €n¢(§n—1)_1 €l + ]n,S-

We will first develop the theory of Hilbert modular forms. For every
field Fy,, we will recall the construction of the Fy, -Hilbert Eisenstein
series F,,. We will define a restriction homomorphism on the space of
Hilbert modular forms. Let g, be the restriction of F), to the Hilbert
modular variety of F. We will show that the map ¢ of the previ-
ous chapter is the transfer homomorphism and extend it to a map of
A(U,,/V,,)-adic Hilbert modular forms. Let ¢(g,—1) be the restriction
of ¢(F,_1) to the Hilbert modular variety of F. We will write g,, as a
sum of the form

m=0

Then g, — @(gn_1) = 277™¢, — 277 Dy(&,_1) + h,. We will show
that h, has coefficients in [,, . Now the g-expansion principle implies
&n = ¢9(€,-1) mod I, s. By lemma 3.56, this is equivalent to (36).

1. Classical Hilbert Modular Forms

Let K be a totally real algebraic number field over Q and let r = [K :
QJ. Let

K—-R, a—a?, 1=1,...,r
be the r embeddings of K into R. We write o > 0 if « is totally
positive, i.e. a? > 0 for i = 1,...,r. We define the Hilbert modular

group to be

FK = SLQ(OK)/{:El},
where Op is the ring of integers of K. Let I' C SLo(K)/{£1l} be a
group commensurable with I'. (Two groups I'; and I'y are commen-
surable if [I'y : T’y NI'y] < oo and [I'y : Ty NTy) < 00.)

113
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Let $ = {7 € C|Im(7) > 0} be the upper half plane of C. Then
GL3 (R) := {y € GLy(R)|det(y) > 0}
acts on $) by linear transformations:

for 7 € $ and’y:(g Z) € GLI (R).

We can define an embedding G Ly(K) — GLo(R)", using the r embed-
dings of K into R. This induces an operation of GLy(K) on $'.

For a function f : §" — C, k = (k;); € Z" and v = (CCL Z) €
GLy(K), we define f|gy: 9" — C by
Fliv(r) == N((det 7)** (e +d) ™) f(y7)

r

H(a(i)d(z‘) _ b(i)c(i))ki/z(c(i)’ri + d(i))_ki] flyr)

=1

for 7= (7i,...,7.) € H". We will write f[yy := f|@,..x7 for k € Z.

-----

We define an operation of GLy(K) on P!(K):
T 7 = (amg + by 1 e + d1y) € PHK)

for 7 = ( “ ! > € GLy(K), 7=(r:m)cPY(K)

We define the set of cusps of T' to be the set T\P!'(K).

REMARK. There is a natural bijection from I'\P!(K) to the ideal class
group CIl(K) of K. (See [17, proposition 1.1])

Let f : §" — C be a holomorphic function. Consider the cusp co =
[(1:0)] of I'. Define

My i= MoK )= (€ KIS 40) = flo). (g ) €T,
MY = M (K, f):={x e K|Tr(xb) € Z for all b € M.},
where Tr(xb) ==/ 2. For z € MY, 7 € §", we put
qx (7) := exp(2mi - Tr(z7)),
where Tr(z7) ==Y, 297,

DEFINITION 4.1. Assume that My (K, f) # {0}. Then f can be de-
veloped in a Fourier expansion of the form

fr)=>" alz, fgi(r), alz,f)€C,

xeEMY,
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which is called the ¢g-expansion of f at the cusp oo with respect to I
Let kK = Noo € I'\P}(K) be the translation of the cusp co by some
N € GLy(K). Then the g-expansion of f at the cusp x with respect to
[ for k € Z" is defined to be the g-expansion of f|,N at the cusp oo
with respect to N7!T'N.

We say that f is holomorphic at cusp k (for k) if a(z, f) # 0 implies
x> 0orxz=0.

DEFINITION 4.2. For r > 1, a Hilbert modular form of weight k € Z"
on I' is a holomorphic function f : $§" — C such that for all v € T,

fley=T1.
For r =1 (i. e. K = Q), we add the condition that f is holomorphic
at the cusps (for k). We denote the vector space of Hilbert modular
forms of weight k£ on I' by M (T"). For any subring A C C, we define
the subspace

My(T,A) == {f € Mp(D)|a(z, f) € A for all x € M) }.

REMARK. The set M(K) = My (K, f) for f € M(T) is independent
of f.

Let L|K be a finite extension of totally real number fields. The con-
tainment K C L induces the canonical map

% . 9 o, Il (Thy ooy Tr) o (Tl ooy Tl ooy Ty ey Tr)
——
[L:K] times [L:K] times

Let I" be a group commensurable with I';. Then I'(K) := 'NGLy(K)
is commensurable with I'. For f € My (I'), we define

resr |k f : Gl C, 7 f(r7).

LEMMA 4.3. Let k € Z be an integer. Then resyx defines a homomor-
phism
resgi © Mi(T) — Mp.g(T(K)).

If the g-expansion of f is
fr = > aly.NHgi(r), 7epd

yeEMY, (L)
then
o Trrx (v)
respi f(T) = Z a(y, )ax (1)
yeEM (L)
= Y e N, Testd,
zeMY, (K)

with a.(z, f) == Zy;ﬁL‘K(y):x a(y, f).
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PROOF. Let
L—R, a—a®, =1 [K:Q],j=1,...,[L:K]

be the embeddings of L in R such that (%) = a(%") for o € K and all
i,7,7". For 7 = (1;); € HFEY we write 7% = (77,)ij € HEQ such that
7y =m forall i, j. For y € M (L), we have

[K-Q) [L:K]

g (77) =exp | 2mi Y > 7yt

i=1 j=1
[K:Q]

. i Tr
=exp | 2m Z Ti(TrL\Ky)() = QKL‘Ky(T)-
i=1

Let v € I'(K) and let v* be its image in I". Then
(respii f)|L:xwy(7) = Nk (det(‘Y)k/?[L:K](CT + d)fk'[L:K])feSL\Kf(W)
=N, (det(v*)km(C*T* + d*)_k>f(7*7'*)
= [l (77) = f(77) = respk f (7). O

2. A-adic Hilbert Modular Forms

Let K be a number field and let L|K be a field extension such that
W = G(L|K) is a compact p-adic Lie group. Assume that there is a
surjective homomorphism w : W — Z, and put S := S(W,w) C A(W)
(cf. definition 2.2). Let

= alx, gk

xeMY,

be a formal sum with coefficients a(z, f) € Ki(A(W)g). We fix an
isomorphism C, = C. We define the evaluation of f at a continuous
representation p : W — GL,(QO), where O is the ring of integers in a
finite extension of Q,, by

flp) == alz, f)p)ak,

where a(z, f)(p) € C is the evaluation defined in definition 2.13.

DEFINITION 4.4. Let I' be a group commensurable with ['x. With the
notation as above, we define f to be a A(W)-adic K-Hilbert modular
form with respect to I' if

f(p’%k) € Mk(rv OCp)
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for all but finitely many even k£ > 1 and all Artin representations
p: W — GL,(C). We denote the set of A(W)-adic Hilbert modular
forms by

M(T, L|K).

Let K’ be a finite extension of K contained in L. Let I" be a group
commensurable with I'g,. By lemma 4.3, we get a homomorphism

resgr ik : M(T, LIK') — M(I'(K), L|K),
- Trper o ()
Z a’(xaf)QK’ = Z a(x7f)qKK|K .
TEMY, (K') zEMY (K')
Let * : K < K’ be the canonical homomorphism. Let N, N’ be the
maximal abelian extensions contained in L of K, K’ respectively. Let
" be a group commensurable with I'x. Let Ver : G(N|K) — G(N'|K")
be the transfer homomorphism. This induces the homomorphisms
A(G(NIK)) — AGIN'|K") € AGIV'|K)
and
Ki(A(G(N|K)g) — Ki(AM(G(N'|K)s)).
We define
Ver : M(T', N|K) — M(T', N'|K),

Z a(x, f)qx — resgri Z Ver(a(z, f))q5

zeMY, (K) zeMY, (K)

— Z Ver(a@,f))q%{/:mw.

zeMY, (K)

We show that this is well-defined. Let y : G(N'|K') — Q" be a

character and let yver = x o Ver : G(N|K) — Q" be the character
induced by x. Then

Ver(f)(xki) (1) = f(xver(Fie o) ([K” 2 K]7)
for the cyclotomic character kg of K’, for any even k > 2 and for all
T € $". By [33, ch. I §5], Ver is the the corestriction

G(LIK'
corS ) - Hy(G(LIK), Z) — Hy(G(LIK'), Z,).
By [33, cor. 1.5.7],
G(LIK’ G(L|IK
corGEL}K)) o resGEL}KB) =[K': K].

Since

resgyr | (0)(C) = o(C)

G(L|K' G(L|K 2
COI‘GEL}K)) © reSGEL}K)) (0)(¢) = ()
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for all ¢ € pupe, this implies (kg )ver = (kg )X %), Hence

Ver(f)(xm];(/)(T) = f(XVcr’f[[?/:K}’k)([K/ : KT)

for f € M(I',N|K) and all even k > 2 and thus Ver(f)(xx.) €
M(T, Ok).

3. Existence of the p-adic Zeta Function

We keep the notation from the previous section. Assume that F|F
and G = G(Fy|F) satisfy assumption 2.1 and 3.1 and that U and Vg
satisfy property 2.39.

THEOREM 4.5. Let &, be the p-adic zeta function for Fy, |Fy,. Then
(&n)n € Vs

COROLLARY 4.6. The p-adic zeta function for Fy|F with respect to %
exists and in this case, the main conjecture is true.

PROOF. See theorem 2.40. O

For the proof of the above theorem, we will need the A-adic Eisen-
stein series, which we will now define. Let n € ¢ be a fixed integer.
Henceforth, we write F,, for Fy, and K, for Fy,. Let

tin 2 G(Fn(pip=) | Fy) — Z;

be the cyclotomic character. Put r(n) := [F, : Q]. Then r(n) = p"r,
where r := [F: Q.

Let A, be the monoid of non-zero integral ideals of F}, prime to Y. Let
04 € U, /V, be the Artin symbol of a € A,,. We define

R(Fy) = {(a,z)]a € A, x € O Na},
where 070 := {2 € Op, |z > 0}. Put R :=R(F,).

Let f be an integral ideal of Op,. We define
Coo(f) := {< CCL 2 ) € SLy(F)|a,d €1+ f,beD ! ce D},

where @ is the different! of F,. Then [go(f) is commensurable with
Ty .

IThe different of F, is defined to be the inverse of the fractional ideal {z €
F,|Tr(zb) € Z for all b € OF, }.
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LEMMA 4.7. There is an ideal f,, C Op, with all its prime factors in X
such that the series

E, = 2_T(n)§n + Z "in(o-a)_laaq;’n = M(Foo(fn), Kn|Fn)

(a,x)ER

is a AU, /V,)-adic Hilbert modular form with respect to Too(fn). We
call it the A(U, /V,)-adic Eisenstein series.

PROOF. Let y,, : U,/V,, — C* be an even (i.e. x,(9) = xn(g™")
for all g € U,,/V,,) Artin character. Then x,, induces a homomorphism

Xt An — C* xn(a) == xn(0a).
There is a norm homomorphism defined by
MN: A, —C*, N(a):=(OpF, : a) = Kky(0q).

By [37, proposition 8|, there is an integral ideal f, in F,, with all its
prime factors in ¥ and a (classical) modular form Gy ,,, € My (Too(fn))
with standard g-expansion

Gron =27 MLe(l =k, xa) + Y < > Xn(a)m(a)“> g5, .

xeol??no z€EacA,

Using the interpolation property of &, we get

En(Xnky) = 277«(“)5()@&?1) + Z Xnﬁﬁil(aa)qf?n

(a,2)ER
=27 MLl —koxa) + Y ( > Xn(a)‘ﬂ(a)’“_l> a5
IEO??HO r€acA,
= Grx, € Mi(Loo(fn))-
Thus E, is a A(U,/V,)-adic F,,-Hilbert modular form. O

We recall the following well-known facts on the transfer homomor-
phism:

LEMMA 4.8. The transfer homomorphism Very, ,, : Up [V, — Uy /Vi,
m < n, induces the homomorphism

O AU /Vin) — MU/ V2, o+ 0?" " for o € Uy /Vin.

Fora € A,,, we have

"T"(04) = a0y, -

¥
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PROOF. For o € U,, we write 0 = o!/fP"IP" "z with i,j € Z,,
ke {0,....p"™ — 1}, z € Z(U,). The explicit description of the
transfer homomorphism (cf. [33, ch. I, §5]) yields

pn—m71

Vet (oV) = [ 87"es "0V,
=0

—1m

_ (az/Bpn]Z)pnfmvn _ 0_p

(note that (8°"1U,)(a’BP"7+P"kz) = gr"(I+R)[, ).

Va

The second statement is part of class field theory. O

PROOF OF THEOREM 4.5. For P € Ob(Sy,), let Z(P), Vg(P) be
the sets defined in the previous section. Since

Ki(A(G)) = lim K (A(G/V4,))
(cf. lemma 3.38), we get Ws(G) = lim Wg(G/V,). Since I(G) =
U,, Z(G/V,,), it suffices to prove the theorem for all groups G/V,,, n € N.
Since the image of v in G/V,, is of finite order, we may assume that ~y
is of finite order.

We need to prove the conditions (i) and (ii) in the definition of Wg.
Let Ny 2 A(Un/Vin)s — AU, /V;n)§ be the norm map and py, ., :
AU,/ V3)s — AUy, /Vin)s be the projection map. For (i), we need to
show

Nin(&m) = Pnm(&n) for m <n, m,n € c.
By definition 2.36 and lemma 2.14, this is equivalent to the equation

En(ind ) (k) = Ea(inf v (xst))
for all characters x : U,/V,, — Q" and all k£ > 1, where infg:i%:l is
defined by

infg:%:(xnﬁ) U, —-C*, o~ (XI@Z)(O‘VH).

Equivalently,
- Up/Vim c eUn/Vim
Ly(1 = k,ind"/ 37 (x)) = Ls(1 — k, infy") 7" (x)).
But this is true by proposition 2.34.

We will now prove condition (ii):

&np(uor) P €1+ I forallnec

For 0 <m <n, we put f,, := f, N Op,,. Then
Loo(fm) = Loo(fn) N Fin.
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We define

Gm =155, |p(Ey) € M(Loo(fo), Km|F) and
©(gn-1) = resp,_yjp(Ver(En-1)) € M(Too(fo), KnlF).

REMARK. If g,_1 = > a,q%, then ¢(g,—1) = >, ¢(a,)d

We will now determine the g-expansion of g, —¢(g,_1) by writing R as
a disjoint union of subsets and by calculating the corresponding sums
separately.

We define
R = {(a, 7)€ R‘G(Fn|Fm) — {0 € G(F,|F)lo(a) = a, o(z) = x}}.
Then R =(J,,Rm. For 1 <m < n, define

R, ={(b,y) € R(F,)|(b# cOF, forallce A,,_1)ory & F,,_1}.
and put Ry, := R(Fp). Let (b,y) € R,,. For all 0 € G(F,|F},,), we have

o(bOpF,) = bOp, and o(y) = y. If m > 1, there is 0 € G(F,|F,_1)
such that o(bOp,) # bOp, or o(y) # y. Hence we can define the map

By the above considerations, this map is bijective.

Define R!! C R, to be a set of representatives of G(F,,|F)\R!,. Let
[ = 1(b) be the largest element of {0,...,m} such that o, € Uy, 1/ Vi
Then

Bows™' = "o,
for some t € Z;. (We may assume o, = o137z with i € Ly, j €

p"Z, and z € Z(Up,/V;,) and get the above identity from a direct
calculation.) For s € G(F,,|F), clearly o) = sops™'. Recall

G(E.|F)=G/U,, ={1,5,...,57" 7'},
where 3 is the image of 3 in G(F,,|F). Hence we get
pm—l pm—l

Z Os(b) = Z ﬁiabﬁii = Z Ubfyplti = plabhm,lv
=0

SEG(Fm|F) =0
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where hy,; € A(Up,/ Vi) is defined as in the previous section. By lemma
4.8, " "™(0y) = Ovo,, for b € A,,. Put Tr, := Trp,p. Then

—gr(ng, +Z S Y balowon,)  oupon, gt W)

m=0 (b,y)ERY, s€G(Fm|F)

=276, + Z > e (ko) o g

m=0 (b,y)eRY, sEG(Fm|F)

Tn)@ﬁ-z Z P m< (Ub)_pnfmgbhm,z(b)>q;r”(y),

m=0 (b,y)ERY,

Thus we get
9n — Qo(gnfl) :277“(”)’571 - 277”(”71)90(57171)

+ Z PO gyt (6) Lougp Y.
(by)eRY

Here, all the non-constant coefficients in the g-expansion are elements
of I, 5. The g-expansion principle (cf. [12]) implies &, = ¢(&,—1) mod
I, s. By lemma 3.56, this is equivalent to &,p(&,-1) "' € 1+1,, 5. Hence
(&n)n € Vg O



Appendix: Commutative Main Conjecture

Assume that Fo|F is an abelian field extension that satisfies assump-
tion 2.1. Then the validity of the main conjecture is well known ([52]
and [24]). We show here that our formulation is equivalent to another
well-known formulation.

We assume F' = Q and Fi, = Q(pp)". Then
G = G(Ful F) = 23 {21} & (s 1 /{£1}) x (1412,

and hence G has no element of order p. Hence H4(G) = A(G)-mods_iors
and Ko(A(G),A(G)g) = Ko(A(G)-mods.tors). The exact sequence (4)

becomes
0 — AG) — A(G)S 2 Ko(A(G)-mods.iors) — 0,

where 0(f) = [A(G >/A< 9] + [A(G)/A(G)s] for f € A(G)g with f =
gsl, gc¢ A(G), s € S. Then 0 induces the isomorphism

31 A(G)S/AG) =5 Ko(A(G)mods.cor)-

We will construct an inverse homomorphism of 0. Let M be a finitely
generated projective S-torsion module. By the structure theory of
finitely generated torsion A(G)-modules, there is an exact sequence

0 EDAG)/AG)f M — D0,

where f; are non-zero divisors of A(G) and D is a module of finite
cardinality. Let Fy; := f1--- f. € A(G) be the characteristic element
of M. (Fy is defined up to units.)

We show that [D] = 0 € Ko(A(G)-modg.tors). There is a commutative
diagram

(M, )= [(pM, flpar)]

Ki(A(G)g) Ki(A(G)g)
Ko(A(G)-mods. o) Ko(A(G)-mods cor)-

)-
Since pA(G)g = A(G)g and Ko(A(G)) is generated by elements of the
form [(A(G)§, [)], the top arrow is the identity. Hence the lower row is

[M]—[pM]

123
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an isomorphism. Since there is n € N such that p"D = 0, we get that
[D] = 0. Therefore,

O(Fu) = > 0lfi) = = (M1

@A(G)/A(G)fi

and hence the inverse homomorphism of 9 is
Ko(AMG)-mods.iors) — A(G) s /AG)*,  [M] — Fy mod A(G)™.
Let chg(M) = FyA(G) be the characteristic ideal of M. Then
[AMG)/cha(M)] = d(Fy) = [M] € Ko(A(G)-mods.tors)-

Since G is abelian, every irreducible Artin representation p is already a
character. Tt is well known that F..|F is unramified outside p. Hence
Y. C Z is a finite set of primes with p € X. We can write

Ly(s,p) = [ [(1 = plog)a™) 7",
q¢%
where 0, € G is the element such that o,( = (7 for all roots of unity

¢ € Fx.

Let X = Xs(F|F) be the Galois group of the maximal abelian p-
extension of F,, unramified outside ¥. Let I(G) the kernel of the
augmentation map A(G) — Z,. We call an element f € Q(G) a
pseudo-measure if (g — 1) f € A(G) for all g € G. For the definition of
the integral

/G plg)df (g)

of an Artin character p: G — @X against a pseudomeasure f, we refer
to [9, §3.2]. We denote by

b G(QUy)|Q) — Z;
the cyclotomic character.

MAIN CONJECTURE 5.1.

o There is a unique element & = & € A(G)g such that
(37) s(pr”) = Ls(1 —1,p)

for all continuous characters p : G — Q" and all even integers
r > 2.
° (&) = [Xs] = [Zy]
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MAIN CONJECTURE 5.2.

o There is a unique pseudo-measure & € Q(G)* such that

(39) | wayasta) = (1= e =)
for all even integers r > 2.
e chg(X) =I(G)¢

REMARKS. e In the proof of one of the above two conjectures,
the second part constitutes the main difficulty. (The name
“Main Conjecture” often denotes only this part.)
e For a proof of main conjecture 5.2, see [9].

PROPOSITION 5.3. Main conjecture 5.1 implies that main conjecture
5.2 holds.

PROOF. Assume that equation (37) holds for p = 1 (the trivial
character) and X = {p}.

We first show that { = &,y is a pseudo-measure. Let 6 be a generator
of I(G) as a A(G)-module. Then

9(0) = [MG)/1(G)] = [Z,)],

and hence (by the assumption on &)
9(£0) = 9(€) + 0(0) = [X] = 9(Fx).

Therefore % € A(G)” and thus €0 € A(G). Since

I(G) = (9 — llg € G)a)
we have

(g—1)E=0"g—1)-€0 € A(G) forallge G,

i. e. £ is a pseudo-measure.

By assumption, (k") = Lg(1—7,1) = (1—p"1)¢(1—r). By definition
of the integral, {(k") = fG k" d€ for all positive even integers. By [9,
lemma 4.2.2], this determines £ uniquely.

We get the second statement of main conjecture 5.2 from the equiva-
lences

(X]=[Z,]+0(&) < O(Fx)=0(6¢)
(39) & Fy = 0 mod A(G)*
& chg(X) = I(G)E.
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PROPOSITION 5.4. Assume that main conjecture 5.2 is true. Then
equation (37) holds for p =1 and X = {p}. The element £ € A(G)g
15 determined uniquely by its values on K" for positive even integers r.
The equation

(&) = [Xiny] — (2]
holds.

PROOF. Let g be a topological generator of G. Then the A(H)-
module

AMG)/AMG)(g—1) =2,

is finitely generated and hence g — 1 € S. Since pu(Fo|F) = 0 (see
[15]) and since X and A(G)/(g — 1)6A(G) have the same p-invariant,
this implies that p{ (¢ — 1)¢. By lemma 2.4, this implies (¢ — 1) € S.
Therefore, £ € A(G)g.

Since (1 —p" ')((1 —r) = Ly (1 — 1, 1), we get
§(r") = Lpy(1 =1, 1)

for all positive even integers r. By assumption, these equations deter-
mine £ uniquely.

The second statement of main conjecture 5.1 for ¥ = {p} follows from
the equivalences (39). O

REMARK. In the above argument, we used the fact that pu(F|F) = 0.
This is only known when F|Q is abelian. For more general fields, we
need the assumption p(Fy|F) = 0 to deduce proposition 5.4.

PROPOSITION 5.5. Let g € 3 be a prime number and put ¥ := S U{q}.

o There is an element w, € Q(G)* such that

Wq(P"fr) =1- P(Uq)qr_l

for all even integers r > 2.

e J(my) = [Xy] — [X5]

Proor. We put 7, :=1— %aq. We only need to show that 0(m,) =
(X5 — [X5].

Let Fs, := (Fx)x(p) be the maximal pro-p extension of Fi, unramified
outside . Recall that Gy = G(Fx|Fy) and put Gy := G(Fy|Fy).
Since H?*(Gyx,Q,/Z,) = H2(C*)" = 0 (see lemma 2.19), we get the

exact five term sequence

0— Hl(GEva/Zp) - Hl(GE’va/Zp) - Hl(Gglv@p/Zp)Gz — 0.
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Put X3 = H'(G%,Q,/Z,)". We dualise the above exact sequence to
get the exact sequence

0— (X&)a, — Xy — Xy — 0.

Hence,
[Xe] = [Xs] = [(X5)ay]-
By [33, 10.5.4],
Hl(Gga QP/ZP) = h_n} EB HI(GFq’v @p/Zp)v
' qlq

where the limit is over all finite extensions F’ of F' inside F%, q runs
through the prime ideals of F’ that divide ¢ and G ry is the absolute

Galois group of Fy. Recall that H,(W,Z,) = Wa(p) is the p-component
of the abelianisation of W for any profinite group W. Then

X5 =1m P61 ) = PG, @)
F'qlq alg

Since Fy4|F, is unramified and F¢*(p)|Fy q is totally ramified (F*(p)
is the maximal abelian pro-p extension of the g-completion of F'), we
get that

G, () = T(F(p)|Fy) = T,
is the inertia group of Fy*(p)|F,.

Put Ky, := G(Fx|F) and Ky q 1= G(Fy 4| Fy). Let
Gq=G(Fug|F,) CT
be the decomposition group of q' := qN Fy over F. There are the short
exact sequences
1—-Gy — Ky —-G—1
1— GFH,q’ — Ky q— Gqg— 1.

We may regard X& as a A(Kxg)-module and as a A(Ky)-module.
Then

@ G(iﬂl;,t (P) ®@a(rs) MG) = G?«ﬂbz,q (p) ®(Ks,,) MG)

tlg

=Ty ®n(is,y) MGy) ®nia,) MG)
Equivalently,
(X¥)ay = md" (T, )

»q
The ramification group of F;b(p)\Fq is pro-p and pro-¢q, hence it is
trivial. Since vg(F*(p)*)/vg(F)) = Qp/Zy, [31, 11, 9.15] implies

T, = Hom (Qp/Zpa M(anb(p))) .
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By lemma 2.26, G is an open subgroup of I' and hence (o,) = G, = Z,,.
Thus, since fipee C F(p) and ppe = Q,/Zy(1),

Ty = Hom (Qp/Zy, Qp/Zp(1)) = Zy(1).

Since my(x) = 0 for z € Z,(1), we get
9(mq) = [MG)/mMG)] = [Zp(1) ©a(a,) MG)]
= [Indg" (Z,(Var, )] = (X ). 0
PROPOSITION 5.6. Assume that the main conjecture 5.1 is true for

Y = {p}. Then it is true for any finite set ¥ of primes of F with
pE .

PROOF. Assume that we have proven this for some set ¥ and set
¥ = Y U{q} for a prime ¢ ¢ . By proposition 5.5, there is an element
7y € Q(G)* such that

mq(pr") = Lo (1 =1, p)/ L (1 =1, p)
for all even r > 2. Define &y = et € Q(G)*. Then &v/(pr”) =
Ls/(1 —r,p) for all even r > 2.

The second assertion follows from
&) = 0(&x) — A(my) = [Xs| — [Zy)]
(cf. proposition 5.5). O
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