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Introduction

The main conjecture of Iwasawa theory studies the mysterious relation-
ship between purely arithmetic problems and special values of p-adic
zeta functions. Here, p denotes an odd prime number. Let A be the
ideal class group of Q(µp), where µp is the group of p-th roots of unity.
We call p regular if p does not divide the order of A. One of the first re-
sults leading to this relationship is a theorem by E. E. Kummer, which
states that p is irregular if and only if p divides the numerator of at least
one of the rational numbers ζ(−1), ζ(−3), . . . , ζ(4−p). More generally,
J. Herbrand and K. A. Ribet found that for n = 3, 5, . . . , p−2, the idem-
potent of Zp[G(Q(µp)|Q)] associated to the n-th power of the cyclo-
tomic character annihilates A(p) if and only if p divides the numerator
of ζ(n+ 1−p). Probably one of the most important results concerning
this relationship is the proof of the main conjecture for abelian exten-
sions of totally real number fields by K. Iwasawa, B. Mazur, A. Wiles
and others. This is a far-reaching generalisation of the results of Her-
brand and Ribet.

We quickly recall this theorem here. Let F∞|F be a Zp-extension of
totally real number fields, where [F : Q] is finite, with Galois group
G = G(F∞|F ). Let X be the Galois group of the maximal abelian
p-extension of F∞, unramified outside p. Then X carries a natural
Λ(G)-module structure, and X is a finitely generated torsion Λ(G)-
module. Let Q(G) be the total ring of quotients of Λ(G). We need
a certain interpolation property of p-adic zeta functions. This will be
expressed by an element ofQ(G). We want to compareX with elements
of Q(G). Classically, this is done by the construction of a characteristic
element FX ∈ Λ(G). The structure theory of finitely generated torsion
Λ(G)-modules tells us that there is an exact sequence

0→
r⊕
i=1

Λ(G)/Λ(G)fi → X → D → 0,

where D is a Λ(G)-module of finite cardinality. We define the charac-
teristic element FX := f1 · · · fr. Let I(G) be the augmentation ideal of
Λ(G). Then the main conjecture of commutative Iwasawa theory says
that the p-adic zeta function ξ ∈ Q(G) exists and that

FXΛ(G) = ξI(G).

5



6 INTRODUCTION

Now assume that G is a (not necessarily commutative) p-adic Lie group
which can be written as a semidirect product G = HoΓ, with Γ ∼= Zp.
Put

S := S(G)

:= {f ∈ Λ(G)|Λ(G)/Λ(G)f is finitely generated as Λ(H)-module}.

Following Kato [25], we will define a complex C• that encodes the
arithmetic information of the module X. We will show that this com-
plex defines an element [C•] of the group K0(Λ(G),Λ(G)S). (If G is
p-torsion free, we get [C•] = [Zp]− [X].) The p-adic zeta function will
be an element of K1(Λ(G)S). We use the connecting homomorphism

∂ : K1(Λ(G)S)→ K0(Λ(G),Λ(G)S)

of K-theory to compare elements of K1(Λ(G)S) with [C•]. This seems
reasonable since in the commutative case we have ∂(FX) = [X]. In our
more general setting the main conjecture (as formulated by Kato) says
that the p-adic zeta function ξ ∈ K1(Λ(G)S) exists and that

∂(ξ) = −[C•].

The aim of this paper is to work out the details of [25]. The basic
strategy of the proof of the main conjecture given in this paper was
developed by D. Burns and K. Kato [25]. Let I be a set of pairs
(U, V ), where U is an open normal subgroup of G and V is an open
subgroup of H, such that V is a normal subgroup of U and U/V is
commutative. There are natural maps

θ : K1(Λ(G))→
∏

(U,V )∈I

Λ(U/V )×

θS : K1(Λ(G)S)→
∏

(U,V )∈I

Λ(U/V )×S .

We will show that we can always find I such that θ becomes injective.
Assume that there is a group ΨS with

im θS ⊂ ΨS ⊂
∏
I Λ(U/V )×S and

ΨS ∩
∏
I Λ(U/V )× = im θ.

Theorem (Theorem 2.40). Assume that θ is injective. Let ξ(U,V ) ∈
Q(U/V ) be the p-adic zeta functions for U/V . Assume that (ξU,V )I ∈
ΨS. Under further assumptions, see property 2.39, we get that the main
conjecture is true for F∞|F .

We will show that the assumptions of the above theorem are satisfied
when G is a pro-p p-adic Lie group that is a quotient of the product of
the p-adic Heisenberg group and a commutative p-adic Lie group. The
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proof of the assumptions splits in the algebraic problem to determine
the kernel and the image of θ and to prove the inclusion im θS ⊂ ΨS,
and the analytic problem to show (ξU,V )I ∈ ΨS.

We will prove the algebraic part for groups without any arithmetic
structure. We will construct the integral logarithms defined by R. Oliver
(cf. [34]),

L = LP1 : K1(Λ(P1))→ Zp[[Conj(P1)]]

LS = LP2,S : K1((Λ(P2)S)∧)→ Zp[[Conj(P2)]]∧S ,

where P1, P2 are pro-p p-adic Lie groups, where P2 contains a subgroup
H2 such that P2/H2

∼= Zp, where S := S(P2), where (Λ(P2)S)∧ denotes
a completion of Λ(P2)S (see definition 3.10) and where Zp[[Conj(P1)]]
and Zp[[Conj(P2)]]∧S are certain quotient Zp-modules of Λ(P1) and (Λ(P2)S)∧,
respectively. We will use the integral logarithm to transfer the multi-
plicative homomorphisms θ and θS to the additive homomorphisms

τ : Zp[[Conj(P1)]]→
∏

(U,V )∈I

Λ(U/V )

τS : Zp[[Conj(P2)]]∧S →
∏

(U,V )∈I

(Λ(U/V )S)∧ .

Assume I = {(Un, Vn)|n ∈ c}, where c = {0, 1, . . . , c} if c is finite or
c = N otherwise. Let In be the image of τ composed with the projection∏

m Λ(Um/Vm) → Λ(Un/Vn). We define In,S ⊂ Λ(Un/Vn)S similarly.
We will show that τ and τS are injective and see that the images Ω,
ΩS of τ , τS are the sets of elements of

∏
n In,

∏
n In,S, respectively that

satisfy certain natural compatibility relations with respect to the trace
map. This allows us to construct a candidate Ψ for the image of θ as
follows: We will show that σ 7→ σp for σ ∈ Un/Vn (n ∈ c) induces the
ring homomorphisms

ϕ : Λ(Un/Vn)→ Λ(Un+1/Vn+1)

ϕ : Λ(Un/Vn)S → Λ(Un+1/Vn+1)S.

Let Ψ be the set of elements (xn)n ∈
∏

n Λ(Un/Vn) that satisfy certain
natural compatibility relations with respect to the norm map such that
xnϕ(xn−1)−1 ∈ In for all n ≥ 1. We define ΨS ⊂

∏
n Λ(Un/Vn)S

similarly. The following theorem is the main point of our proof that
indeed Ψ = im θ. (The inclusion im (θ) ⊂ Ψ follows from a similar
diagram and then, by the five lemma, this inclusion is an identity.)
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Theorem (Theorem 3.47). The diagram

1 // µp−1 × (P1)ab // K1(Λ(P1))

θ

��

L // Zp[[Conj(P1)]]

∼= τ

��

// (P1)ab // 1

1 // µp−1 × (P1)ab // Ψ
fL // Ω // (P1)ab // 1

is commutative with exact rows, and hence K1(Λ(P1)) ∼= Ψ.

We will use a similar construction as above to prove im (θS) ⊂ ΨS,
but we will not need to calculate the kernel and cokernel of LS. The
identity ΨS ∩

∏
n∈c Λ(Un/Vn)× = Ψ will be a simple corollary of the

general theory.

We will now address the technical difficulties that arise in the above
argument more closely. Our construction of the integral logarithm L
starts with the investigation of the p-adic power series

log(1− x) :=
∑
i≥1

xi

i
∈ Qp[[Conj(P1)]] for x ∈ J(Λ(P1))

exp(x) :=
∑
i≥0

xi

i!
∈ K1(Λ(P1), I) for x ∈ I/[Λ(P1), I],

where J(Λ(P1)) is the Jacobson radical of Λ(P1) and I is a two sided
ideal such that Ip ⊂ pIJ(Λ(P1)). Convergence of these series follows
similarly to the case of the usual p-adic logarithm and exponential map.
The proof of the homomorphism property does not easily generalise to
our situation. We will prove it in a more general setting. Let A be
the ring of non-commutative power series in two indeterminates over
a divisible commutative topological ring R, and let U be the subset of
power series with constant term 1. Then U is a multiplicative group.

Proposition (Corollaries 3.31 and 3.34). If the power series log(x)
and exp(x) converge for x ∈ U and x ∈ A, respectively, then the maps

log : U → A/[A,A] and exp : A→ U/[U,U ]

are homomorphisms.

We will then apply this to our case. Since Λ(P1) and (Λ(P2)S)∧ are
semi-local (cf. [13], [8], [41]), the K1-groups of these rings are gener-
ated by their respective groups of units. We will define

LP1 := (1− 1

p
ϕ) ◦ log
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and show that the image of LP1 is integral. We put LP2,S(x) := LP2(x)
for x ∈ Λ(P2)× and

LP2/W,S(P2/W )(x) :=
1

p
log(xpϕ(x)−1),

x ∈
((

Λ(P2/W )S(Z(P2/W ))

)∧)×
for subgroups W ⊂ P2 such that the centre of P2/W is open. We show
that this uniquely defines LP2,S.

The fact that τ and τS are injective with image Ω and Ω̂S, respectively,
and that the sets Ψ and ΨS are groups follow from explicit calculations
with the generators of the Heisenberg group. A main ingredient in the
proof of im θ ⊂ Ψ and im θS ⊂ ΨS is the equivalence

τ ◦LP1(x) ∈ Ω⇔ θ(x) ∈ Ψ,

see proposition 3.57.

Let Fn = FUn
∞ be the fixed field of Un. The proof of the analytic

side of the main conjecture is an application of deep results proven
by P. Deligne and K. A. Ribet, cf. [12]. In particular [12] implies the
existence of Fn-adic Hilbert Eisenstein series En such that the constant
term of 2r(n)En, r(n) = [Fn : Q], is the p-adic zeta function ξn (see [37]).
Let gn be the restriction of En to the Hilbert modular variety of F . Let
ϕ(gn−1) be the restriction of the image of En−1 under a map induced
by the transfer homomorphism Un−1/Vn−1 → Un/Vn. We show that
all non-constant coefficients of gn − ϕ(gn−1) lie in In. Then, by the q-
expansion principle [12], the constant term 2−r(n)ξn − 2−r(n−1)ϕ(ξn−1)
is also in In. We show that this is equivalent to ξnϕ(ξn−1)−1 ∈ 1 + In,
and hence (ξn)n ∈ ΨS.
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thank Jochen Gärtner for explaining a fact of Galois cohomology to
me. I would like to thank my parents for enabling me to pursue my
studies.





CHAPTER 1

Preliminaries

1. Notation

• We assume that all rings are associative and have a unit ele-
ment.
• For two topological groups G1, G2, we write G1 Eo G2 if G1 is

an open normal subgroup of G2.
• For a ring R, let R[[T ]] be the ring of formal power series in

one variable T over R.
• Let R be a commutative topological ring and let G be a profi-

nite group. We define

R[[G]] := lim←−
UEoG

R[G/U ].

• Let p be an odd prime number. For a profinite group G let

Λ(G) := Zp[[G]]

be the Iwasawa algebra of G.
• Let R be a ring. By an R-module M , we always mean a left
R-module.
• For a group G let [G,G] := 〈ghg−1h−1|g, h ∈ G〉 be the com-

mutator subgroup of G. Let R be a ring and let A be an
R-algebra. We define the commutator R-algebra of A to be

[A,A] := 〈ab− ba|a, b ∈ A〉R,
where 〈∗〉R is the R-module generated by ∗.

2. Noncommutative Localisation

Let R be a ring and X ⊂ R a multiplicatively closed subset (i. e. 1 ∈ X
and x, y ∈ X ⇒ xy ∈ X).

Definition 1.1. A right ring of fractions for R with respect to X is a
ring RX−1 with a ring homomorphism ϕ : R→ RX−1 such that

• ϕ(x) ∈ (RX−1)× for all x ∈ X
• RX−1 = {ϕ(a)ϕ(x)−1|a ∈ R, x ∈ X}
• kerϕ = {r ∈ R|rx = 0 for some x ∈ X}

11
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A left ring of fractions is defined analogously. (Notation: X−1R)

Definition 1.2. X is a right Ore set in R if for each x ∈ X, r ∈ R
there exist x′ ∈ X, r′ ∈ R such that rx′ = xr′. A left Ore set is defined
analogously.

Proposition 1.3 ([18, theorem 10.3, proposition 10.6, 10.7]). Assume
R is Noetherian and X is a right and left Ore set in R. Then the right
and left ring of fractions for R with respect to X exists and RX−1 =
X−1R. We denote it by RX .

Proposition 1.4 ([18, corollary 10.16]). Under the above assump-
tions, RX is Noetherian.

Definition 1.5. An element y of a ring R is called regular if whenever
ay = 0 or ya = 0 for some a ∈ R, then a = 0.

Let R be a commutative ring. Let X be the set of regular elements of
R. Then X is multiplicatively closed. We write Q(R) := RX for the
total ring of fractions of R, the localisation of R by X.

3. p-adic Lie Groups

A map ϕ = (ϕj)j : U → Zm
p , where U ⊂ Zn

p is an open subset, is called
(locally) analytic if we can locally represent it by power series over Qp:
For all y ∈ U , j = 1, . . . ,m, there are h ∈ N, aν ∈ Qp such that

ϕj(y + phx) =
∑
ν∈Nn

aνx
ν ∀x ∈ Zn

p

(with xν :=
∏

i x
νi
i ∈ Zp).

A p-adic analytic manifold of dimension n is a topological space M,
such that there is an open cover (Ui)i∈I ofM with homeomorphisms ϕi
of Ui onto open subsets of Zn

p , such that ϕi ◦ϕ−1
j |ϕj(Ui∩Uj) are analytic.

We call such a family (Ui, ϕi)i∈I an atlas of M. A global atlas is an
atlas with #I = 1. A morphism of p-adic analytic manifolds is a map
f : M → N such that ψj ◦ f ◦ ϕ−1

i is analytic where it is defined for
atlases (Ui, ϕi)i∈I of M and (Vj, ψj)j∈J of N and every i ∈ I, j ∈ J .

Definition 1.6. A p-adic Lie group (of dimension n) is a group object
in the category of (n-dimensional) p-adic analytic manifolds. (I. e. it is
a p-adic analytic manifold with a group law, where multiplication and
inversion are analytic.) We denote the dimension of a p-adic Lie group
by dim(G).

We call a pro-p group G powerful if [G,G] ⊂ Gp for p 6= 2 (respectively

[G,G] ⊂ G4 for p = 2), where Gn is the group generated (as an abstract
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group) by the elements gn, g ∈ G. We define inductively the lower p-
series

P1(G) := G, Pi+1(G) := Pi(G)p[Pi(G), G].

Remark. For topologically finitely generated powerful groups, we have
Pi(G) = Gpi−1

for i ≥ 1, see [13, theorem 3.6].

Definition 1.7. A topologically finitely generated powerful pro-p group
is uniform if the p-power map induces isomorphisms

Pi(G)/Pi+1(G)
∼=−→ Pi+1(G)/Pi+2(G) for all i ≥ 1.

Proposition 1.8 ([13, theorem 8.36]). Let H ≤o G be an open uni-
form pro-p subgroup of the p-adic Lie group G. Then dim(G) is the
minimal cardinality of a topological generating set of H.

Proposition 1.9 ([13, corollary 8.34]). A topological group G is a
compact p-adic Lie group if and only if there is an open normal uniform
pro-p subgroup U of G.

Corollary 1.10. For any compact p-adic Lie group G, the Iwasawa
algebra Λ(G) is a semi-local ring.

Proof. By [33, prop. 5.2.16], Λ(G) is semi-local if G has an open
p-Sylow subgroup. �

Corollary 1.11. For any compact p-adic Lie group G, the Iwasawa
algebra Λ(G) is right and left Noetherian.

Proof. By proposition 1.9, there is an an open normal uniform
pro-p subgroup U of G. Then Λ(U) is right and left Noetherian (cf.
[13, corollary 7.25]). But this implies that Λ(G) ∼=

⊕
G/U Λ(U) is

right and left Noetherian as a module over Λ(U) and therefore over
Λ(G). �

The following proposition is the reason for increased technical difficul-
ties when working with groups with elements of order p.

Proposition 1.12 ([43]). Let G be a compact p-adic Lie group. The
p-cohomological dimension cdp(G) is finite if and only if G does not
contain an element of order p.

Proposition 1.13 ([27, V.2.5.8]). Let G be a p-adic Lie group with
cohomological dimension cd(G) < ∞. Then G is a Poincaré group of
dimension dim(G). In particular, cd(G) = dim(G).

Proposition 1.14 ([48, corollary 2.8]). Let G be a compact p-adic Lie
group. There is an open subgroup U of G such that Λ(U) is an integral
domain.
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4. K-Theory

Let C be a full additive subcategory of an abelian category, closed under
extensions. We assume that C has a small skeleton Csk (i. e., Csk is a
full subcategory of C such that the class of objects Ob(Csk) is a set
and the inclusion Csk ↪→ C is an equivalence of categories). We define
the following K-groups by specifying generators and relations of an
abelian group. We denote the group law of K0-groups additively and
of K1-groups multiplicatively.

K0(C) Generators: The objects M of Csk.
Relations:

• [M ] = [N ] if M ∼= N ,
• [M2] = [M1] + [M3] if there is an exact sequence 0 → M1 →
M2 →M3 → 0.

K1(C) Generators: The pairs (M, f), where M is an object of Csk

and f an automorphism of M .
Relations:

• [(M, gf)] = [(M, f)] · [(M, g)],
• [(M2, f2)] = [(M1, f1)] · [(M3, f3)] if there is a commutative

diagram

0 // M1
//

f1

��

M2
//

f2

��

M3
//

f3

��

0

0 // M1
// M2

// M3
// 0.

Let P(R) be the category of finitely generated projective leftR-modules.
We write K0(R) := K0(P(R)) and K1(R) = K1(P(R)).

Remarks.

• Let Pright(R) be the category of finitely generated projective
right R-modules Then

Ki(R) = Ki(Pright(R))

for i = 1, 2. This follows from Ki(R) = Ki(R
op), where Rop

is the opposite ring of R (cf. [28, prop. 9.10]) and from the
isomorphism of categories P(Rop) ∼= Pright(R).
• For x ∈ R×, let

mx : R→ R, r 7→ rx
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be the left R-module homomorphism of right multiplication
by x. We can define the natural homomorphism

[ · ]R : R× → K1(R), x 7→ [x]R := [(R,mx)].

Similarly, we get for every n ≥ 1 the homomorphisms

[ · ]R : GLn(R)→ K1(R), x 7→ [x]R := [(Rn, r 7→ rx)].

We give an alternative definition of K1(R): For a ∈ R, let eij(a) ∈
GLn(R) be the matrix with 1’s on the diagonal, with an a in the (i, j)-
slot and 0’s elsewhere. Define

En(R) := 〈eij(a)| a ∈ R, i, j ∈ {1, . . . , n}, i 6= j〉
to be the subgroup of GLn(R) generated by such matrices. We de-
fine injections En(R) ↪→ En+1(R) and GLn(R) ↪→ GLn+1(R) by g 7→(
g 0
0 1

)
and set E∞(R) := lim−→n

En(R), GL∞(R) := lim−→n
GLn(R),

where the limits are taken with respect to the above injections.

Proposition 1.15 ([38, theorem 3.1.7]). Let R be a ring. Then

K1(R) ∼= GL∞(R)/E∞(R).

Proposition 1.16 (Whitehead Lemma, [3, V.1.5 and V.1.9]). For
n ≥ 3,

En(R) = [En(R), En(R)]

and for any n ≥ 1,

[GLn(R), GLn(R)] ⊂ E2n(R).

Hence

E∞(R) = [E∞(R), E∞(R)] = [GL∞(R), GL∞(R)].

Thus we have isomorphisms

K1(R) ∼= GL∞(R)/E∞(R) ∼= GL∞(R)/[GL∞(R), GL∞(R)],

where the inverse of the first isomorphism is defined by [f ] 7→ [(Rn, f)]
for f ∈ GLn(R) ⊂ GL∞(R), n ≥ 1.

Define the Jacobson radical J(R) to be the intersection of all left maxi-
mal ideals of R. A ring R is called semi-local if the number of maximal
ideals of R is finite. Equivalently, R/J(R) is semisimple or artinian
(see [3, III.2]). Therefore, a ring R is semi-local if and only if R/J(R)
is isomorphic to a finite product of matrix rings over division rings.
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Proposition 1.17 (Stable range theorem).

• Surjective stability theorem (Bass): If R is a finitely generated
module over an integral domain or if R is semi-local, then the
canonical homomorphisms

GLd(R)→ K1(R), x 7→ [x]R

are surjective for d ≥ 1.
• Injective stability theorem (Bass, Vaserstein): For R as above,

there are isomorphisms

K1(R) ∼= GLd(R)/Ed(R)

K1(R) ∼= GLd+1(R)/[GLd+1(R), GLd+1(R)]

for any d ≥ 2.
• If R is semi-local and R/J(R) is isomorphic to a product of

full matrix rings over division algebras such that none of these
matrix rings has order 16 and that no more than one of these
matrix rings has order 2 or if R is a commutative semi-local
ring or if R is a local ring, then

K1(R) ∼= R×/[R×, R×]

(Vaserstein, Dieudonné, Bass).

Proof. See [3, V.9.1, V.9.2], [11, 40.41, 40.44], [38, corollary 2.2.6]
and [47]. �

Corollary 1.18. For any compact p-adic Lie group G and d ≥ 2,

K1(Λ(G)) ∼= GLd(Λ(G))/Ed(Λ(G))

K1(Λ(G)) ∼= Λ(G)×/[Λ(G)×,Λ(G)×].

Proof. The the fact that the assumptions of proposition 1.17 are
satisfied for Λ(G) follows from corollary 1.10 and the fact that a Zp-
module (p 6= 2) has no quotient of 2-power order. �



4. K-THEORY 17

Proposition 1.19. Let R be a ring and assume that there is a two-
sided ideal I ⊂ R such that R/In is finite of order a power of p for any
n ≥ 1 and such that the canonical homorphism R → lim←−nR/I

n is an

isomorphism. Let L be a set of ideals contained in J(R) such that R/L
is finite for L ∈ L,

⋂
L∈L L = 0 and for L1, L2 ∈ L, there is L3 ∈ L

with L3 ⊂ L1 ∩ L2. Then there is an isomorphism

K1(R) ∼= lim←−
L∈L

K1(R/L).

Remark. The above assumptions on R are equivalent to the fact that
R/J(R)n is finite for any n ≥ 1 and that the canonical homomorphism
R → lim←−nR/J(R)n is an isomorphism. In this case, R is semi-local.

(See [16, lemma 1.4.4].)

Proof of proposition 1.19. By [16, prop. 1.5.1],

K1(R) ∼= lim←−
n

K1(R/J(R)n).

For n ≥ 1, there is L ∈ L with L ⊂ J(R)n (since R/J(R)n is finite
by the above remark) and for L ∈ L, J(R)n ⊂ L for some n ≥ 1
(since

⋂
n J(R)n = 0 by the above remark). Hence the proposition

follows. �

Lemma 1.20. Let I be a directed partially ordered set and let (Ri, fij) be
an inverse system of rings that satisfy the Mittag-Leffler condition (i. e.
for each k ∈ I, there exists j ∈ I such that the image of fki : Ri → Rk

equals the image of fkj : Rj → Rk for all i ≥ j). Put R := lim←−I Ri.
Assume that for some d ≥ 2,

K1(Ri) = GLd(Ri)/Ed(Ri) for all i ∈ I.
Then the canonical homomorphism

K1(R)→ lim←−
i∈I

K1(Ri)

is surjective.

Remark. The assumptions of the lemma are satisfied when R is a
semi-local ring and the homomorphisms fij : Rj → Ri are surjective.
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Proof. Consider the following commutative diagram

GLd(R) //

��

K1(R)

��

1 // lim←−i∈I Ed(Ri) // lim←−i∈I GLd(Ri) // lim←−i∈I K1(Ri) // 1,

The Mittag-Leffler condition is satisfied for the sets of generators

{ekl(a)|a ∈ Ri, k, l ∈ {1, . . . , d}, k 6= l}

of Ed(Ri), i ∈ I. Hence it is satisfied for Ed(Ri), i ∈ I. Using the
assumption on the K1-groups we get that the lower row is exact.

We show that the the left vertical arrow

(1) GLd(R)→ lim←−
i∈I

GLd(Ri)

in the above diagram is an isomorphism. (We only need the fact that
it is surjective.) Then the right vertical arrow is surjective. Clearly,
there is a ring isomorphism

(2) Md(R)→ lim←−
i∈I

Md(Ri).

This shows injectivity of the homomorphism (1).

Let (xi)i ∈ lim←−i∈I GLd(Ri) and let x ∈ Md(R) be an inverse image of

(xi)i under the isomorphism (2). For i, j ∈ I with i ≥ j, we get

fij(x
−1
j ) = fij(xj)

−1 = x−1
i ∈Md(Ri)

Hence

y := (x−1
i )i∈I ∈ lim←−

i∈I
Md(Ri).

Then xy = yx = 1 and hence x ∈ GLd(R). Thus the homomorphism
(1) is surjective. �

Let R → R′ be a ring homomorphism. We state Swan’s definition of
the relative K0-group (cf. [48, §3]):

K0(R,R′) Generators: (M,N, f) where M , N are objects of P(R)sk

and f : R′ ⊗RM
∼=−→ R′ ⊗R N an isomorphism in P(R′).

Relations:

• [(L,N, gf)] = [(L,M, f)] + [(M,N, g)]
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• [(M2, N2, f2)] = [(M1, N1, f1)]+[(M3, N3, f3)] if there is a com-
mutative diagram

0 // R′ ⊗RM1
//

f1

��

R′ ⊗RM2
//

f2

��

R′ ⊗RM3
//

f3

��

0

0 // R′ ⊗R N1
// R′ ⊗R N2

// R′ ⊗R N3
// 0

K1(R, I) Let R be a ring and let I ⊂ R be a two-sided ideal. We
define

GLn(R, I) := ker(GLn(R)→ GLn(R/I))

En(R, I) := 〈eij(a)| a ∈ I, i, j ∈ {1, . . . , n}, i 6= j〉
and set GL∞(R, I) := lim−→n

GLn(R, I), E∞(R, I) := lim−→n
En(R, I).

Proposition 1.21 (Relative Whitehead Lemma, [3, V.1.5 and V.1.9]).
For n ≥ 3,

En(R, I) = [En(R), En(R, I)]

and for any n ≥ 1,

[GLn(R), GLn(R, I)] ⊂ E2n(R, I).

Hence

E∞(R, I) = [E∞(R), E∞(R, I)] = [GL∞(R), GL∞(R, I)].

We define the relative K1-group

K1(R, I) := GL∞(R, I)/E∞(R, I)

= GL∞(R, I)/[GL∞(R), GL∞(R, I)].

Proposition 1.22 (Stable range theorem for relative K-theory). Let
R be a ring and let I ⊂ R be a two-sided ideal. Assume that R is a
finitely generated module over an integral domain or that R is semi-
local or that I is contained in the Jacobson radical of R.

• Surjective stability theorem: The canonical homomorphisms

GLd(R, I)→ K1(R, I)

are surjective for d ≥ 1. If R is commutative, then there is an
isomorphism 1 + I ∼= K1(R, I).
• Injective stability theorem: There are isomorphisms

K1(R, I) ∼= GLd(R, I)/Ed(R, I)

K1(R, I) ∼= GLd+1(R, I)/[GLd+1(R), GLd+1(R, I)]



20 1. PRELIMINARIES

for any d ≥ 2.

Proof. See [3, V.9.1, V.9.2] and [11, 40.41, 44.17]. �

Let ϕ : R → S and ϕ′ : R′ → S ′ be ring homomorphisms and assume
that the diagram

R′
ϕ′ // S ′

R

OO

ϕ // S,

OO

is commutative. We define the K-groups K0(R,R′) and K0(S, S ′) cor-
responding to the vertical arrows in the above diagram. We define the
following homomorphisms of K-groups:

• ϕ∗ : K0(R)→ K0(S), [M ] 7→ [S ⊗ϕM ]
• ϕ∗ : K1(R)→ K1(S), [(M, f)] 7→ [(S ⊗ϕM, idS ⊗ϕ f)]
• (ϕ, ϕ′)∗ : K0(R,R′)→ K0(S, S ′),

[(M,N, f)] 7→ [(S ⊗ϕM,S ⊗ϕ N, idS′ ⊗ϕ′ f)]

It is not difficult to see that these homomorphisms are well-defined: If
M ∈ Ob(P(R)), then there is an R-module L such that M ⊕ L ∼= Rn.
But then

(S ⊗ϕM)⊕ (S ⊗ϕ L) ∼= S ⊗ϕ (M ⊕ L) ∼= Sn,

and hence S ⊗ϕ M ∈ Ob(P(S)). Since the tensor product commutes
with direct sums, the above maps are homomorphisms.

Lemma 1.23 (Morita invariance, [28, 6.7, 9.11]). The homomorphisms

K0(R) ∼= K0(Mn(R))
[M ] 7→ [Rn ⊗RM ]

[Rn ⊗Mn(R) N ] 7→[N ]
and

K1(R) ∼= K1(Mn(R))
[(M, f)] 7→ [(Rn ⊗RM, idRn ⊗R f)]

[(Rn ⊗Mn(R) N, idRn ⊗Mn(R) g)] 7→[(N, g)]

are isomorphisms.
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We now assume that S ∈ Ob(P(R)) and S ′ ∈ Ob(P(R′)). For any S-
module M , let rRM be the R-module obtained from M by restriction
of scalars. (This is the abelian group M with scalar multiplication
r ·m := ϕ(r)m for r ∈ R, m ∈M .) We define:

• Tr : K0(S)→ K0(R), [M ] 7→ [rRM ]
• N : K1(S)→ K1(R), [(M, f)] 7→ [(rRM, f)]
• Tr : K0(S, S ′)→ K0(R,R′), [(M,N, f)] 7→ [(rRM, rRN, f)]

Clearly, the composition of two norm (trace) maps is again a norm
(trace) map.

Remark. Assume that S is a finitely generated free R-algebra of di-
mension n. For x ∈ R×, we have

N([ϕ(x)]S) = [x]nR ∈ K1(R),

where ϕ, [−]S and [−]R are defined as above.

We give an explicit description of the above norm map when S is a
semi-local ring that is finitely generated and free over R and R is com-
mutative (e. g. if S = Λ(W1), R = Λ(W2) are Iwasawa algebras, where
W2 is a commutative open subgroup of the compact p-adic Lie group
W1).

We work with the matrix description K1(R) ∼= GL∞(R)/E∞(R). Let
{νi}i=1,...,n be a basis of the left R-module S. For x ∈ S×, we define
the elements yij ∈ R by the equations

νjx =
n∑
i=1

yijνi for j = 1, . . . , n.

Let y = (yij)ij ∈ GLn(R) be the corresponding matrix. Then

(3) N([x]S) = [y]R = [det y]R = [
∑
σ∈Sn

sgn(σ)
n∏
i=1

yi,σ(i)]R.

The first identity follows from the definition of the norm map. The
second equation follows from [50, lemma III.1.4].

Let R, R′, S, S ′ be rings as above. We define the homomorphisms

∂ : K1(R′)→ K0(R,R′), [(R′ ⊗RM, f)] 7→ [(M,M, f)]

λ : K0(R,R′)→ K0(R), [(M,N, f)] 7→ [M ]− [N ],
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where M , N are finitely generated projective R-modules. (Note that
by proposition 1.15,

K1(R′) = 〈[((R′)n, f)]|n ∈ N, f ∈ EndR′((R
′)n)〉

⊂ 〈[(R′ ⊗RM, f)]|M ∈ Ob(P(R)sk), f ∈ EndR′(R
′ ⊗RM)〉

⊂ K1(R′),

and hence ∂ is well-defined.)

We get the following exact sequence (cf. [48, §3] or [45, theorem 15.5]):

(4) K1(R)→ K1(R′)
∂→ K0(R,R′)

λ→ K0(R)→ K0(R′).

Remark. Assume that S ′ ∼= R′⊗RS and that S → S ′ and ϕ′ : R′ → S ′

are the natural ring homormorphisms. Then there is a commutative
diagram

K1(S) //

N
��

K1(S ′)
∂ //

N
��

K0(S, S ′)
λ //

Tr
��

K0(S) //

Tr
��

K0(S ′)

Tr
��

K1(R) // K1(R′)
∂ // K0(R,R′)

λ // K0(R) // K0(R′).

Lemma 1.24. Let D• be a bounded exact sequence of projective R-
modules. Then the kernels and images of all coboundary operators di :
Di → Di+1 are projective and

Di ∼= ker di ⊕ im di.

Proof. This is clearly true for i sufficiently large. Assume we
have shown it for some fixed i ∈ Z. Then ker di = im di−1 is projective.
From the surjection Di−1 → im di−1, we get the decomposition Di−1 ∼=
ker di−1 ⊕ im di−1. Hence ker di−1 is projective. �

We now assume that R′ = RS is the localisation of a Noetherian ring R
by a (right and left) Ore set S ⊂ R. An R-module M is defined to be
S-torsion if RS ⊗R M = 0. Let HR

S be the category whose objects are
finitely generated S-torsion R-modules which have a finite resolution
by finitely generated projective R-modules. Let CRS be the category
of bounded cochain complexes D• of finitely generated projective R-
modules such that RS ⊗R D• is acyclic (i. e. RS ⊗R D• is an exact
sequence).
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Proposition 1.25. Assume that ∂ : K1(RS) → K0(R,RS) is surjec-
tive. Then there are natural isomorphisms

K0(R,RS) ∼= K0(HR
S ) ∼= K0(CRS ).

We first prove the following lemma:

Lemma 1.26. Let M be a finitely generated free R-bimodule.

(1) Let f : RS ⊗R M ∼= RS ⊗R M be an isomorphism of left RS-
modules. Then there is s ∈ S such that f(M)s ⊂M .

(2) M/Ms is a left S-torsion R-module.

Proof.

(1) By [29, 2.1.8], for every element x ∈ Rn
S, there is s ∈ S such

that xs ∈ Rn ⊂ Rn
S. Let {mi}i be a basis of generators of M

and let si ∈ S be elements such that f(mi)si ∈ M . By [29,
2.1.8], there are elements s ∈ S and ri ∈ R such that s = siri.
Then f(M)s ⊂M .

(2) By tensoring the exact sequence

Rs→ R→ R/Rs→ 0

with RS, we get the exact sequence

RS ⊗R Rs→ RS → RS ⊗R R/Rs→ 0

of RS-modules. Since s ∈ R×S , the left arrow is surjective.
Hence R/Rs is a left S-torion R-module. There is an R-
bimodule isomorphism

⊕
iR
∼= M . This defines an isomor-

phism
⊕

iR/Rs
∼= M/Ms of left R-modules. By tensoring

with RS, we get

RS ⊗RM/Ms = 0. �

Proof of proposition 1.25. We first describe generating ele-
ments of these groups. Let M be a finitely generated free R-module
and let

f : RS ⊗RM → RS ⊗RM
be an isomorphism of RS-modules. Since ∂ is surjective, K0(R,RS) is
generated by elements of the form [(M,M, f)]. We endow M with the
natural R-bimodule structure.
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By lemma 1.26, there is s ∈ S such that f(M)s ⊂ M . Hence we can
write f = gs−1 with s ∈ S and g : M → M an R-homomorphism.
Let H ∈ Ob(HR

S ) be an object of HR
S with a resolution 0 ← H ← P•

of finitely generated projective R-modules. Then clearly P• ∈ Ob(CS)
(via reindexing: P i = P−i).

Let D• be an object of CRS and let

di⊗ : RS ⊗R Di → RS ⊗R Di+1

be the map induced by the coboundary operator di of D•. By lemma
1.24,

RS ⊗R Di ∼= ker di⊗ ⊕ im di⊗
∼= im di−1

⊗ ⊕ im di⊗.

We define an isomorphism ϕ by the following commutative diagram:⊕
i∈ZRS ⊗R D2i

o
��

ϕ //
⊕

i∈ZRS ⊗R D2i+1

o
��⊕

i∈Z
(
im d2i

⊗ ⊕ im d2i+1
⊗
) ⊕

i∈Z
(
im d2i+1

⊗ ⊕ im d2i+2
⊗
)

The isomorphisms of the lemma are given explicitly as follows:

K0(R,RS)→ K0(HR
S ), [(M,M, f)] 7→ [M/g(M)] + [M/Ms]

K0(HR
S )→ K0(CRS ), [H] 7→ [P•]

K0(CRS )→ K0(R,RS), [D•] 7→ [
⊕
i∈Z

D2i,
⊕
i∈Z

D2i+1, ϕ]

Since RS ⊗R g(M) ∼= RS ⊗R M , we get that M/g(M) is S-torsion by
tensoring the exact sequence

0→ g(M)→M →M/g(M)→ 0

of left R-modules with RS. By lemma 1.26 (2), M/Ms is a left S-
torsion R-module. Hence it is clear that the above homomorphisms
are well-defined.

We define the following homomorphisms corresponding to the above
maps ∂ and λ:

∂ : K1(RS)→ K0(HR
S ), [(RS ⊗RM, f)] 7→ [M/g(M)] + [M/Ms],

∂ : K1(RS)→ K0(CRS ),

[(RS ⊗RM, f)] 7→ [M
g−→M ] + [M

·s−→M ],

λ : K0(HR
S )→ K0(R), [H] 7→

∑
i∈Z

(−1)i[Pi],

λ : K0(CRS )→ K0(R), [D•] 7→
∑
i∈Z

(−1)i[Di].
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By construction, the homomorphisms of the lemma commute with the
∂’s and λ’s. Hence, for A,B ∈ {K0(R,RS), K0(HR

S ), K0(CRS )}, the
diagram

K1(R) // K1(RS)
∂ // A

λ //

��

K0(R) // K0(RS)

K1(R) // K1(RS)
∂ // B

λ // K0(R) // K0(RS)

is commutative with exact rows. The five lemma implies A ∼= B. �

Let M be a left R-module and let N be a right R-module. An R-
antihomomorphism is a group homomorphism f : M → N with the
additional property f(m)r = f(rm) ∈ N for r ∈ R and m ∈M .

Let

Tr : Mn(R)→ R, (aij)ij 7→
n∑
i=1

aii

be the trace map. Clearly, Tr is a left and right R-module homomor-
phism.

Definition 1.27. Let S be a ring and let R be a subring of S. Assume
that S is a finitely generated free left R-module. Let EndR(S) be the
right R-module of left R-endomorphisms of S. We define the trace
antihomomorphism

Tr : S → R

(from the left R-module S to the right R-module R) to be the compo-
sition of the maps

S → EndR(S) ∼= Mn(R)
Tr−→ R,

where the first map is the antihomomorphism that assigns to x ∈ S the
homomorphism of right multiplication by x, the central isomorphism is
the natural isomorphism of right R-modules and the map on the right
hand side is the right R-module homomorphism defined above.

Remarks.

• Let {νi}i=1,...,n be a left R-basis of S. For x ∈ S, we define the
elements yij ∈ R by the equations

νjx =
n∑
i=1

yijνi for j = 1, . . . n.
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Let y = (yij)ij ∈Mn(R) be the corresponding matrix. Then

Tr(x) = Tr(y) =
n∑
i=1

yii ∈ R.

(Compare this with the explicit description of the norm map.)
• Since Tr(xy) ≡ Tr(yx) mod [R,R] for x, y ∈Mn(R) and since

λr = rλ for all λ ∈ R, r ∈ R/[R,R],

the trace map induces the left R-module homomorphism

Tr : S/[S, S]→ R/[R,R].

If R and S are topological R-modules, we get the continuous
homomorphism

Tr : S/[S, S]→ R/[R,R].

Now assume νi ∈ S× for i = 1, . . . , n . Let

πi : S ∼=
n⊕
j=1

Rνj → Rνi ∼= R

be the projection map. Then yij = πi(νjx) = π0(νjxν
−1
i ) and hence

(5) Tr(x) =
n∑
i=1

yii =
n∑
i=1

π0(νixν
−1
i ).

5. Homological Algebra

In this section, we only fix notation. For definitions and proofs, we
refer to the literature ([49] and [33]).

Let A be an abelian category. We write K(A) for the homotopy cat-
egory of chain complexes in A and D(A) for the derived category of
A. (We obtain D(A) from K(A) by localising quasi-isomorphisms.)
We denote by D+(A), D−(A) the full subcategories of D(A) that arise
from the category of cochain complexes that are bounded below or
above, respectively. (For the definition of these objects, see [49, §10.1
-10.4].)

Let A, B be two abelian categories and let F : K+(A) → K(B) be a
morphism of triangulated categories. Let

RF : D+(A)→ D(B)
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be the (total) right derived functor of F (cf. [49, def. 10.5.1]). We
dually write LF for the (total) left derived functors of a right exact
functor F .

Assume thatA has enough injectives (respectively projectives). Let F :
A → B be an additive left (respectively right) exact functor. We denote
the induced morphism of triangulated categories K+(A)→ K(B) also
by F . Let X be an object of A and X• be the corresponding complex
concentrated in 0. When Rn (respectively Ln) are the classical right
(respectively left) derived functors, we get

Hn(RF (X•)) = RnF (X)

(respectively Hn(LF (X•)) = LnF (X))

(see [49, Corollary 10.5.7]).

We assume that A has enough injectives. Let A• be a cochain complex
in A and consider the right derived functor

RHom•A(A•,−) : D+(A)→ D(Ab),

where Ab is the category of abelian groups (cf. [49, def. 10.7.2]). If G
is a p-adic Lie group andA,B are left Λ(G)-modules, then HomZp(A,B)
is a left Λ(G)-module, where the Λ(G)-module structure is given by
(gf)(a) := gf(g−1a) for f ∈ HomZp(A,B), a ∈ A and g ∈ G. Hence,
for a cochain complex A• of left Λ(G)-modules, we may define the right
derived functor

RHom•Zp(A
•,−) : D+(B)→ D(B),

where B is a suitable category of left Λ(G)-modules.

For a cochain complex B• in A, we define the shifted complex B[t]•,
t ∈ Z, by B[t]n := Bt+n with differentials dnB[t] := (−1)tdt+nB . By [49,

§10.7], we get

(6) Hn(RHom•A(A•, B•)) = HomD(A)(A
•, B[−n]•)

and there is a similar equation for RHom•Zp .

For two cochain complexes A•, B• of R-modules, we define the complex

Tot⊕(A• ⊗R B•)n :=
⊕
p+q=n

Ap ⊗R Bq.

This defines the functor

Tot⊕(A• ⊗R −)• : K(R-mod)→ K(Ab),

where R-mod is the category of all R-modules. Since R-mod has
enough projectives, the left derived functor

LTot⊕(A• ⊗R −)• : D−(R-mod)→ D(Ab)

exists.
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Definition 1.28. The total tensor product of A• and B• is

A• ⊗L
R B

• := L−Tot⊕(A• ⊗R −)(B•) ∈ Ob(D(Ab))

(cf. [49, definition 10.6.1]).

Let G be a profinite group and let D(G) be the category of discrete
Λ(G)-modules. Let C(G) be the category of compact Λ(G)-modules.
By [33, lemma 2.2.5] D(G) has enough injectives. By Pontryagin du-
ality, C(G) is dual to D(G) and therefore, it has enough projectives.
The fixed module functor −G is a left exact functor from D(G) to
D(1) = Ab. The cofixed module functor −G (with MG := M/〈gm −
m|g ∈ G,m ∈M〉Zp) is a right exact functor from C(G) to C(1).

Definition 1.29. We define

RΓ(G,M) := R(−G)(M) ∈ Ob(D(D(1)))

for an object M of D(G).

Remarks.

• R(−G)(M∨) = L(−G)(M)∨ (cf. [33, 2.6.9]),
• R(−G)(M) = RHomΛ(G)(Zp,M),
• L(−G)(M) = Zp ⊗L

Λ(G) M (cf. [49, lemma 6.1.1]).



CHAPTER 2

Noncommutative Iwasawa Theory for Totally Real
Fields

We fix a prime number p 6= 2. Our aim is to study the main conjecture
for field extensions F∞|F with the following properties:

Assumption 2.1.

• F |Q is a finite field extension.
• F∞|F is an infinite Galois extension.
• G := G(F∞|F ) is a compact p-adic Lie group.
• Only finitely many primes of F ramify in F∞.
• F∞ contains F (µp∞)+, the maximal real subfield of F (µp∞).
• F∞ is totally real.
• µ(F∞|F ) = 0 (cf. definition 2.27)

Let Σ be a finite set of primes of F containing all primes ramified in
F∞|F . Let X = XΣ(F∞|F ) be the Galois group of the maximal abelian
pro-p extension of F∞, unramified outside Σ, considered as a Λ(G)-
module. X is a fundamental arithmetic object. Following [48], we
define an Ore set S ⊂ Λ(G) and conjecturally define the zeta function
ξ = ξΣ(F∞|F ) ∈ K1(Λ(G)S). The main conjecture states that essential
arithmetic information of X can be calculated from the zeta function
ξ.

Remark. The main conjecture for elliptic curves is studied in [48] and
[8]. In this situation, the fundamental arithmetic object X is defined
to be the dual of the Selmer group.

1. Algebraic Part

Let P be a compact p-adic Lie group with a distinguished surjective
homomorphism P→→Zp. In this subsection, we recall the definition of
the subset S(P ) ⊂ Λ(P ) of [48] (in the form given in [8]) and show
that this set is multiplicatively closed and satisfies the Ore condition.
Hence, the localisation Λ(P )S(P ) exists. The ring Λ(P )S(P ) is semi-

local with stable range two. The norm map N : Λ(P )S(P ) → Λ(U)S(U)

for open subgroups U of P exists. For f ∈ K1(Λ(P )S(P )) and an

29
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Artin representation ρ : G → GLn(Q), we recall the evaluation of f
at ρ given in [48] and [8]. We need this later for the definition of
the p-adic zeta function. We show that the evaluation map behaves
naturally with respect to induction, inflation and direct sum of the
Artin representation. Finally, we prove that

∂ : K1(Λ(P )S(P ))→ K0(Λ(P ),Λ(P )S(P ))

(the connecting homomorphism of K-theory) is always surjective.

Definition 2.2. We define

S(P ) := S(P, ω)

:= {f ∈ Λ(P )|Λ(P )/Λ(P )f is finitely generated as a

Λ(kerω)-module}.
Lemma 2.3. Let P be a pro-p p-adic Lie group with a surjective homo-
morphism ω : P→→Zp. Define

ψP : Λ(P )
ω−→ Λ(Zp)→→Fp[[Zp]] ∼= Fp[[T ]]

to be the continuous ring homomorphism induced by ω. Then

S(P ) = Λ(P ) \ kerψP .

Proof. For f ∈ Λ(P ), we have the equivalences

f ∈ S(P )

⇔ Λ(P )/Λ(P )f is a finitely generated Λ(kerω)-module

⇔ Fp[[T ]]/Fp[[T ]]ψP (f) is finite

(see [8, lemma 2.1]). The last assertion clearly implies ψP (f) 6= 0.
Assume f ∈ Λ(P ) \ kerψP . Then, by the division lemma (cf. [4, ch.
VII, §3, no. 8]), Fp[[T ]]/Fp[[T ]]ψP (f) is a finitely generated Fp-module
and hence f ∈ S(P ). �

Remark. The above set (for pro-p groups, in the form Λ(P ) \ kerψP )
was first defined in [48]. The description of definition 2.2 was first
given in [8].

Lemma 2.4. In case P is one-dimensional (i. e. # kerω <∞), S(P ) is
the set of elements f ∈ Λ(P ), whose image in Λ(P )/pΛ(P ) is regular.
For P ∼= Zp, we have S(P, idP ) = Λ(P ) \ pΛ(P ).

Proof. We only prove the first assertion since the second one is
obvious. Let ψ : Λ(P ) → Fp[[P ]] be the canonical projection. For a
ring R, define the prime radical N (R) to be the intersection of all left
prime ideals of R. From [1, §4.1], we get that Fp[[P ]] is semiprime,
i. e. N (Fp[[P ]]) = 0 (this result is due to Lazard). Then obviously
ψ−1(N (Fp[[P ]]) = kerψ = pΛ(P ). We use [8, proposition 2.6] to com-
plete the proof. �
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Let SZp be the category whose objects are compact p-adic Lie groups P
with a distinguished surjective homomorphism ω : P→→Zp and where
the set of morphisms from (P1, ω1) to (P2, ω2) is the set of commutative
diagrams

P1

ω1

��

// P2

ω2

��
Zp

� � // Zp,

where the lower homomorphism Zp → Zp is injective.

If (P, ω) ∈ Ob(SZp) and U is an open subgroup of P and V is a closed
subgroup of kerω, then imω|U = pnZp and we can define the homo-
morphisms

ωU : U
ω|U−→ pnZp

∼= Zp

ωP/V : P/V → Zp, gV 7→ ω(g).

Then (U, ωU) is a subobject of (P, ω) and (P/V, ωP/V ) is a quotient
object of (P, ω). Without further reference, we will always assume
that subgroups and quotients of P of the above type are equipped with
the above homomorphisms. In particular, we write S(U) := S(U, ωU)
and S(P/V ) := S(P/V, ωP/V ).

Theorem 2.5. S(P ) satisfies the left and right Ore condition, i. e. the
localisation Λ(P )S(P ) exists. Λ(P ) is S(P )-torsion free, and hence the
canonical homomorphism Λ(P ) ↪→ Λ(P )S(P ) is injective.

Proof. [8, theorem 2.4] �

Corollary 2.6. Let Rng be the category of rings and let S(p)
Zp be the

category of pro-p groups in SZp. There is a functor

ΛS : S(p)
Zp → Rng

that sends an object P of S(p)
Zp to Λ(P )S(P ) ∈ Ob(Rng).

Proof. The fact that ΛS sends objects of S(p)
Zp to objects of Rng

follows from the theorem.

Let ϕ : (P1, ω1)→ (P2, ω2) be a morphism in S(p)
Zp . Put S1 := S(P1, ω1)

and S2 := S(P2, ω2). For i = 1, 2, let

ψi := ψPi : Λ(P )→ Fp[[T ]]
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be the homomorphism defined in lemma 2.3. Then there is a commu-
tative diagram

Λ(P1)

ψ1

��

f // Λ(P2)

ψ2

��
Fp[[T ]] � � // Fp[[T ]].

For x ∈ Λ(P1), x ∈ kerψ1 implies f(x) ∈ kerψ2. Hence

f(S1) ⊂ S2.

Now the universal property of the localisation implies the existence of
a homomorphism

ΛS(f) : Λ(P1)S1 → Λ(P2)S2 . �

Proposition 2.7. The ring Λ(P )S(P ) is noetherian.

Proof. This follows from corollary 1.11 and proposition 1.4. �

Proposition 2.8 ([8, proposition 4.2]). For (P, ω) ∈ Ob(SZp), the ring
Λ(P )S(P ) is semi-local. In particular, we get for d ≥ 2

K1(Λ(P )S(P ))
∼= GLd(Λ(P )S(P ))/Ed(Λ(P )S(P ))

K1(Λ(P )S(P )) ∼= Λ(P )×S(P )/[Λ(P )×S(P ),Λ(P )×S(P )].

Proposition 2.9 ([8, proposition 2.3]). For a finitely generated left
or right Λ(P )-module M , we get: M is an S(P )-torsion module if and
only if M is finitely generated as a Λ(kerω)-module.

Proposition 2.10. Let U be an open subgroup of P . Then

Λ(P )S(P ) = Λ(P )S(U)

and this ring is a finitely generated free Λ(U)S(U)-module of dimension
(P : U).

Proof. We first show that S(U) is also an Ore set in Λ(P ). The
proof of this fact is essentially the same as the one given for S(U) ⊂
Λ(U) in [8, theorem 2.4]. We put H := kerωP and H ′ := kerωU =
H ∩U . Note that (H : H ′) <∞. For f ∈ S(U), the left Λ(H ′)-module
Λ(P )/Λ(P )f and the right Λ(H ′)-module Λ(P )/fΛ(P ) are finitely gen-
erated. By proposition 2.9, for every x ∈ Λ(P ), there are elements
s, s′ ∈ S(U) with sx ∈ Λ(P )f and xs′ ∈ fΛ(P ), i. e. the Ore condition
is satisfied.

For any multiplicatively closed Ore set S ⊂ Λ(P ), define

Ssat := {x ∈ Λ(P )|∃ y ∈ Λ(P ) such that yx ∈ S}.
Then Λ(P )S = Λ(P )Ssat . Since every p-adic Lie group contains an open
pro-p subgroup (see proposition 1.9), we have proven the first part of
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the proposition when we can show that S(U)sat = S(P ) for pro-p open
subgroups U of P . The following argument is due to R. Sujatha.

“⊂” Let x be an element of S(U)sat. Then there is y ∈ Λ(P ) such that
yx ∈ S(U). We get the natural surjection

Λ(P )/Λ(P ) · yx→→Λ(P )/Λ(P ) · x

of Λ(H)-modules. Since Λ(P )/Λ(P )·yx is finitely generated over Λ(H ′)
and hence over Λ(H), this is also true for Λ(P )/Λ(P ) · x. Hence x ∈
S(P ).

“⊃” Let x ∈ S(P ). Since Λ(P )/Λ(P ) · x is finite over Λ(U)/Λ(U) ∩
Λ(P ) · x, this implies that Λ(U)/Λ(U)∩Λ(P ) · x is a finitely generated
Λ(H)-module.

Let ψU : Λ(U)→ Fp[[T ]] be the homomorphism defined in lemma 2.3.
Then S(U) = Λ(U)\kerψU . Assume x 6∈ S(U)sat. Then S(U)∩Λ(P ) ·
x = ∅, or equivalently Λ(U) ∩ Λ(P ) · x ⊂ kerψU . Hence there is a
natural surjection

Λ(U)/
(

Λ(U) ∩ Λ(P ) · x
)
→→Λ(U)/ kerψU .

But Λ(U)/ kerψU ∼= Fp[[T ]] is not finitely generated over Λ(H ′), and
this yields a contradiction.

The fact that for any open subgroup U of P , Λ(P )S(U) is a finitely
generated free Λ(U)S(U)-module of dimension (P : U) is obvious. �

We will always write Λ(P )S for Λ(P )S(P ), since, by the above lemma,
there is little chance of confusion.

Corollary 2.11. Let P , U be as in the preceding lemma. There is a
commutative diagram

K1(Λ(P )S)
N // K1(Λ(U)S)

K1(Λ(P ))
N //

OO

K1(Λ(U)).

OO

Let Q be an algebraic closure of Q. We endow Q with the discrete
topology. In the following, we fix embeddings Q ↪→ Qp and Q ↪→ C.

Definition 2.12. An Artin representation of a compact p-adic Lie
group P is a continuous representation P → GLn(Q), n ∈ N.

Remark. An Artin representation ρ : P → GLn(Q) factors through
P/U → GLn(Q), where U is an open subgroup of P . Hence, the image
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of ρ in GLn(Q) is finite. Let

L := Qp({ρ(g)ij|g ∈ P, i, j = 1, . . . , n})

be the field obtained by adjoining all entries of elements of the image
of ρ. Then L is a p-adic number field (i. e. a finite extension of Qp) and
we can realize ρ over L. Hence ρ is isomorphic to a representation

ρ : P → GLn(O),

where O is the ring of integers of L.

Let P be a compact p-adic Lie group with a surjective homomorphism
ω : P→→Z := Zp. Put S := S(P, ω). We will now define the evalua-
tion of an element f ∈ K(Λ(P )S) on certain representations of P (cf.
[8, section 3] or [48, section 5.2]). Let O be the ring of integers in
some p-adic number field L and let ρ : P → GLn(O) be a continuous
representation. Then ρ extends to a continuous ring homomorphism
ρ : Λ(P )→Mn(O). Set

ΛO(P ) := O[[P ]] = lim←−
U≤oP

O[P/U ] = O ⊗Zp Λ(P ).

Let QO(Z) := Q(ΛO(Z)) be the quotient field of ΛO(Z). We extend
the group homomorphism

P →
(
Mn(O)⊗Zp Λ(Z)

)× ∼= GLn(ΛO(Z)), σ 7→ ρ(σ)⊗ ω(σ).

to the continuous ring homomorphism

Φρ : Λ(P )→Mn(O)⊗Zp Λ(Z) ∼= Mn(ΛO(Z)).

By [8, lemma 3.3], this extends to a ring homomorphism

Φρ : Λ(P )S →Mn(QO(Z)).

Let ε : ΛO(Z)→ O be the augmentation map and define

p := ker ε, ΛO(Z)p := (ΛO(Z) \ p)−1ΛO(Z).

Then ε extends to a map

ε : ΛO(Z)p → L.

We can now define a map as the composition

(7) K1(Λ(P )S)→ K1(Mn(QO(Z))) ∼= QO(Z)× → L ∪ {∞}.

Here, the first map is the homomorphism induced by Φρ, the isomor-
phism in the middle is given by Morita invariance and the third map
is x 7→ ε(x) for x ∈ Λ(Z)p and x 7→ ∞ for x 6∈ Λ(Z)p.

Definition 2.13. The evaluation of an element f ∈ K1(Λ(P )S) at the
continuous representation ρ is the image f(ρ) ∈ L ∪ {∞} of f under
the homomorphism (7).
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Remark. We get the following basic property of the evaluation map:
If g is an inverse image of f under the natural map

Λ(P )×S ∩ Λ(P )→ K1(Λ(P )S),

where Λ(P )×S := (Λ(P )S)×, then f(ρ) = det(ρ(g)).

Lemma 2.14. Let f be an element of K1(Λ(P )S) and let O be the ring
of integers in a finite extension of Qp. We get the following properties
of the evaluation homomorphism:

(1) Let U ⊂ P be an open normal subgroup and let χ be a one di-
mensional representation of U . Let N : K1(Λ(P )S)→ K1(Λ(U)S)
be the norm map. Then

N(f)(χ) = f(indUP (χ)).

(2) Let U be a normal subgroup of P contained in the kernel of
ωP and let p∗ : K1(Λ(P )S) → K1(Λ(P/U)S) be the projection
map. Let ρ : P/U → GLn(O) be a continuous representation.

Let inf
P/U
P (ρ) : P → GLn(O) be the composition of the natural

surjection P → P/U with ρ. Then

f(inf
P/U
P (ρ)) = p∗(f)(ρ).

(3) Let ρ, ρ′ be two continuous representations of P . Then

f(ρ⊕ ρ′) = f(ρ)f(ρ′).

Proof. (1) Recall that the groups P and U are equipped with
the surjective homomorphisms ωP : P → Z and ωU : U → Z ′,
where Z ′ ⊂o Z ∼= Zp. Since ωP |U = ωU , we may denote both
maps by ω. Put ρ := indUP (χ) and n := (P : U). By definition
of the evaluation map, it suffices to prove the commutativity
of the diagram

K1(Λ(P )S)
Φρ //

N
��

K1(QO(Z))

K1(Λ(U)S)
Φχ // K1(QO(Z ′))

?�

OO

Let (νi)i=1,...n be a system of representatives of P/U in P .
Then it is a Λ(U)-basis of Λ(P ) and a Λ(U)S-basis of Λ(P )S.
It determines the isomorphisms

Λ(P ) ∼= Λ(U)n Λ(P )S
∼= Λ(U)nS

of Λ(U)-modules and Λ(U)S-modules, respectively. We con-
sider O as a Λ(U)-module via χ. For any right R-module M ,
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let EndR(M) denote the leftR-module of rightR-homomorphisms
on M . Then the above isomorphisms induce the isomorphisms

α : EndΛ(U)S(Λ(P )S)
∼−→Mn(Λ(U)S)

β : AutO(Λ(P )⊗Λ(U) O)
∼−→ GLn(O)

of Λ(U)S-modules and groups, respectively. Let Ñ be the com-
position

Λ(P )S
∼= EndΛ(P )S

(Λ(P )S) −→ EndΛ(U)S(Λ(P )S)
α−→Mn(Λ(U)S)

and let ρ be the homomorphism

ρ : P → AutO(Λ(P )⊗Λ(U) O)
β−→ GLn(O).

Put

A :=

 ν1

. . .
νn

 ∈Mn(QO(Z)).

We show that there is a commutative diagram

Λ(P )S
Φρ //

Ñ
��

Mn(O)⊗Zp Q(Z)

X 7→AXA−1

��
Mn(Λ(U)S)

Mn(Φχ)
// Mn(O ⊗Zp Q(Z ′)) � � // Mn(O ⊗Zp Q(Z)).

Since all maps in the above diagram are continuous ring ho-
momrophisms, it suffices to prove commutativity for elements
σ ∈ P . For every i ∈ {1, . . . , n}, there is exactly one j ∈
{1, . . . , n} such that

(8) νiσ = τijνj

for some τij ∈ U . For all other j, we put τij := 0 ∈ Λ(U)S.

Then Ñ(σ) = (τij)ij ∈Mn(Λ(U)S) and hence

Φρ(σ) = (χ(τij)ω(σ))ij(
Mn(Φχ) ◦ Ñ

)
(σ) = (χ(τij)ω(τij))ij .
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Thus we get

AΦρ(σ)A−1 =
(
ω(νi)

)
ij

(
χ(τij)ω(σ)

)
ij

(
ω(νj)

−1
)
ij

=
(
χ(τij)ω(σ)ω(νiν

−1
j )
)
ij

(∗)
=
(
χ(τij)ω(τij)

)
ij

=
(
Mn(Φχ) ◦ Ñ

)
(σ),

where equation (∗) follows from the definition of τij (cf. equa-
tion (8)). This completes the proof of (1).

(2) We write ρ : P/U → GL(V ) and infUP (ρ) : P → GL(W ). The
diagram

Λ(P )S
Φ

infP
U

(ρ)
//

��

Mn(QO(Z))

Λ(P/U)S
Φρ // Mn(QO(Z)).

is clearly commutative. By passing to the corresponding K-
groups, we get the commutativity of the diagram

K1(Λ(P )S)
Φ

infU
P

(ρ)
//

p∗
��

K1(Mn(QO(Z)))

K1(Λ(P/U)S)
Φρ // K1(Mn(QO(Z))).

(3) This follows directly from the definition of the evaluation ho-
momorphism. �

Remark. Let χ : U → O be a continuous character and put V :=
Λ(P )⊗Λ(U) O, where χ induces the Λ(U)-module structure on O. Let

ρ : P → EndO(V ), g 7→ (x⊗ y 7→ (gx)⊗ y)

be the representation induced by χ. Then there is a commutative
diagram

K1(Λ(P ))
ρ //

N
��

K1(EndO(V ))

K1(EndΛ(U)Λ(P )) //

∼=
��

K1(EndO(Λ(P )⊗Λ(U) O))

∼=
��

K1(Λ(U))
χ // K1(O),

where the two lower isomorphisms are given by Morita invariance. The
above lemma generalises this fact.
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Lemma 2.15. Let P be a compact p-adic Lie group with a surjective
homomorphism ω : P→→Z := Zp. Then the connecting homomorphism
of K-theory

∂ : K1(Λ(P )S)→ K0(Λ(P ),Λ(P )S)

is surjective. In particular, proposition 1.25 holds for R = Λ(P ) and
RS = Λ(P )S.

Proof. We use a generalisation of [8, proposition 3.4], given in
[24, lemma 1.5].

We define a homomorphism η on K0(Λ(P )) and show that η is injective
and η ◦ λ = 0. Then λ = 0 and we get the exact sequence (cf. (4))

(9) K1(Λ(P ))→ K1(Λ(P )S)
∂→ K0(Λ(P ),Λ(P )S)→ 0.

Let W be a pro-p open normal subgroup of G and set ∆ = P/W . Let
V be the set of irreducible representations of ∆ over Qp and let L be
a fixed finite extension of Qp such that all representations in V can be
realised over L. We define η to be the composition of natural maps

K0(Λ(P ))
η1→ K0(Zp[∆])

η2→ K0(Qp[∆])
η3→ K0(L[∆])

η4→
∏
ρ∈V

K0(L).

Here, η4 is the isomorphism K0(L[∆]) ∼=
∏

ρK0(Mnρ(L)) ∼=
∏

ρK0(L)

(nρ is the dimension of ρ), where the first map is induced by the Wed-
derburn decomposition of L[∆] and the second map is Morita invari-
ance.

We will prove injectivity of η1 in a short lemma below. Injectivity of
η2 and η3 is well known (see [42, chapter 16, theorem 34, corollary 2]
and loc. cit. §14.6, respectively).

In order to show η ◦ λ = 0, we give an alternative description of

η = (ηρ)ρ : K0(Λ(P ))→
∏
ρ∈V

K0(L)

by writing ηρ as the composition

(10) K0(Λ(P ))
twρ→ K0(ΛO(P ))

εZ→ K0(ΛO(Z))
ε1→ K0(O)

j→ K0(L),

where the composing maps are defined as follows: The homomorphisms
εZ , ε1 and j are induced by the natural surjections ΛO(P )→→ΛO(Z),
ΛO(Z)→→O and the injection O ↪→ L, respectively. For a representa-
tion ρ : P → GLn(O) and a finitely generated projective Λ(P )-module
M , we set

twρ(M) = M ⊗Zp On,
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and endow twρ(M) with the diagonal action, i. e. σ(m⊗ z) = (σm)⊗
(ρ(σ)z) for σ ∈ P , m ⊗ z ∈ twρ(M). Obviously, this induces a homo-
morphism

twρ : K0(Λ(P ))→ K0(ΛO(P )).

It is easily verified that the composition (10) indeed equals ηρ.

Let U be an object of HΛ(P )
S and choose a finite projective resolution

Q• of U . Then

εZ ◦ twρ ◦ λ([U ]) =
∑
i∈Z

(−1)i[twρ(Qi)kerω]
(∗)
=
∑
i∈Z

(−1)i[Hi(twρ(Q•)kerω)]

=
∑
i∈Z

(−1)i[Hi(kerω, twρ(U))]

where the identity (∗) follows from [50, chapter II, proposition 6.6] and
the last identity follows from the definition of homology groups.

By [8, lemmata 3.1 and 3.2], Hi(kerω, twρ(U)) are finitely generated
torsion Λ(Z)-modules for all i ≥ 0. Since K0(ΛO(Z)) ∼= Z via the rank
map,

[Hi(kerω, twρ(U))] = 0 ∈ K0(ΛO(Z))

for all i ≥ 0. Hence η ◦ λ([U ]) = 0. �

Lemma 2.16 ([8, lemma 3.5]). Let W be a pro-p open normal subgroup
of P and put ∆ = P/W . Then the canonical map

K0(Λ(P ))→ K0(Zp[∆])

is injective.

Proof. By [28, proposition 4.3], we can write every element of
K0(Λ(P )) in the form [M ] − [Λ(P )n], where M is a finitely generated
projective Λ(P )-module and n ∈ N. Assume that [M ]− [Λ(P )n] is an
element of the kernel of this map. Then there is an isomorphism

α : MW ⊕ Zp[∆]r
∼→ Zp[∆]r+n,

where MW = M/〈σ − 1|σ ∈ W 〉M is the module of W -coinvariants.
Since M is projective, α lifts to a homomorphism

β : M ⊕ Λ(P )r → Λ(P )r+n.

It suffices to show that β is an isomorphism. Since (·)W is right exact,
(cokerβ)W = 0. Since W is pro-p, the augmentation ideal I(W ) is
contained in the Jacobson radical

J(Λ(W )) = pΛ(W ) + I(W )
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of Λ(W ) (cf. [33, proposition 5.2.16]). Hence, by the topological
Nakayama lemma, cokerβ = 0. We take W -homology of the short
exact sequence

0→ ker β →M ⊕ Λ(P )r → Λ(P )r+n → 0.

Since Λ(P ) is a free Λ(W )-module of finite rank, we get

H1(W,Λ(P )r+n) = 0.

This yields the short exact sequence

0→ (ker β)W →MW ⊕ Zp[∆]r
∼→ Zp[∆]r+n → 0,

and we get (using again Nakayama’s lemma) ker β = 0. �

2. Arithmetic Part

For a number field K, we denote by Kcyc the cyclotomic Zp-extension
of K. (Kcyc is the fixed field of the torsion part of G(K(µp∞)|K)
in K(µp∞).) Let F∞|F be an extension of number fields that satis-
fies assumption 2.1. Put G := G(F∞|F ), Γ := G(F cyc|F ) and S :=
S(G,G→→Γ). If G has elements of order p, then X = XΣ(F∞|F )
may not have a finite resolution by finitely generated projective Λ(G)-
modules. This prevents us from mapping X in the K-group

K0(Λ(G),Λ(G)S).

In our situation, where G may have elements of order p, we define a
cochain complex which is closely related to X and plays a role similar
to that of X in case G has no element of order p.

Let Σ be a fixed finite set of primes of F , such that all primes which
ramify in F∞|F are contained in Σ. For any field F ′, F ⊂ F ′ ⊂ F∞,
we denote the set of primes of F ′ lying over primes of Σ also by Σ.

Lemma 2.17. Σ contains all primes of F which divide p.

Proof. Let P be a prime of F∞ which divides p, P′ := P ∩ F cyc

and p := P∩F . By [33, proposition 11.1.1 (ii)], P′ ramifies in F cyc|F ,
and hence P is ramified in F∞|F . That is, p ∈ Σ. �

Let Qp/Zp be the Λ(G)-module with trivial action of G. For any Λ(G)-
module M , we define the associated complex M• (concentrated in 0)
by M0 := M and M i := 0 for i 6= 0.

Definition 2.18. Let

C• := CΣ(F∞|F )•

:= RHom•Zp

(
RΓ•ét(SpecOF∞ [1/Σ],Qp/Zp), (Qp/Zp)

•
)
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be the object of the derived category D(P(Λ(G))), where Qp/Zp is the
locally constant sheaf on the étale site of SpecOF∞ [1/Σ].

For an intermediate field F ′ of F∞|F , let (F ′)Σ(p) be the maximal pro-p
extension of F ′ unramified outside Σ. We put GΣ := G((F∞)Σ(p)|F∞).
Let MΣ be the maximal abelian pro-p extension of F∞ unramified out-
side Σ. We set

X := XΣ(F∞|F ) := G(MΣ|F∞) = GΣ/[GΣ, GΣ].

For σ ∈ G(F∞|F ), let σ̂ be an inverse image of σ under the natural
map G(MΣ|F )→→G. By setting σ · x := σ̂xσ̂−1 for σ ∈ G, x ∈ X, we
give X a Λ(G)-module structure.

Lemma 2.19. The cohomology groups of C• are given as follows:

H0(C•) = Zp

H−1(C•) = X

H i(C•) = 0 for i 6∈ {0,−1}

Proof. For any Λ(G)-module M , we set M∨ := Hom(M,Qp/Zp).
Since Qp/Zp is a direct limit of finite abelian groups of p-power order,
we get

(11) RΓét(SpecOF∞ [1/Σ],Qp/Zp) = RΓ(GΣ,Qp/Zp).

Hence

H i(C•) = H−i(GΣ,Qp/Zp)
∨.

Let U be a pro-p open subgroup of G and let FU ⊂ F∞ be the fixed
field of U . Then F∞|FU is a pro-p extension unramified outside Σ and
hence

(F∞)Σ(p) = (FU)Σ(p).

By [33, cor. 10.4.9(iii)],

scdpG((F∞)Σ(p)|(FU)cyc) = scdpG((FU)Σ(p)|(FU)cyc) ≤ 2.

Since GΣ = G((F∞)Σ(p)|F∞) is a closed subgroup of

G((F∞)Σ(p)|(FU)cyc)

we get (using [33, proposition 3.3.5])

scdpGΣ ≤ 2.

This implies (since Hj(GΣ,Qp) = 0 for j ≥ 1 by [33, 1.6.2c])

H i(GΣ,Qp/Zp) = H i+1(GΣ,Zp) = 0 for all i 6= 0, 1.
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We get

H0(C•) = (Qp/Zp)
∨ = (lim−→

n

1

pn
Zp/Zp)

∨

= lim←−
n

(
1

pn
Zp/Zp)

∨ = lim←−
n

Z/pnZ = Zp.

We have H−1(C•) = (G∨Σ)∨ = X. �

Let U ⊂ G be an open subgroup and let V ⊂ U be a normal subgroup.
Let FV ⊂ F∞ be the fixed field of V .

Definition 2.20.

C•U,V := RHom•Zp(RΓ•ét(SpecOFV [1/Σ],Qp/Zp), (Qp/Zp)
•)

∈ Ob(D(P(Λ(U/V )))).

Lemma 2.21.

Λ(U/V )• ⊗L
Λ(U) C

• = C•U,V

Proof. Recall that

RΓ(W,A)∨ = R(−W )(A)∨ = L(−W )(A∨) = Zp ⊗L
Λ(W ) A

∨

for a group W and a Λ(W )-module A. Hence, due to (11),

C• = Zp ⊗L
Λ(GΣ) Zp

C•U,V = Zp ⊗L
Λ(GΣ(FV )) Zp,

where GΣ(FV ) := G((FV )Σ(p)|FV ). Since Λ(U/V ) = Zp⊗Λ(V ) Λ(U), we
have Λ(U/V )• = Zp ⊗L

Λ(V ) Λ(U). Since F∞|FV is pro-p and unramified
outside Σ, we get the exact sequence

1→ GΣ → GΣ(FV )→ V → 1.

By the Hochschild-Serre spectral sequence (with respect to the above
exact sequence), we get (cf. [49, exercise 10.8.5])

C•U,V = Zp ⊗L
Λ(GΣ(FV )) Zp

= Zp ⊗L
Λ(V ) Zp ⊗L

Λ(GΣ) Zp

=
(
Zp ⊗L

Λ(V ) Λ(U)
)
⊗L

Λ(U)

(
Zp ⊗L

Λ(GΣ) Zp

)
= Λ(U/V )• ⊗L

Λ(U) C
•. �

We fix the following objects assigned to our extension F∞|F :

• Γ := G(F cyc|F ) ∼= Zp

• H := G(F∞|F cyc) = ker(G→→Γ)
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• S := S(G,G→→Γ) = {f ∈ Λ(G)|Λ(G)/Λ(G)f is finitely gen-
erated as a Λ(H)-module} ⊂ Λ(G)

Let K∞|K be a Zp-extension over a totally real number field and let Σ
be a finite set of primes of K that contains all primes lying over p. Let

Kn = K
pnZp
∞ be the fixed field of pnZp and let Σn be the set of primes

of Kn lying over a prime of Σ. For any prime p of Kn, let U p
n := O×Kn,p

be the group of units of Kn,p. Put Un :=
∏

p∈Σn
U p
n. Let En be the

image of O×Kn , the group of units of Kn, under the diagonal embedding

in Un. Let Ēn be the topological closure of En.

Definition 2.22. The Leopoldt defect of Kn is defined to be the inte-
ger δn such that the Zp-rank of the pro-p part of Ēn is [Kn : Q]−1−δn.

Conjecture 2.23 (Leopoldt). We say that the weak Leopoldt conjec-
ture holds for K∞|K when δn is bounded independent of n. We say
that the Leopoldt conjecture holds for K when δ0 is zero.

For n ∈ N∪ {∞}, let Ln be the maximal abelian unramified extension
of Kn and let Mn be the maximal abelian extension of Kn unramified
outside Σn.

The following two lemmata are applications of [51, §13.1].

Lemma 2.24. For n ∈ N, G(Mn|Ln) ∼= Un/Ēn.

Proof. By class field theory,

G(Mn|Ln) ∼= Un/
(
Un ∩K×U ′n

)
where U ′n :=

∏
p 6∈Σn

U p
n. Hence it suffices to show that

Un ∩K×U ′n = Ēn.

The inclusion ⊃ is plain. We prove the other inclusion. Since

K×U ′ =
⋂
m

K×U ′nU
m
n

and
Ēn =

⋂
m

EnU
m
n ,

it suffices to show that

Un ∩K×U ′nUm
n ⊂ ĒnU

m
n

for all m ≥ 0. Let x ∈ K×, u′ ∈ U ′n and u ∈ Um
n be such that xu′u ∈ Un.

Then xu′ ∈ Un. Since the p-component of elements of Un at p 6∈ Σ is
1, this implies x ∈ En. Hence xu′ ∈ En. Thus we get

xu′u ∈ EnUm
n . �
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Lemma 2.25. Assume that the weak Leopoldt conjecture holds and that
K∞ containes Qcyc. Then the pro-p part of G(M∞|L∞) is a finitely
generated Zp-module.

Proof. For m ∈ N and p ∈ Σn, let Um,p
n := {x ∈ U p

n|x ≡ 1 mod
pm}. Then for p ∈ Σn, p|p, there is m ≥ 0 such that the logarithm
homomorphism induces the isomorphism

Um,p
n
∼= pm ∼= OKn,p ∼= Zepfp

p ,

where ep is the ramification index and fp is the inertia degree of p over
Q. Hence there are integers am,p ∈ N such that

U p
n
∼= µ(Kn,p)× Um,p

n
∼= µq−1 × µpam,p × Zepfp

p ,

where µ(∗) is the group of roots of unity of ∗ and µl is the group of l-th
roots of unity. Since Kn is totally real, we have µ(Kn) = {±1}. Hence

Un ∼=

(∏
p∈Σn

µ(Kn,p)(p)

)
× Z[Kn:Q]

p ×Q1,n

Ēn ∼= Z[Kn:Q]−1−δn
p ×Q2,n

Un/Ēn ∼=

(∏
p∈Σn

µpan,p

)
× Z1+δn

p × (Q1,n/Q2,n),

where Q1,n and Q2,n are profinite groups with trivial pro-p part. Since
G(M∞|L∞) ∼= lim←−nG(Mn|Ln), this implies

G(M∞|L∞) ∼=

(
lim←−
n

∏
p∈Σn

µpan,p

)
×

(
lim←−
n

Zp

)1+δ∞

×

(
lim←−
n

Q1,n/Q2,n

)
,

where δ∞ = limn→∞ δn < ∞. Clearly, lim←−n Zp is always a subgroup of
Zp and hence has finite Zp-rank. Let p ∈ Σ be a prime. By the follow-
ing lemma 2.26, p is finitely decomposed and hence lim←−n

∏
pn|p µpan,pn

(where the product is over all primes pn ∈ Σn lying over p) is a quotient
of Zr

p, r <∞. �

Lemma 2.26. There is no prime q ∈ Q that is completely decomposed
in Qcyc.

Proof. Let q ∈ Q be a prime number. Since q 6≡ 1 mod pn for
some n ≥ 1, q is not completely decomposed in Q(µp∞) (cf. [51,
theorem 2.13]). Hence G(Q(µp∞)q|Qq) 6= 1 and Gq is the pro-p part of
this group.

Assume that q is completely decomposed in FH . Then every prime
q|q of Q(µp) is completely decomposed in Q(µpn), i. e. splits into pn−1

distinct primes. Let fn be the minimal positive integer such that qfn ≡
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1 mod pn. By [51, theorem 2.13], q splits into ϕ(pn)
fn

primes in Q(µpn).

Therefore,
ϕ(pn)

fn
= pn−1ϕ(p)

f1

or equivalently fn = f1 for all n ≥ 1. That is, qf1 ≡ 1 mod pn for all
n ≥ 1 and hence q ∈ {±1}. Contradiction. �

For any field K, let LK be the maximal abelian unramified pro-p ex-
tension of K.

Definition 2.27. The Iwasawa µ invariant of F∞|F is defined to be
zero if and only if there is a pro-p open subgroup H ′ of H such that
G(LFH′ |FH′) is a finitely generated Zp-module. In this case, we write
µ(F∞|F ) = 0.

Conjecture 2.28 (Iwasawa). For any number field K, the µ-invariant
µ(Kcyc|K) is zero.

Ferrero and Washington proved this in case K|Q is abelian (cf. [15] or
[51, theorem 7.15]).

Remark. There are non-cyclotomic Zp-extensions such that µ > 0 (cf.
[23]).

Proposition 2.29. X = XΣ(F∞|F ) is an S-torsion module if and
only if µ(F∞|F ) = 0.

Proof. We follow the proof given in [24, lemma 1.7].

By proposition 2.9, X is S-torsion if and only if X is a finitely generated
Λ(H)-module. By [33, proposition 5.2.16], Λ(H ′) is a local ring and
hence, by the topological Nakayama lemma (cf. [33, lemma 5.2.18]),
X is a finitely generated Λ(H)-module if and only if XH′ is a finitely
generated Zp-module.

Let FΣ := (F∞)Σ(p) be the maximal pro-p extension of F∞ unramified
outside Σ. There is the five term exact sequence

0→ H1(H ′)→ H1(G(FΣ|FH′))→ H1(G(FΣ|F∞))H
′ → H2(H ′)

of cohomology groups with coefficients in Qp/Zp. We dualise this se-
quence and get the exact sequence

H2(H ′,Zp)→ XH′ → G(MΣ|FH′)→ H1(H ′,Zp)→ 0,

where MΣ is the maximal abelian pro-p extension of FH′ (equivalently
of F∞) unramified outside Σ. Since

Hi(H
′,Zp) = Tor

Λ(H′)
i (Zp,Zp)
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(cf. [33, proposition 5.2.6]), and since Zp has a resolution by finitely
generated projective Λ(H ′)-modules (cf. [46, theorem 5.1.2]), the Zp-
modules Hi(H

′,Zp) are finitely generated for all i ≥ 0. Hence XH′

is finitely generated over Zp if and only if G(MΣ|FH′) is finitely gen-
erated over Zp. Let K be an intermediate field of FH′ |F such that
G(FH′ |K) ∼= Zp. (K exists since there is a surjection G/H ′→→Zp.) By
[33, theorem 10.3.25], the weak Leopoldt conjecture is true for FH′|K.
Hence G(MΣ|LFH′ ) is a finitely generated Zp-module (see lemma 2.25).
Since G(LFH′ |FH′) is a finitely generated Zp-module if and only if
µ(F∞|F ) = 0, this proves the theorem. �

Remark. If Iwasawa’s conjecture is true, thenX is always an S-torsion
module.

Corollary 2.30. If µ(F∞|F ) = 0, then C• ∈ Ob(CΛ(G)
S ) and hence we

can write

[C•] ∈ K0(CΛ(G)
S ) = K0(Λ(G),Λ(G)S).

Remark. Let Λ(G)-modS-tors be the category of finitely generated S-
torsion Λ(G)-modules. For any ring R, let gl.dimR ∈ N ∪ {∞} be the
global dimension of R, i. e. the supremum of the set of projective di-
mensions of all R-modules. (The projective dimension of an R-module
M is the minimal length of a finite projective resolution of M , if such a
resolution exists, and∞ otherwise.) Let cdp(G) be the p-cohomological
dimension of G. By [6, theorem 4.1],

gl.dim Λ(G) = gl.dim Zp + cdp(G).

Assume that G is a compact p-adic Lie group which contains no element
of order p. By proposition 1.12, this implies cdp(G) < ∞. Since Zp is
a principal ideal domain, we have gl.dim Zp = 1. Hence gl.dim Λ(G) <
∞. That means

HΛ(G)
S = Λ(G)-modS-tors.

By corollary 1.18, every element in K1(Λ(G)S) may be represented by
a 1× 1-matrix. We then get

∂([(Λ(G)S, f)]) = [cokerf ] = [Λ(G)/Λ(G)f ] ∈ K0(Λ(G)-modS-tors)

if f ∈ Λ(G)×S ∩ Λ(G) (cf. [48, §3]).

Lemma 2.31. Assume that G has no element of order p. Let D• ∈
Ob(CΛ(G)

S ) be a cochain complex. Then the image of [D•] in K0(HΛ(G)
S )

is
∑

i∈Z(−1)i[H i(D•)].

Proof. Let H be an object of HΛ(G)
S and let 0 ← H ← P• be a

projective resolution of H. By proposition 1.25, the map

ϕ : K0(HΛ(G)
S )→ K0(CΛ(G)

S ), [H] 7→ [P•]
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is an isomorphism. Put

ψ : K0(CΛ(G)
S )→ K0(HΛ(G)

S ), [D•] 7→
∑
i∈Z

(−1)i[H i(D•)].

We have seen above that HΛ(G)
S = Λ(G)-modS-tors. Hence H i(D•) ∈

Ob(HΛ(G)
S ) for all i ∈ Z. Obviously, ψ does not depend on the choice

of representatives. Hence ψ is a homomorphism. Since

ψ ◦ ϕ([H]) =
∑
i∈Z

(−1)i[H i(P•)] = [H0(P•)] = [H],

ψ ◦ ϕ is the identity map on K0(HΛ(G)
S ). Since ϕ is an isomorphism,

ψ = ϕ−1. �

Using lemma 2.19, we get the

Corollary 2.32. If G has no element of order p, then

−[C•] = [X]− [Zp] ∈ K0(Λ(G)-modS-tors).

3. Analytic Part

In this subsection, we give the definition of the p-adic zeta function
ξΣ for F∞|F with respect to Σ (if it exists). It is defined to be an
element of K1(Λ(G)S) that interpolates the Artin L-function of F∞|F ,
with the Euler factors at Σ removed, for all Artin characters and all
odd negative integers.

Let P 6∈ Σ be a prime ideal of F∞ and put p := P ∩ OF . Since P|p
is unramified, the decomposition group GP of P over F is generated
by the Frobenius element σP ∈ G(F∞|F ). (σP is defined by σPx ≡
x#OF /p mod P for all x ∈ OF∞ .) Let 1n ∈ GLn(Q) be the unit matrix.

Definition 2.33. For a representation

ρ : G→ GLn(Q) ⊂ GLn(C)

and s ∈ C with Re(s) > 1, the complex Artin L-function with respect
to Σ is defined by

LΣ(s, ρ) =
∏
p 6∈Σ

det(1n − ρ(σP)N(p)−s)−1 ∈ C,

where the product is over all prime ideals p of F with p 6∈ Σ and
where for each p, P ⊂ OF∞ is a prime ideal with P|pOF∞ . (This is
the ordinary Artin L-function, with the Euler factors at Σ removed, cf.
[31, ch. VII, def. 10.1].)
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For Re(s) ≥ 1 + δ with δ > 0, the Artin L-series converges abso-
lutely and uniformly (cf. [31]). The characteristic polynomial det(1n−
ρ(σP)t) ∈ C[t] depends only on p, not on P. Hence LΣ(s, ρ) is well-
defined.

Proposition 2.34. (1) Let ρ : G → GLn(Q), ρ′ : G → GLm(Q)
be two Artin representations of G. Then

LΣ(s, ρ⊕ ρ′) = LΣ(s, ρ)LΣ(s, ρ′).

(2) Let F̃ |F∞ be a Galois extension and set G̃ := G(F̃ |F ). Assume
that G̃ is a compact p-adic Lie group. Let infG

G̃
(ρ) : G̃ →

GLn(Q) be the Artin representation that factors through ρ :
G→ GLn(Q). Then

LΣ(s, ρ) = LΣ(s, infG
G̃

(ρ)).

(3) Let U be an open normal subgroup of G and let ρ : U →
GLn(Q) be an Artin representation. Then

LΣ(s, ρ) = LΣ(s, indUG(ρ)).

Proof. We use the proof given in [31, 10.4], which we can obvi-
ously apply to our situation.

(1) This follows from

det(1n+m − (ρ⊕ ρ′)(σP)t) = det(1n − ρ(σP)t) det(1m − ρ′(σP)t).

(2) Let P′|P|p be prime ideals of F̃ |F∞|F , lying one above the
other, with p 6∈ Σ. The natural projection G̃→ G induces the
homomorphism GP′ → GP, which maps σP′ to σP. Hence

det(1n − infG
G̃

(ρ)(σP′)t) = det(1n − ρ(σP)t).

(3) We write ρ : U → GL(W ), indUG(ρ) : G → GL(V ), where
V = indUG(W ). Let Z := FU

∞ be the fixed field of U . Set

f := (G : U) = [Z : F ] <∞.

Let p 6∈ Σ be a prime ideal of F . Let q1, . . . , qr be the prime
ideals of Z lying over p. For i = 1, . . . , r, let Pi be a prime
ideal of F∞ lying over qi. Let Gi := GPi

be the decomposition
group of Pi over p. Then Ui := Gi ∩ U is the decomposition
group of Pi over qi. Put fi := (Gi : Ui). Then

N(qi) = N(p)fi ,

where N(·) denotes the norm of an ideal. Let τi ∈ G be el-
ements such that τi(Pi) = P1. Then Gi = τ−1

i G1τi, σPi
=
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τ−1
i σP1τi ∈ Gi and σfiPi

∈ Ui is the Frobenius homomorphism
of Pi over Z. Set σ := σP1 . We need to show

det(1nf − indUG(ρ)(σ)t;V ) =
r∏
i=1

det(1n − ρ(σfiPi
)tfi ;W ).

We reduce this to the case G1 = G. For each i ∈ {1, . . . , r}, let
{αij}j=1,...,fi be a system of representatives of G1/(G1∩τiUτ−1

i )
in G1. Then {αijτi}ij is a set of representatives of G/U in G.
Thus V =

⊕
ij αijτiW . We put

Vi :=

fi⊕
j=1

αijτiW

and get the decomposition V =
⊕r

i=1 Vi of the G1-module V .
Hence

det(1nf − indUG(ρ)(σ)t;V ) =
r∏
i=1

det(1nfi − indUG1
(ρ)(σ)t;Vi),

and since det(1n− ρ(σfiPi
)tfi ;W ) = det(1n− ρ(σfi)tfi ; τiW ), it

suffices to prove

det(1nfi − indUG1
(ρ)(σ)t;Vi) = det(1n − ρ(σfi)tfi ; τiW ).

We may assume G = G1, V = V1 and f = f1. Then
G = 〈σ〉 and hence

V =

f−1⊕
i=0

indUG(σi)W.

Let A be the matrix of ρ(σf ) with respect to a basis w1, . . . , wn
of W . Then 

0 1n
. . . . . .

. . . 1n
A 0


is the matrix of indUG(ρ)(σ) with respect to the basis

{indUG(ρ)(σi)wj}i=f−1,...,0
j=1,...,n

.

Hence

det(1nf − indUG(ρ)(σ)t) = det


1n −t1n

. . . . . .
. . . −t1n

−tA 1n


= det(1n − ρ(σf )tf ).
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(We get the last equation by adding the t-fold of the first
column to the second column, etc.) �

For σ ∈ G, let σ̃ ∈ G(F (µp∞)|F ) be an element, whose image under
G(F (µp∞)|F ) → G(F (µp∞)+|F ) coincides with the image of σ under

G→ G(F (µp∞)+|F ). Let ρ : G→ GLn(Q) be an Artin representation
and let κ : G(F (µp∞)|F )→ Z×p be the cyclotomic character. For even
integers r, we define the continuous representation

ρκr : G→ GLn(Qp), σ 7→ ρ(σ)κ(σ̃)r.

We fix an isomorphism Cp
∼= C and hence we may define f(ρκr) ∈ C

for f ∈ K1(Λ(G)S).

Conjecture 2.35. There is a unique element ξ ∈ K1(Λ(G)S), such
that

ξ(ρκr) = LΣ(1− r, ρ) ∈ C
for any Artin representation ρ of G and any even integer r ≥ 2.

Definition 2.36. If the element ξ = ξΣ(F∞|F ) in conjecture 2.35
exists, it is called the p-adic zeta function for F∞|F with respect to Σ.

4. The Main Conjecture and Burns’ Theorem

The mysterious connection between the p-adic zeta function and the
complex [C•] is conjectured as follows (cf. [25]):

Conjecture 2.37 (Main Conjecture). Assume the p-adic zeta func-
tion for F∞|F with respect to Σ of conjecture 2.35, ξ ∈ K1(Λ(G)S),
exists. Then

∂(ξ) = −[C•] ∈ K0(Λ(G),Λ(G)S).

Theorem 2.38 (Main Conjecture of Commutative Iwasawa Theory).
Assume that G is an abelian group. Then the main conjecture for G is
true.

Proof. Assume that G is one dimensional as a p-adic Lie group.
Then this well-known theorem follows from deep results of Kubota and
Leopoldt, Iwasawa, Deligne and Ribet, Mazur and Wiles among others.
The case dim(G) > 1 can be reduced to the case dim(G) = 1, cf. [24,
theorem 1.15]. �

Remark. K. Iwasawa first constructed a p-adic zeta function and for-
mulated a main conjecture for Qcyc|Q, following work of T. Kubota
and H. W. Leopoldt. J. Coates formulated certain hypotheses under
which the p-adic zeta function for the cyclotomic extension of arbi-
trary totally real number fields exists. Deligne and Ribet and also



4. THE MAIN CONJECTURE AND BURNS’ THEOREM 51

P. Cassou-Noguès proved these hypotheses. The main conjecture in
this situation was formulated by Coates and R. Greenberg. The main
conjecture for Qcyc|Q was proven by B. Mazur and A. Wiles, after deep
results in this direction by Iwasawa. K. Rubin gave another proof using
V. Kolyvagin’s Euler systems. For the cyclotomic extension of totally
real number fields, the main conjecture was proven by Wiles.

We try to deduce the noncommutative Main Conjecture from the Main
Conjectures for all abelian subquotients of G. In the following, we
specify an upper bound for the set of subquotients that we are going
to consider.

Let P be a compact p-adic Lie group with a surjection ω : P→→Zp.
Let I = I(P ) be a set of pairs (U, V ), where U is an open normal
subgroup of P and V is a closed subgroup of kerω, such that V is a
normal subgroup of U and U/V is commutative.

Let I be such a set for G with the surjection G→→Γ. For all (U, V ) ∈ I,
we define

θU,V : K1(Λ(G))→ Λ(U/V )×

to be the composition of homomorphisms

N : K1(Λ(G))→ K1(Λ(U)) and

p∗ : K1(Λ(U))→ K1(Λ(U/V )) = Λ(U/V )×.

(The latter identity follows from proposition 1.17 and the commutativ-
ity of U/V .) This induces the homomorphism

θ : K1(Λ(G))→
∏

(U,V )∈I

Λ(U/V )×, x 7→ (θU,V (x))(U,V )∈I .

We define
θS,U,V : K1(Λ(G)S)→ Λ(U/V )×S

to be the composition of homomorphisms

N : K1(Λ(G)S)→ K1(Λ(U)S) and

p∗ : K1(Λ(U)S)→ K1(Λ(U/V )S) = Λ(U/V )×S .

(The latter identity follows from proposition 2.8.)

Then we get the following homomorphism:

θS : K1(Λ(G)S)→
∏

(U,V )∈I

Λ(U/V )×S , x 7→ (θS,U,V (x))(U,V )∈I

Remark. Let f ∈ K1(Λ(G)S) and let χ : U/V → Q× be a one-
dimensional Artin representation. By lemma 2.14,

θS,U,V (f)(χ) = f(indUG(inf
U/V
U (χ))).
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By corollary 2.11, there is a commutative diagram

K1(Λ(G)S)
θS,U,V // Λ(U/V )×S

K1(Λ(G))
θU,V //

OO

Λ(U/V )×.
?�

OO

Property 2.39. Let

ΨS ≤
∏

(U,V )∈I

Λ(U/V )×S

and
Ψ ≤

∏
(U,V )∈I

Λ(U/V )×

be subgroups.We assume that the following holds:

(1) Ψ = ΨS ∩
∏

(U,V )∈I Λ(U/V )×

(2) im (θS) ⊂ ΨS

(3) θ : K1(Λ(G))→ Ψ is an isomorphism.
(4) Every Artin representation ρ of G is – interpreted as a vir-

tual representation – a Z-linear combination of induced rep-

resentations indGUi ◦ inf
Ui/Vi
Ui

(χi) with (Ui, Vi) ∈ I and with

χi : Ui/Vi → Q× a character of finite order.

For (U, V ) ∈ I let

ξU,V := ξΣ(FV |FU) ∈ K1(Λ(U/V )S) = Λ(U/V )×S ⊂ Q(U/V )

be the p-adic zeta function for FV |FU with respect to Σ. The following
theorem is due to D. Burns and K. Kato (cf. [25]).

Theorem 2.40. Let Ψ ≤
∏
I Λ(U/V ) and ΨS ≤

∏
I Λ(U/V )S be sub-

groups for which property 2.39 holds and such that (ξU,V )(U,V )∈I ∈ ΨS.
Then the p-adic zeta function ξ = ξΣ(F∞|F ) for F∞|F (with respect to
Σ) exists uniquely and the main conjecture ∂(ξ) = −[C] is true.

Remark. In chapter 3, we define groups Ψ and ΨS for a certain class of
Galois groups G and show that they satisfy property 2.39. In chapter 4,
we deal with certain congruences of the zeta functions ξU,V in order to
show (ξU,V )I ∈ ΨS.

Proof. Surjectivity of ∂ : K1(Λ(G)S) → K0(Λ(G),Λ(G)S) (cf.
lemma 2.15) implies that there is f ∈ K1(Λ(G)S) such that ∂(f) =
−[C]. For (U, V ) ∈ I, we define

fU,V := θS,U,V (f) ∈ Λ(U/V )×S and

uU,V := ξU,V f
−1
U,V ∈ Λ(U/V )×S .
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Consider the commutative diagram

K1(Λ(G)S)
N //

∂
��

K1(Λ(U)S)
p∗ //

∂
��

Λ(U/V )×S

∂
����

K0(Λ(G),Λ(G)S)
Tr // K0(Λ(U),Λ(U)S)

p∗ // Λ(U/V )×S /Λ(U/V )×.

By lemma 2.21, the image of −[C] under p∗ ◦ Tr is −[CU,V ]. Hence
∂(fU,V ) = −[CU,V ]. Theorem 2.38 (the main conjecture of commutative
Iwasawa theory) implies

∂(ξU,V ) = −[CU,V ].

Therefore uU,V ∈ ker ∂ = Λ(U/V )×. Property 2.39 (2) implies

(fU,V )(U,V )∈I ∈ ΨS.

Using the assumption (ξU,V )(U,V )∈I ∈ ΨS, we get that

(uU,V )(U,V )∈I ∈ ΨS ∩
∏

(U,V )∈I

Λ(U/V )× = Ψ.

By property 2.39 (3), there is a unique element u ∈ K1(Λ(G)), such
that

θU,V (u) = uU,V for all (U, V ) ∈ I.

By property 2.39 (3) and the commutativity of the diagram

K1(Λ(G)S)
θS //
∏
I Λ(U/V )×S

K1(Λ(G))
θ //

OO

∏
I Λ(U/V )×,

?�

OO

the natural map K1(Λ(G)) ↪→ K1(Λ(G)S) is injective. We identify
K1(Λ(G)) with its image in K1(Λ(G)S). Now, we can define

ξ := uf ∈ K1(Λ(G)S).

Then
∂(ξ) = ∂(uf) = ∂(f) = −[C]

(since u ∈ K1(Λ(G)) = ker ∂ by the exact sequence (4)) and

θS,U,V (ξ) = θS,U,V (u)θS,U,V (f) = uU,V fU,V = ξU,V

for all (U, V ) ∈ I (θS,U,V (u) = θU,V (u) by corollary 2.11).

Now, we will show that ξ(ρκr) = LΣ(1 − r, ρ) for r ≥ 2 and all
Artin representations ρ of G. By property 2.39 (4), we can write
ρ =

∑m
i=0 niindGUi(χi). By proposition 2.34,

LΣ(1− r, ρ) =
m∏
i=0

LΣ(1− r, indUiG (χi))
ni =

m∏
i=0

LΣ(1− r, χi)ni .
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For two characters χ, χ′, we have ξ(χ+χ′) = ξ(χ)ξ(χ′) by lemma 2.14.
Therefore

ξ (ρκr) =
m∏
i=0

ξ
(
indUiG (χi)κ

r
)ni

.

Let κU : G(FU(µp∞)|FU)→ Z×p be the cyclotomic character of the field
FU . By the remark after the definition of θS (see also lemma 2.14), we
have

ξ
(
indUiG (χi)κ

r
)

= θS,U,V (ξ)(χiκ
r
U) = ξU,V (χiκ

r
U).

The interpolation property of ξU,V in the commutative case implies

ξU,V (χiκ
r
U) = LΣ(1− r, χi).

This proves the existence of the p-adic zeta function. We will now show
its uniqueness.

Let ξ̃ be another element that satisfies the conditions of the main con-
jecture. Then ∂(ξξ̃−1) = 0 and hence ξξ̃−1 ∈ K1(Λ(G)). By the unique-
ness of the p-adic zeta function in the commutative case, we get that
θS,U,V (ξ̃) = ξU,V . Hence θ(ξξ̃−1) = 1, and thus ξ = ξ̃. �



CHAPTER 3

K1 of Certain Noncommutative Iwasawa Algebras

Let P be a pro-p p-adic Lie group with a surjection P→→Zp that is a
quotient of the product of the p-adic Heisenberg group and a commuta-
tive p-adic Lie group. In this chapter, we show the existence of groups
Ψ and ΨS that satisfy property 2.39.

We consider the following more general situation: Let R be a topolog-
ical ring and let c be an index set. For n ∈ c, let Rn ⊂ R be a subring
such that R is a free finite dimensional Rn-module and let Jn ⊂ Rn be
a two sided ideal. Define

θn : K1(R)
N→ K1(Rn)

p∗→ K1(Rn/Jn)

θ = (θn)n : K1(R)→
∏
n∈c

K1(Rn/Jn).

We will define a trace homomorphism

Tr : R/[R,R]→ Rn/[Rn, Rn]

and put

τn : R/[R,R]
Tr→ Rn/[Rn, Rn]
p∗→ (Rn/Jn)/[(Rn/Jn), (Rn/Jn)]

τ = (τn)n : R/[R,R]→
∏
n∈c

(Rn/Jn)/[(Rn/Jn), (Rn/Jn)].

We set Ψ := im θ and Ω := im τ . Assume that the following holds:

(1) τ is injective.
(2) There is a commutative diagram

K1(R)
L //

θ

��

R/[R,R]

τ

��
Ψ

fL // Ω

of abelian groups.
(3) ker L ∩ ker θ = {0}

55
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Then, by the snake lemma, there is a commutative diagram of abelian
groups

1 // ker L //

∼=
��

K1(R)

θ

��

L // R/[R,R]

∼= τ

��

// cokerL

∼=
��

// 1

1 // θ(ker L ) // Ψ
fL // Ω // τ(cokerL ) // 1

(12)

and the five lemma implies that θ is an isomorphism.

For n = c, we will define certain open normal subgroups Un of P . Put
Vn := [Un, Un]. We will prove the above assumptions for

R = Λ(P ) Rn = Λ(Un) Jn = I(Vn)Λ(Un).

It is not difficult to show assumption (1). In this setting, the homomor-
phism L of (2) is called the integral logarithm. For its definition, we
need the fact that P is pro-p. We will use an explicit description of Ψ

and Ω in terms of certain generators of Un to define L̃ . For the proof
of assumption (3), we use the fact that ker L = µp−1 × P ab, which
follows from a theorem of R. Oliver.

Now assume that

R = Λ(P )S Rn = Λ(Un)S Jn = I(Vn)Λ(Un)S,

where R is endowed with the discrete topology. In general, R is not
p-adically complete, and hence the above logarithm may not exist. We

will define completions
(
R/[R,R]

)∧
and Ω̂S containing the correspond-

ing p-adic completions (cf. definition 3.10 and corollary 3.13). We will
show that there is a commutative diagram

K1(R)

θ

��

L //
(
R/[R,R]

)∧
τ

��

ΨS

fL // Ω̂S,

where ΨS and ΩS are groups defined in analogy to the explicit descrip-
tion of Ψ and Ω. Then property 2.39 (2) is plain and property 2.39
(1) follows from the definition of ΨS.

Property 2.39 (4) (for groups P as above) is a consequence of a well-
known fact of the representation theory of finite groups.
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1. The Heisenberg Group

Let p be an odd prime. Let H be the p-adic Heisenberg group, i. e.

H =

 1 Zp Zp

0 1 Zp

0 0 1

 .

Define

α =

 1 1 0
0 1 0
0 0 1

 , β =

 1 0 0
0 1 1
0 0 1

 , γ =

 1 0 1
0 1 0
0 0 1

 ∈ H.
We first observe some group theoretic properties of H and P . By direct
calculations, we get the following useful identities (with i, j, k, l ∈ Zp):

(1) αiβjγk =

 1 i ij + k
0 1 j
0 0 1


(2) γ = αβα−1β−1 = α−1β−1αβ
(3) αγ = γα, βγ = γβ
(4) [αiβj, αkβl] = γil−jk

(5) αk(αiβj)α−k = (αiβj)γjk, βk(αiβj)β−k = (αiβj)γ−ik

Remark. H is a p-adic Lie group. There is a global atlas of H:

H → Z3
p,

 1 i k
0 1 j
0 0 1

 7→ (i, j, k)

Let P be a compact pro-p p-adic Lie group with surjective homomor-
phism ω : P→→Zp.

Assumption 3.1. We assume that there is a commutative p-adic Lie
group N and a surjective homomorphism of p-adic Lie groups

s : H×N −→ P.

Remark. We will prove the main conjecture for extensions F∞|F sat-
isfying assumption 2.1 such that G = G(F∞|F ) with the surjection
G→→Γ satisfies assumption 3.1.

Henceforth, we denote the elements s(α, 1), s(β, 1), s(γ, 1) ∈ P by
α, β, γ. To simplify notation, we define the following constant c =
c(γ) ∈ N ∪ {∞}: If γ is of finite order we require

ord(γ) = pc.
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If γ is of infinite order, we set c = ∞. For n ∈ N, we define n :=
{0, . . . , n} ⊂ N and put ∞ := N.

For a group W , we define the centre of W by

Z(W ) := {g ∈ W |gh = hg for all h ∈ W}.

For n ∈ N, we define the following subgroups of P , where 〈 · 〉 denotes
the closed subgroup of P , generated by “ · ”:

Un := 〈α, βpn , Z(P )〉
Vn := [Un, Un] = 〈γpn〉

The last identity follows from Vn = 〈[g, h]|g, h ∈ {α, βpn} ∪ Z(P )〉 =
〈[α, βpn ]〉.

We calculate the centre Z(P ). Any element x ∈ P can be written in
the form x = αiβjγkz with z ∈ s(1×N). The element

[αiβjγkz, αı̃β ̃γk̃z̃] = γ ̃i−jı̃

is trivial for all ı̃, ̃, k̃ ∈ Zp and all z̃ ∈ s(1×N) if and only if i, j ∈ pcZp

for c <∞ and i = j = 0 for c =∞. Hence

(13) Z(P ) = 〈αpc , βpc , γ, s(1×N)〉

if we put gp
c

:= 1 for c = ∞ and g ∈ P . We will later use the facts
that [P, P ] ⊂ Z(P ), and that (P : Z(P )) <∞ if and only if c <∞.

Now, we get

Un = 〈α, βpmin{n,c}
, γ, s(1×N)〉.

We set U∞ :=
⋂
n Un = 〈α, βpc , γ, s(1×N)〉.

Lemma 3.2. The group Un is an open normal subgroup of P , Vn is
a closed subgroup of kerω and a normal subgroup of Un and Un/Vn
is commutative. Hence the definition I := I(P ) := {(Un, Vn)}n∈c is
consistent with the notation in the previous chapter.

Proof. Um is an open normal subgroup of Un for n ≤ m, since
gUmg

−1 ⊂ Um for every generator g of Um. For m,n ∈ c, we get that

Un/Um ∼= (Un/U∞)/(Um/U∞) ∼= 〈βp
n〉/〈βpm〉

is a finite cyclic group of order pn−m (since ord(β) ≥ ord(γ)), generated
by the image of βp

n
. In particular, Un is an open subgroup of U0 = P ,

and we have the identity

G/Un ∼= 〈β〉/〈βp
n〉 ∼= Z/pnZ.
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Since Zp is commutative, we get Vn = [Un, Un] ⊂ kerω. The fact that
Vn is a normal subgroup of Un and that Un/Vn is commutative follow
directly from the definition of Vn. �

Remark. For n ∈ c,

Un/Vn = 〈α, βpn , γ, s(1×N)〉/〈γpn〉.

Hence there is a surjection

Z2
p × (Z/pnZ)× s(1×N)→→Un/Vn.

The kernel of this map depends on s.

Lemma 3.3. Assume that Leopoldt’s conjecture is true for F and that
G = G(F∞|F ) with the surjection G→→Γ satisfies assumption 3.1. Then
G is of dimension 1 as a p-adic Lie group.

Proof. Since F is totally real, Leopoldt’s conjecture implies

(14) dimGab = 1.

Since Gab = G/〈γ〉, it suffices to show that γ is of finite order. By
equation (14), the homomorphism

Z2
p → Gab, (m,n) 7→ ᾱmβ̄n

is not injective. Let (m,n) be a non-trivial element of the kernel.
Without loss of generality, we may assume that m 6= 0. Since [G,G] ⊂
Z(G), the commutator map

[−,−] : G×G→ G

factors through Gab ×Gab and hence

1 = [αmβn, β] = γm ∈ G. �

2. The Additive Homomorphism τ

We start with some heuristics that lead us to the definition of the
additive version τ of θ. Let W be a finite p-group and assume that LW

is a homomorphism defined on

K1(Λ(W )) = Λ(W )×/[Λ(W )×,Λ(W )×],

with values in a quotient of Λ(W ), that generalises the usual logarithm
on Z×p . It seems natural that its codomain should be

Λ(W )/[Λ(W ),Λ(W )].
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If W is a p-adic Lie group, we demand that LW commutes with the
inverse limit functor. Let Zp[[Conj(W )]] be the Zp-module topologically
generated by the conjugacy classes of W . There are the isomorphisms

K1(Λ(W )) ∼= lim←−
U

Λ(W/U)×/[Λ(W/U)×,Λ(W/U)×]

Zp[[Conj(W )]] ∼= lim←−
U

Λ(W/U)/[Λ(W/U),Λ(W/U)],

where the limit is over all open normal subgroups U of W . Hence the
integral logarithm is of the following form:

LW : K1(Λ(W ))→ Zp[[Conj(W )]].

Let P be a group that satisfies assumption 3.1. We define the homo-
morphism

τ = (τn)n : Zp[[Conj(P )]]→ Ω ⊂
∏
n

Λ(Un/Vn)

in analogy to the homomorphism θ. More precisely, we define it to be
the composition of a trace map

TrP |Un : Zp[[Conj(P )]]→ Zp[[Conj(Un)]]

and a projection homomorphism

π : Zp[[Conj(Un)]]→ Zp[[Conj(Un/Vn)]] = Λ(Un/Vn).

We use the following construction to define a “localised version” of
Zp[[Conj(P )]] (note that Zp[[Conj(P )]] is not a ring): If the centre Z(P )
of P is an open subgroup of P , then Λ(P )S = Λ(P )S(Z(P )). In this case,
it is natural to define

Zp[[Conj(P )]]S := Λ(Z(P ))S ⊗Λ(Z(P )) Zp[[Conj(P )]].

We show that every object P of SZp can be written as an inverse limit

P = lim←−
W∈WP

P/W,

where WP is a set of normal subgroups of P such that P/W is a
quotient object of P with open centre for all W ∈WP . Hence we can
define

Zp[[Conj(P )]]∧S := lim←−
W∈WP

(
Zp[[Conj(P/W )]]S

)〈p〉
and

(Λ(P )S)∧ := lim←−
W∈WP

(Λ(P/W )S)〈p〉

for all P ∈ Ob(SZp), where −〈p〉 denotes the p-adic completion. Note

that the structure of (Λ(P )S)∧ was studied in [41]. We define

τS : Zp[[Conj(P )]]∧S → Ω̂S ⊂
∏
n

(Λ(Un/Vn)S)∧
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to be the homomorphism induced by the composition of a trace map
and a projection homomorphism.

Let R be a commutative ring. We start with the definition of the R-
module R[Conj(W )] for a group W . For σ ∈ W , we set class(σ) :=
classW (σ) := {νσν−1|ν ∈ W} and Conj(W ) = {class(σ)|σ ∈ W}. We
define

R[Conj(W )] :=
⊕

S∈Conj(W )

RS.

In general, the multiplication on W does not transfer to Conj(W ).
(Assume σ, τ ∈ W , σ 6= τ , class(σ) = class(τ). Then class(στ−1) 6=
class(ττ−1) = {1}.) However, the map

Conj(W )→ Conj(W ), class(σ) 7→ class(σk)

is well-defined for any k ≥ 0: For σ, τ, ν ∈ W with σ = ντν−1, we have
σk = (ντν−1)k = ντ kν−1 and hence class(σk) = class(τ k). For k = p,
we define the induced R-linear map

ϕ : R[Conj(W )]→ R[Conj(W )], class(σ) 7→ class(σp).

Let W1 be a group and let W2 be a normal subgroup and W3 a quotient
group of W1. Let {νi}i∈I be a set of representatives of W1/W2 in W1.
We define the R-module homomorphism

TrW1|W2 : R[Conj(W1)]→ R[Conj(W2)],

classW1(σ) 7→
{ ∑

i∈I classW2(νiσν
−1
i ) if σ ∈ W2

0 if σ 6∈ W2.

This map is well-defined since for any two elements σ, τ ∈ W2 that are
conjugate in W1, there is i ∈ I such that we get the identity

classW2(σ) = classW2(νiτν
−1
i ).

The following R-module homomorphisms are clearly well-defined:

ι : R[Conj(W2)]→ R[Conj(W1)], classW2(σ) 7→ classW1(σ)

π : R[Conj(W1)]→ R[Conj(W3)], classW1(σ) 7→ classW3(σ̄)

pconj : R[W1]→→R[Conj(W1)], σ 7→ classW1(σ)

Lemma 3.4. Let W be a group. Then pconj induces the isomorphism

R[W ]W = R[W ]/[R[W ], R[W ]] ∼= R[Conj(W )]

of R-modules, where [−,−] is the commutator R-algebra. For a monoid
W , we have

〈gh− hg|g, h ∈ W 〉R = [R[W ], R[W ]].
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Proof. In a first step, we show that

T := 〈g − νgν−1|g, ν ∈ W 〉R = ker pconj

for a group W . Then inclusion “⊂” is obvious. Let

x =
n∑
i=1

xigi ∈ ker pconj

with xi ∈ R, gi ∈ class(g) for all i and some fixed g ∈ W . For n = 1,
trivially x = 0 ∈ T . If n > 1, we assume that we have already proven
it for n− 1. Then

x− xn(gn − gn−1) =
n−2∑
i=1

xigi + (xn−1 − xn)gn−1 ∈ T,

by hypothesis. Hence x ∈ T .

In a second step, we show that

〈gh− hg|g, h ∈ W 〉R = [R[W ], R[W ]].

for a monoid W. The inclusion “⊂” is obvious. For a generating element
of the module on the right hand side, we have(∑
g∈W

agg

)(∑
h∈W

bhh

)
−

(∑
h∈W

bhh

)(∑
g∈W

agg

)
=
∑
g,h∈W

agbh(gh−hg),

where ag, bh ∈ R, and ag = 0, bh = 0 for almost all g, h ∈ W . This is
an element of the module on the left hand side.

Since gh − hg = gh − h(gh)h−1, we have shown that ker pconj =
[R[W ], R[W ]] for a group W and this proves the lemma. �

Let W be a profinite group and let R be a commutative ring. Let
{Wλ}λ be the set of open normal subgroups of W . For Wλ1 ⊂ Wλ2 we
have a natural map

R[Conj(W/Wλ1)]→ R[Conj(W/Wλ2)],

classW/Wλ1
(σ) 7→ classW/Wλ2

(σ).

With respect to these maps, we can define the R-module

R[[Conj(W )]] := lim←−
λ

R[Conj(W/Wλ)].

We set classW (σ) :=
(
classW/Wλ

(σ)
)
λ
∈ R[[Conj(W )]].

Let W1 be a profinite group and let W2 be an open normal subgroup
and W3 a quotient group of W1. Let {νi}i be a set of representatives of
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W1/W2 in W1. The following homomorphisms of R-modules are clearly
well-defined:

ϕ : R[[Conj(W1)]]→ R[[Conj(W1)]], classW1(σ) 7→ classW1(σp)

TrW1|W2 : R[[Conj(W1)]]→ R[[Conj(W2)]],

classW1(σ) 7→
{ ∑

i classW2(νiσν
−1
i ) if σ ∈ W2

0 if σ 6∈ W2

ι : R[[Conj(W2)]]→ R[[Conj(W1)]], classW2(σ) 7→ classW1(σ)

π : R[[Conj(W1)]]→ R[[Conj(W3)]], classW1(σ) 7→ classW3(σ̄)

We get the following homomorphism from the map pconj defined above
by passing to the inverse limit:

pconj : Λ(W )→→Zp[[Conj(W )]]

Lemma 3.5. Let W be a profinite group. Then pconj induces the iso-
morphism

Λ(W )/[Λ(W ),Λ(W )] ∼= Zp[[Conj(W )]]

of Zp-modules, where [−,−] is the commutator Zp-algebra.

Proof. Let {Wλ}λ be the set of all open normal subgroups of W .
Since the inverse limit functor is left exact, we get

ker
(

Λ(W )→ Zp[[Conj(W )]]
)

= lim←−
λ

ker
(
Zp[W/Wλ]→ Zp[Conj(W/Wλ)]

)
.

Now lemma 3.4 implies

ker
(
Zp[W/Wλ]→ Zp[Conj(W/Wλ)]

)
∼= [Zp[W/Wλ],Zp[W/Wλ]]

Let πλ : Λ(W )→ Zp[W/Wλ] be the natural projection. Then

[Zp[W/Wλ],Zp[W/Wλ]] = πλ

(
[Λ(W ),Λ(W )]

)
.

By [36, corollary 1.1.8],

lim←−
λ

πλ

(
[Λ(W ),Λ(W )]

)
= [Λ(W ),Λ(W )].

Hence

ker
(

Λ(W )→ Zp[[Conj(W )]]
)
∼= [Λ(W ),Λ(W )]. �

Lemma 3.6. [Λ(W ),Λ(W )] ⊂ Λ(W ) is a closed subgroup if (W :
Z(W )) < ∞. (In particular, this is the case for groups P that sat-
isfy assumption 3.1 and for which ord(γ) <∞.)
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Proof. Put n := (W : Z(W )) and let {wi}i=1,...,n be a set of
representatives of W/Z(W ) in W . We define

ψ : Λ(Z(W ))n
2 → Λ(W ), (λi,j)i,j=1,...,n 7→

∑
1≤i,j≤n

λi,j[wi, wj].

Then imψ = [Λ(W ),Λ(W )]. Since Λ(Z(W ))n
2

is compact and since
ψ is continuous, imψ is compact and hence closed as a subgroup of
Λ(W ). �

Let W be a profinite group. We endow Λ(W ) with the W -module
structure defined by g · x := gxg−1 for g ∈ W and x ∈ Λ(W ). We
define the continuous homology groups by

Hn(W,Λ(W )) := lim←−
U≤oW

Hn(W/U,Λ(W/U))

(cf. [33, prop. 1.2.5, thm. 2.6.9, ch. II §7]). Then

H0(W,Λ(W )) = lim←−
U≤oW

Λ(W/U)/[Λ(W/U),Λ(W/U)] = Zp[[Conj(W )]].

The following lemma will elucidate the Λ(Z(P ))-module structure of
Zp[[Conj(P )]].

Lemma 3.7. Let W be a p-adic Lie group. Then Zp[[Conj(W )]] is a
Λ(Z(W ))-module. There is a surjective homomorphism

Λ(Z(W ))[[W/Z(W )]]→ Zp[[Conj(W )]]

of Λ(Z(W ))-modules.

Let P be a group that satisfies assumption 3.1. For g ∈ P , let

Λ(Z(P ))classP (g) ⊂ Zp[[Conj(P )]]

be the Λ(Z(P ))-module generated by classP (g). If P/Z(P ) is finite,
then

(15) Zp[[Conj(P )]] ∼=
⊕

ḡ∈P/Z(P )

Λ(Z(P ))classP (g).

Proof. The Λ(Z(P ))-module is defined by

z · classW (g) = classW (zg) for z ∈ Z(W ) and g ∈ W.
(This is clearly unambiguous.) Let

s : W/Z(W )→ W

be a continuous section of the natural projection W→→W/Z(W ) of
topological spaces. We can define

f : Λ(Z(W ))[[W/Z(W )]]→ Zp[[Conj(W )]],

z · g 7→ classW (z · s(g)),
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where z ∈ Z(W ) and g ∈ W/Z(W ). This is obviously a surjective
Λ(Z(W ))-homomorphism.

Now, we prove the isomorphism (15). For g ∈ P , define

Z(P )classP (g) := {classP (zg)|z ∈ Z(P )} ⊂ Conj(P ).

Since [P, P ] ⊂ Z(P ), we can write Conj(P ) as a disjoint union

Conj(P ) = ·
⋃

ḡ∈P/Z(P )

Z(P )classP (g)

of compact subsets. Since P/Z(P ) is assumed to be finite, this implies
(15). �

Lemma 3.8. Let P be a compact p-adic Lie group with a surjection
ω : P→→Zp. Let WP be the set of all closed normal subgroups W of P
that are open subgroups of H := kerω. Then (P/W )W∈WP

is a directed
system and

P = lim←−
W∈WP

P/W.

In other words, every object of SZp is a projective limit of quotient
objects with open centre.

Proof. Since H ∈WP , we get WP 6= ∅. For two groups W1,W2 ∈
WP , we get W1 ∩W2 ∈WP . Hence it suffices to show that⋂

W∈WP

W = {1} and(16)

For n ∈ N, put Nn :=
⋂

[H:U ]=n U if there is a subgroup U of H with

[H : U ] = n and set Nn := H otherwise. Then Nn is a normal subgroup
of P and a closed subgroup of H. We show that Nn ⊂ H is an open
subgroup. Since H contains a pro-p open subgroup, we may assume
that H is a pro-p group and n is a power of p. Since subgroups U of H
with [H : U ] = p are maximal, the Frattini group Φ(H) is contained in
Np and hence (since Φ(H) is an open subgroup of H by [13, proposition
1.14])

[H : Np] ≤ [H : Φ(H)] <∞.
(The Frattini subgroup of a group is defined to be the intersection of its
maximal proper subgroups.) Now assume that Npn is an open subgroup
of H for some n ≥ 1. Every subgroup U of H with [H : U ] = pn+1 is
contained in a subgroup U ′ of H with [H : U ′] = pn. Then Φ(U ′) ⊂ U .
Hence we get

Npn+1 =
⋂

[H:U ]=pn+1

U ⊃
⋂

[H:U ′]=pn

Φ(U ′).

Since, by hypothesis, H/Npn is finite, there are only finitely many sub-
groups U ′ ⊂ H of index pn. Since Φ(U ′) is an open subgroup of H
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for every open subgroup U ′ of H, the intersection
⋂

[H:U ′]=pn Φ(U ′) is a
finite intersection of open subgroups of H. Hence Npn+1 ⊂ H is open.

Since ⋂
W∈WP

W ⊂
⋂
n∈N

Nn =
⋂

U≤oH

U = {1},

we have proven equation (16). �

Definition 3.9. Let L be a Zp-module. We define the p-adic comple-
tion

L〈p〉 := lim←−
n

L/pnL.

Let V be a cofinite subset of WP . Let C be a map that assigns to
every group V ∈ V an open subgroup C(V ) ⊂ Z(P/V ). Assume that
for V1 ⊂ V2, the image of C(V1) in P/V2 is a subgroup of C(V2). Let
CV1,V2 be the group of all elements of P whose image in P/Vi lies in
C(Vi) for i = 1, 2 and let CV be the set of all elements of P whose
image in P/V lies in C(V ) for all V ∈ V. Let MC,V be the category
whose objects are the projective systems (MV )V ∈V of abelian groups
such that MV carries a Λ(C(V ))-module structure and for V1 ⊂ V2, the
transition map MV1 → MV2 is Λ(CV1,V2)-linear. The set of morphisms
from (MV )V to (NV )V is defined to be the set of tuples

(fV : MV → NV )V ∈V ,

where fV is a Λ(C(V ))-linear map for all V ∈ V and the diagram

MV1

fV1 //

��

NV1

��
MV2

fV2 // NV2

is a commutative diagram of Λ(CV1,V2)-modules for all V1, V2 ∈ V with
V1 ⊂ V2.

Definition 3.10. Let P ∈ SZp be a group whose centre is an open
subgroup of P . Let M be a Λ(Z(P ))-module. We define

MS := Λ(Z(P ))S ⊗Λ(Z(P )) M.

For general P ∈ SZp and V ⊂WP , C as above, we define the functors

(−)∧ :MC,V → Λ(CV)-mod and

(−)∧S :MC,V → Λ(CV)-mod
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as follows: Let M = (MV )V ∈V be an object of MC,V. We put

(M)∧ := lim←−
V ∈V

(MV )〈p〉

(M)∧S := lim←−
V ∈V

(MV )
〈p〉
S = lim←−

V ∈V

(
Λ(C(V ))S ⊗Λ(C(V )) MV

)〈p〉
Let f : M → N be a morphism of the category MC,V. The homomor-
phisms

fV : MV → NV , V ∈ V

induce the homomorphisms

(MV )〈p〉 → (NV )〈p〉 and (MV )
〈p〉
S → (NV )

〈p〉
S .

Since (−)∧ ((−)∧S , respectively) is the composition of lim←−V ∈V
and (−)〈p〉

(lim←−V ∈V
and (−)〈p〉, respectively), f naturally induces the homomor-

phisms

(f)∧ : M∧ → N∧ and (f)∧S : M∧
S → N∧S .

Thus we have defined the functors (−)∧ and (−)∧S .

Remarks. • The group CV and the Λ(CV)-modules (M)∧ and
(M)∧S do not depend on the cofinal subset V of WP .
• We will apply the above definition to the objects

Λ(P ) :=
(

Λ(P/W )
)
W∈WP

,

Zp[[Conj(P )]] :=
(
Zp[[Conj(P/W )]]

)
W∈WP

,

Qp[[Conj(P )]] :=
(
Qp[[Conj(P/W )]]

)
W∈WP

of MC,WP
, where C(W ) := Z(P/W ) for W ∈ WP . (We use

the same notation for the projective system and the corre-
sponding projective limit.) For groups P ∈ SZp with open
centre, we get

Zp[[Conj(P )]]S = Λ(Z(P ))S ⊗Λ(Z(P )) Zp[[Conj(P )]]

Qp[[Conj(P )]]S = Λ(Z(P ))S ⊗Λ(Z(P )) Qp[[Conj(P )]]

and for general P ∈ SZp ,

Λ̂(P )S = lim←−
W∈WP

(Λ(P/W )S)〈p〉

Zp[[Conj(P )]]∧S = lim←−
W∈WP

(
Zp[[Conj(P/W )]]S

)〈p〉
.

Since the p-adic completion of a Qp-module is always trivial, we need
the following
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Definition 3.11. Let P ∈ SZp be a p-adic Lie group. We define

Q′p[[Conj(P )]]
∧
S

:= lim←−
W∈WP

((
Zp[[Conj(P/W )]]S

)〈p〉 ⊗Zp Qp

)
Q′p[[P ]]∧S := lim←−

W∈WP

(
(Zp[[P/W ]]S)〈p〉 ⊗Zp Qp

)
Lemma 3.12 ([41, lemma 3.4]). There is an isomorphism

Λ̂(P )S
∼= lim←−

n

Λ(P )S/J(Λ(P )S)n.

Corollary 3.13. The natural homomorphisms

Λ(P )S ↪→ (Λ(P )S)〈p〉 and Λ(P )S ↪→ Λ̂(P )S

are injective.

Proof. This follows from the fact that Λ(P )S is Noetherian by
proposition 2.7 and hence⋂

n

pnΛ(P )S ⊂
⋂
n

J(Λ(P )S)n = {0}. �

Remark. In general, Λ(P )S $ (Λ(P )S)〈p〉 $ Λ̂(P )S. For example,
when P ∼= Z2

p and ω : Z2
p → Zp is the projection to the second factor,

we may identify Λ(P ) = Zp[[T1, T2]] and get

S = Zp[[T1, T2]] \ (p, T1)

(cf. lemma 2.3). Hence∑
i≥0

(
T1

T2

)i
∈ Λ̂(P )S \ (Λ(P )S)〈p〉 ,

∑
i≥0

(
p

T2

)i
∈ (Λ(P )S)〈p〉 \ Λ(P )S.

When P is one-dimensional, it suffices to work with the p-adic comple-
tion (cf. [24], [21]).

Lemma 3.14. The ring Λ̂(P )S is semi-local. In particular, when P is
one-dimensional,

(Λ(P )S)〈p〉 = Λ̂(P )S

is semi-local.

Proof. By [40] and [41, thm. 3.7, prop. 2.26, lem. 1.11],

J(Λ̂(P )S) = J(Λ(P )S)Λ̂(P )S.
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Hence, using lemma 3.12, we get

Λ(P )S/J(Λ(P )S) =
(

Λ(P )S/J(Λ(P )S)
)
⊗Λ(P )S

Λ̂(P )S

= Λ̂(P )S/
(
J(Λ(P )S)Λ̂(P )S

)
= Λ̂(P )S/J(Λ̂(P )S).

Since Λ(P )S is semi-local, this implies that Λ̂(P )S is semi-local. �

Lemma 3.15.

Λ̂(P )S = lim←−
W∈WP

(
Λ(P/W )S(Z(P/W ))

)〈p〉
Proof. By definition,

Λ̂(P )S = lim←−
W∈WP

(
Λ(P/W )S(P/W )

)〈p〉
.

By proposition 2.10,

Λ(P/W )S(P/W ) = Λ(P/W )S(Z(P/W ))

for W ∈WP . �

Lemma 3.16. We will now apply definition 3.10 to the object

M :=
(

Λ(P/W )S/[Λ(P/W )S,Λ(P/W )S]
)
W∈WP

.

of MC,WP
, where C(W ) = Z(P/W ). There is an isomorphism

Zp[[Conj(P )]]∧S
∼= (Λ(P )S/[Λ(P )S,Λ(P )S])∧ := M∧

of Λ(Z(P ))-modules. If the centre of P is open, then we get the iso-
morphism

Zp[[Conj(P )]]S
∼= Λ(P )S/[Λ(P )S,Λ(P )S]

Proof. Using lemma 3.5, lemma 3.6 and the fact that Λ(Z(P ))S
is a flat Λ(Z(P ))-module, we see that it suffices to show

(17) Λ(Z(P ))S ⊗Λ(Z(P )) [Λ(P ),Λ(P )] ∼= [Λ(P )S,Λ(P )S]

for groups P , where Z(P ) ⊂ P is open.

Let s−1 ⊗ [a, b], a, b ∈ Λ(P ) and s ∈ S(Z(P )) be a generating element
of the module on left hand side. We define [as−1, b] to be its image
in [Λ(P )S(P ),Λ(P )S(P )]. By proposition 2.10, the module on the right
hand side is generated by elements of the form [as−1, bt−1] with a, b ∈
Λ(P ), s, t ∈ S(Z(P )). We define (st)−1 ⊗ [a, b] to be its image in the
module on the left hand side. We defined two maps that are the inverse
of each other. Hence, they are isomorphisms. �
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Let P ∈ SZp be a p-adic Lie group, let U ⊂ P be an open normal
subgroup of P and let V be a normal subgroup of ker(P → Zp). The
trace and projection homomorphisms

TrP |U : Zp[[Conj(P/W )]]→ Zp[[Conj(U/W )]] and

π : Zp[[Conj(U/W )]]→ Zp[[Conj(U/VW )]],

where W ∈WP ∩WU , induce the morphisms

TrP |U :
(
Zp[[Conj(P/W )]]

)
W∈WP∩WU

→
(
Zp[[Conj(U/W )]]

)
W∈WP∩WU

π :
(
Zp[[Conj(U/W )]]

)
W∈WU

→
(
Zp[[Conj(U/VW )]]

)
W∈WU

in MC1,WP∩WU
and MC2,WU

, respectively, where C1(W ) = Z(P/W ) ∩
Z(U/W ) and C2(W ) = Z(P/W ) for W ∈ WP ∩WU . By definition
3.10, they induce the homomorphisms(

TrP |U
)∧
S

: Zp[[Conj(P )]]∧S → Zp[[Conj(U)]]∧S and

(π)∧S : Zp[[Conj(U)]]∧S → Zp[[Conj(U/V )]]∧S

of Λ
(
Z(P ) ∩ Z(U)

)
-modules and Λ(Z(U))-modules, respectively. A

similar statement for (−)∧ also holds. The fact that these maps are
well-defined follows from the following lemma:

Lemma 3.17. Let U be an open normal subgroup of P . Then WP ∩WU

is cofinal in WP and in WU . In particular,

(18) (M(P ))∧S = (N(P ))∧S and (M(U))∧S = (N(U))∧S ,

where

M(U ′) :=
(
Zp[[Conj(U ′/W )]]

)
W∈WU′

∈ Ob
(
MC′,WU′

)
N(U ′) :=

(
Zp[[Conj(U ′/W )]]

)
W∈WP∩WU

∈ Ob (MC1,WP∩WU
)

for U ′ = U or U ′ = P , C ′(W ) = Z(U ′/W ) and C1(W ) = Z(P/W ) ∩
Z(U/W ).

Proof. Let W be an element of WP . Then W ∩ U is a normal
subgroup of P and of U and an open subgroup of ker(P→→Zp) and of
ker(U→→Zp). Hence W ∩ U ∈WP ∩WU . Thus WP ∩WU is cofinal in
WP .

Let W ∈ WU and set V :=
⋂
σ∈P W

σ, where W σ := {σgσ−1|g ∈ W}.
Since W is normal in U , V is a finite intersection of open subgroups
of ker(U→→Zp). Clearly, it is a normal subgroup of U and of P . Hence
V ∈WP ∩WU . Thus WP ∩WU is cofinal in WU .

The equations (18) follow from proposition 2.9. �
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Definition 3.18. Let P ∈ SZp be a group that satisfies assumption
3.1. For n ∈ c, the homomorphism

τn : Zp[[Conj(P )]]→ Λ(Un/Vn)

is defined to be the composition of the two maps

TrP |Un : Zp[[Conj(P )]]→ Zp[[Conj(Un)]] and

π : Zp[[Conj(Un)]]→ Λ(Un/Vn).

The homomorphism

τn,S : Zp[[Conj(P )]]∧S → Λ(Un/Vn)∧S

is defined to be the composition of the two maps(
TrP |Un

)∧
S

: Zp[[Conj(P )]]∧S → Zp[[Conj(Un)]]∧S and

(π)∧S : Zp[[Conj(Un)]]∧S → Λ(Un/Vn)∧S .

We define the homomorphisms

τ : Zp[[Conj(P )]]→
∏
n∈c

Λ(Un/Vn), x 7→ (τn(x))n,

τS : Zp[[Conj(P )]]∧S →
∏
n∈c

Λ(Un/Vn)∧S , x 7→ (τn,S(x))n,

of Λ(Z(P ))-modules. (Recall that Z(P ) =
⋂
n∈c Z(Un) since Z(P ) ⊂

Un for all n ∈ c.)

Remarks. • For W ∈ WP , let cP/W be the natural number
defined by the relation ord(γ̄) = pcP/W , where γ̄ is the image
of γ in P/W . Since W ⊂ Un for n ∈ cP/W , the homomorphism

τ induces a morphism

τ :
(
Zp[[Conj(P/W )]]

)
W∈WP

→

 ∏
n∈cP/W

Λ(Un/VnW )


W∈WP

in MC,WP
, where C(W ) = Z(P/W ) for W ∈WP . By defini-

tion 3.10, this induces the homomorphism

(τ)∧S : Zp[[Conj(P )]]∧S →
∏
n∈cP

Λ(Un/Vn)∧S

of Λ(Z(P ))-modules. This is just the homomorphism τS de-
fined above.
• If ord(γ) <∞, we can define the homomorphism

τS : Zp[[Conj(P )]]S →
∏
n

Λ(Un/Vn)S, z ⊗ x 7→ (pnz ⊗ τn(x))n,
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where z ∈ Λ(Z(P ))S and x ∈ Zp[[Conj(P )]] (since Z(P ) ⊂
U∞). In this case, τS is Λ(Z(P ))S-linear.

As mentioned above, we are interested in an explicit description of the
image of τ . We start with calculating the image of τn, n ∈ c. For
this purpose, we will need the definition of the following elements: For
i ∈ n, we set

hn,i =

pn−i−1∑
j=0

γp
ij ∈ Λ(Un/Vn).

For i, j ∈ Zp, n ∈ c, we set

cijn =

{
0 if n > vp(j)∑pn−1

t=0 γit if n ≤ vp(j)

}
∈ Λ(Un/Vn).

Let i, j ∈ Zp and s, t ∈ Z×p . The s-power map permutes the set

{1, γ, . . . , γpn−1} ⊂ Un/Vn. Then for n ≤ vp(j) = vp(jt),

cijn =

pn−1∑
r=0

γir =

pn−1∑
r=0

γirs = cis,jt,n.

For n > vp(j), clearly cijn = 0 = cis,jt,n. Hence

(19) cijn = cis,jt,n

for all n ∈ N.

For 0 ≤ k ≤ n, n ∈ c, put Un,k := 〈Z(P ), αp
k
, βp

n〉. Note that we have
a descending chain of subgroups Un = Un,0 ⊃ Un,1 ⊃ . . . ⊃ Un,n, where
each subgroup is normal in P . By (13), Un,n/Vn = Z(P/Vn).

Lemma 3.19. The image of τn, n ∈ c is

In := 〈pihn,ig|i ∈ n, g ∈ Un,i/Vn, g 6∈ Un,i+1/Vn if i < n〉Λ(Un,n/Vn),

the Λ(Un,n/Vn)-submodule of Λ(Un/Vn) generated by the elements pihn,ig
mentioned above. The image of τn,S is

In,S := 〈pihn,ig|i ∈ n, g ∈ Un,i/Vn, g 6∈ Un,i+1/Vn if i < n〉Λ(Un,n/Vn)S

= (In)S(Un/Vn) ⊂ Λ(Un/Vn)S.

Proof. Clearly, is suffices to determine the image of τn. Since
im τ0 = Λ(U0/V0) = I0, we may assume n ≥ 1.

By lemma 3.7, the image of P/Z(P ) in Conj(P ) topologically generates
the Λ(Z(P ))-module Zp[[Conj(P )]]. If we write ᾱ, β̄ for the images of
α, β in P/Z(P ), respectively, we get

P/Z(P ) = {ᾱiβ̄j|i, j ∈ Zp}.
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Since αp
n
, βp

n ∈ Z(P/Vn) = Un,n/Vn, this implies

im τn = 〈τn(class(αiβj))|i, j ∈ Zp〉Λ(Z(P/Vn))

= 〈τn(class(αiβj))|i, j = 0, . . . , pn − 1〉Λ(Un,n/Vn).
(20)

Note that we have found a finite generating set of the (abstract)
Λ(Z(Un,n/Vn))-vector space im τn.

Using (19), we get for 0 ≤ i < pn

τn(class(αi)) =

pn−1∑
k=0

βkαiβ−k =

pn−1∑
k=0

αiγ−ik = c−i0nα
i = ci0nα

i.

For 0 ≤ i < pn and 0 < j < pn (i. e. βj 6∈ Un), we get

τn(class(αiβj)) = 0 = cijnα
iβj.

Hence

im τn = 〈cijnαiβj|i, j = 0, . . . , pn − 1〉Λ(Un,n/Vn)

= 〈pvp(i)hn,vp(i)α
i|i = 0, . . . , pn − 1〉Λ(Un,n/Vn).

Since αi ∈ Un,vp(i) and αi 6∈ Un,vp(i)+1 for vp(i) < n, we get im τn ⊂ In.
Since Un,vp(i) = 〈αi, Un,n〉, this inclusion is an identity. �

We have seen that im τ ⊂
∏

n∈c In. We will use the trace homomor-

phism defined in definition 1.27 for the description of im τ as a subset
of
∏

n∈c In.

Let W2 be an open subgroup of the profinite group W1. Then there is
a trace homomorphism

Tr = TrW1|W2 : Λ(W1)→ Λ(W2).

Equation (5) clearly implies the following

Lemma 3.20. For m ≤ n, m,n ∈ c,

Zp[[Conj(P )]]
TrP |Un //

π

��

Zp[[Conj(Un)]]

π

��
Zp[[Conj(P/Vm)]]

Tr // Λ(Un/Vm)

is a commutative diagram of Λ(Z(P ))-modules (i. e. τn = Tr ◦ π). �

We make the following observation:

Lemma 3.21. For m,n ∈ c, m ≤ n, let

Trm,n = Tr : Λ(Um/Vm)→ Λ(Un/Vm)

Trm,n,S = (Tr)S : Λ(Um/Vm)S → Λ(Un/Vm)S
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be the trace homomorphisms and

pn,m = p∗ : Λ(Un/Vn)→ Λ(Un/Vm)

pn,m,S = (p∗)S : Λ(Un/Vn)S → Λ(Un/Vm)S

be the projection homomorphisms.

We define the Λ(Z(P ))-modules

Ω := ΩP :=

(xn) ∈
∏
n∈c

In

∣∣∣∣∣∣ Trm,n(xm) = pn,m(xn)
for m ≤ n


ΩS := ΩP,S :=

(xn) ∈
∏
n∈c

In,S

∣∣∣∣∣∣ Trm,n,S(xm) = pn,m,S(xn)
for m ≤ n


Assume that γ is of finite order ord(γ) = pc. Then

im τ ⊂ Ω and im τS ⊂ ΩS.

Proof. Clearly, it suffices to prove the inclusion im τ ⊂ Ω.

Let m,n ∈ c with m ≤ n. The maps Trm,n and pn,m are Λ(Z(P ))-
linear. By (20), it suffices to prove the claim for the generating set
{τ(class(αiβj))|i, j = 0, . . . , pc − 1} of the Λ(Z(P ))-module im τ .

If n ≤ vp(j), we calculate

Trm,n(cijmα
iβj) =

pn−m−1∑
t=0

βp
mt

(
pm−1∑
k=0

γikαiβj

)
β−p

mt

=

pn−m−1∑
t=0

pm−1∑
k=0

αiβjγik−p
mti

= pn−mcijmα
iβj (note: γp

m

= 1)

and

pn,m(cijnα
iβj) =

pn−1∑
k=0

γikαiβj = pn−m
pm−1∑
k=0

γikαiβj

= pn−mcijmα
iβj.

If vp(j) < n, we have

Trm,n(cijmα
iβj) = 0 and

pn,m(cijnα
iβj) = pn,m(0) = 0.

Hence Trm,n(cijmα
iβj) = pn,m(cijnα

iβj) in both cases. �
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Lemma 3.22. The elements

classP (αiβj) ∈ Zp[[Conj(P )]] and ci,j,vp(j) ∈ Λ(Uvp(j)/Vvp(j))

for i, j ∈ N have identical Λ(Z(P ))-annihilators:

AnnΛ(Z(P ))(classP (αiβj)) = AnnΛ(Z(P ))(ci,j,vp(j))

Proof. Put x := classP (αiβj), Z := Z(P ) and let

Σ = {z ∈ Z|zx = x}

be the stabiliser of x in Z. There is an exact sequence of Λ(Z)-modules

0→ AnnΛ(Z)(x)→ Λ(Z)
f−→ Zp[[Conj(P )]],

where f is given by f(z) = zx for z ∈ Z. Clearly, f factors through

Λ(Z/Σ)→ Zp[[Conj(P )]].

This map is injective since Z/Σ ↪→ Conj(P ), z 7→ zx is injective. Hence

AnnΛ(Z)(x) = ker(Λ(Z)→ Λ(Z/Σ)) = I(Σ)Λ(Z).

Since

Σ = {[αiβj, g]|g ∈ P} = Vmin{vp(i),vp(j)},

we get AnnΛ(Z)(x) = I(Vmin{vp(i),vp(j)})Λ(Z).

We will now determine AnnΛ(Z)(ci,j,vp(j)). If vp(i) ≥ vp(j), we get

ci,j,vp(j) = pvp(j) and hence

AnnΛ(Z)(ci,j,vp(j)) = I(Vvp(j))Λ(Z) = AnnΛ(Z)(x).

Thus we may assume vp(i) < vp(j). Put

c̃ :=
1

#Vvp(i)/Vvp(j)

∑
g∈Vvp(i)/Vvp(j)

g ∈ Λ(Uvp(j)/Vvp(j)).

Then c̃ = p−vp(j)ci,j,vp(j) is an idempotent with

AnnΛ(Z)(c̃) = AnnΛ(Z)(ci,j,vp(j)).

Since x = c̃x+ (1− c̃)x for x ∈ Λ(Z), we get

AnnΛ(Z)(c̃) = (1− c̃)Λ(Z)

= I(Vvp(i))Λ(Z) = AnnΛ(Z)(x). �

Theorem 3.23. The homomorphism

τ : Zp[[Conj(P )]]→ Ω

is an isomorphism of Λ(Z(P ))-modules.
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Proof. We first have a quick look at the heuristics that lead us
to the definition of the inverse homomorphism. Let x ∈ Ω and assume
that we can write x = (cijnα

iβjzn)n with some elements zn ∈ Λ(Z(P ))
and i, j < pc. (Note that i, j are independent of n.) We want to find
z ∈ Λ(Z(P )) such that τ(αiβjz) = x. We believe that z = zn for suit-
able n will work. It seems reasonable to demand that classP (αiβjz) ∈
Zp[[Conj(P )]] and cijnα

iβjzn ∈ Λ(Un/Vn) have the same annihilators.
Since αiβj ∈ Λ(Un/Vn)× and hence

AnnΛ(Z(P ))(cijnα
iβj) = AnnΛ(Z(P ))(cijn),

this leads us to the following definition of a possible inverse map of τ :

τ ′ : Ω→ Zp[[Conj(P )]], (xn)n∈c 7→
∑
n∈c

τ ′n(xn),

where τ ′n is the Λ(Z(P ))-linear map

τ ′n : In → Zp[[Conj(P )]], cijnα
iβj 7→

{
classP (αiβj) if n = vp(j)
0 if n 6= vp(j)

with i, j ∈ {0, . . . , pc − 1}.

We first assume that γ is of finite order ord(γ) = pc. Then the Λ(Z(P ))-
module Zp[[Conj(P )]] is generated by

{αiβj|i, j = 0, . . . , pc − 1}
(cf. lemma 3.7). Clearly, τ ′ ◦ τ = idZp[[Conj(P )]] is the identity and hence
τ is injective. It suffices to show that τ ′ is injective.

Let x = (xn)n ∈ Ω be an element of the kernel of τ ′. We can write

xn =

pc−1∑
i,j=0

cijnα
iβjzijn,

with zijn ∈ Λ(Z(P )).

For 0 ≤ i, j ≤ pc, we have 0 ≤ vp(j) ≤ c and hence

0 = τ ′(x) =
c∑

n=0

τ ′n(xn) =
c∑

n=0

pc−1∑
i,j=0

τ ′n(cijnα
iβj)zijn

=

pc−1∑
i,j=0

class(αiβj)zi,j,vp(j)

By the direct sum decomposition of Zp[[Conj(P )]] (cf. (15) in lemma
3.7), we get class(αiβj)zi,j,vp(j) = 0 for all i, j ∈ {0, . . . , pc − 1}. By
lemma 3.22, this is equivalent to ci,j,vp(j)zi,j,vp(j) = 0.
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We need to show cijnzijn = 0 for all i, j ∈ {0, . . . , pc − 1} and n ∈ c.
For n > vp(j), clearly cijn = 0 and hence cijnzijn = 0.

For n ≤ k, we get from the calculation of Trn,k(xn) and pk,n(xk) in
lemma 3.21

pc−1∑
i,j=0
k≤vp(j)

pk−ncijnα
iβjzijn =

pc−1∑
i,j=0
k≤vp(j)

pk−ncijnα
iβjzijk

and hence

cijnzijn = cijnzijk ∈ Λ(Um/Vm)

for all i, j ∈ {0, . . . , pc − 1} with k ≤ vp(j).

That means we have for n ≤ vp(j)

cijnzijn = cijnzi,j,vp(j) = 0.

Thus we have shown that τ ′(x) = 0 implies x = 0.

Now assume that γ is of infinite order. Since
⋂
n∈c Vn = {1},

Zp[[Conj(P )]] ∼= lim←−
UEoP

Zp[[Conj(P/U)]] ∼= lim←−
n

Zp[[Conj(P/Vn)]].

In the next lemma, we will see that ΩP
∼= lim←−n ΩP/Vn . We have seen

above that

Zp[[Conj(P/Vn)]] ∼= ΩP/Vn

for any n ∈ N. Hence we get an isomorphism

Zp[[Conj(P )]] ∼= ΩP .

Since the other two isomorphisms are the natural ones, this isomor-
phism is the homomorphism τ . �

Lemma 3.24. The canonical map defines the isomorphism

ΩP
∼= lim←−

n∈c
ΩP/Vn

of Λ(Z(P ))-modules.

Proof. For any group W that satisfies assumption 3.1, let cW =

c ∈ N ∪∞ and Ii,W = τi

(
Zp[[Conj(W )]]

)
be the corresponding objects

defined above. We define IW :=
∏cW

i=0 Ii,W . Then Ii,P/Vn = Ii,P and
hence IP/Vn =

∏n
i=0 Ii,P for n ≤ c. Thus we get

IP ∼= lim←−
n

IP/Vn .
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We have the following commutative diagram with exact rows

0 // ΩP
//

��

IP //

o
��

∏
i≥j Λ(Ui/Vj)

o
��

0 // lim←−n ΩP/Vn
// lim←−n IP/Vn // lim←−n

∏
n≥i≥j Λ(Ui/Vj),

where the map IP →
∏

i≥j Λ(Ui/Vj) is given by

(xk)k 7→ (Trj,i(xj)− pi,j(xi))j,i.
Hence ΩP

∼= lim←−n∈c ΩP/Vn . �

Corollary 3.25. If we apply definition 3.10 to the objects

ΩP :=
(
ΩP/W

)
W∈WP

and ΩP,S :=
(
ΩP/W,S

)
W∈WP

,

ofMC,WP
, where C(W ) = Z(P/W ) for W ∈WP , we get the identities

(ΩP )∧S = lim←−
W∈WP

(
Λ(Z(P/W ))S ⊗Λ(Z(P/W )) ΩP/W

)〈p〉
(ΩP,S)∧ = lim←−

W∈WP

(
ΩP/W,S

)〈p〉
.

Then these two groups coincide. We denote it by Ω̂S. There is an
isomorphism

τS : Zp[[Conj(P )]]∧S → Ω̂S

of Λ(Z(P ))-modules.

Proof. If ord(γ) <∞, the identity

ΩP,S = Λ(Z(P ))S ⊗Λ(Z(P )) ΩP

follows from proposition 2.10. By passing to the p-adic completion, we
get

(ΩP )∧S = (ΩP,S)∧ .

This implies the first assertion. Since Zp[[Conj(P )]] ∼= ΩP by theorem
3.23, application of (−)∧S yields the second assertion. �

3. Construction of the Integral Logarithm

Let P be a pro-p p-adic Lie group. In this subsection, we will-define
the integral logarithm

LP : K1(Λ(P ))→ Zp[[Conj(P )]].

We start with the investigation of convergence properties of the ordi-
nary logarithm series log on Λ(P ). The homomorphism property will
follow from a general property of formal power series. We will compose
log with another homomorphism to get the integral logarithm LP .
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Assume that there is a surjective homomorphism ω : P→→Zp and put
S := S(P, ω). In this case, we will define a localised version

LP,S : K1(Λ̂(P )S)→ Zp[[Conj(P )]]∧S .

of LP . In general, the logarithm series does not converge onK1(Λ̂(P )S).
We will show that it suffices to define LP,S on Λ(P )× and Λ(Z(P/W ))×S
for all W ∈WP .

Lemma 3.26. Let W be a pro-p p-adic Lie group. Then

Λ(W )× = µp−1 × (1 + J),

where J := J(Λ(W )) denotes the Jacobson radical of Λ(W ) and µp−1 ⊂
Zp is the group of (p− 1)th roots of unity.

Proof. Clearly, µp−1 ⊂ Λ(W )×. Let ε : Λ(W ) → Zp be the
augmentation map. By [33, 5.2.16], Λ(W ) is a local ring with maximal
ideal

J = {x ∈ Λ(W )|ε(x) ∈ pZp}.
(This is not true for p-adic Lie groups that are not pro-p.) Thus,
Λ(W )/J ∼= Z/pZ and we have an exact sequence

1→ 1 + J → Λ(W )× → (Z/pZ)× → 1.

Since the image of µp−1 under the projection map is (Z/pZ)×, the
above sequence splits. Since µp−1 lies in the centre of Λ(W )×, the
lemma follows. �

Let W1 be a commutative profinite group. We recall the definition of

ϕ : Λ(W1)→ Λ(W1), σ 7→ σp.

Let W2 be a commutative p-adic Lie group with a surjection ω : W2 →
Zp. Since ϕ(W ) is an open subgroup of W , ϕ(S(W )) ⊂ S(W ). Hence
ϕ induces the homomorphism

ϕ : Λ(W )S → Λ(W )S.

Lemma 3.27. For x ∈ Λ(W1),

xp ≡ ϕ(x) mod pΛ(W1).

For y ∈ (Λ(W2)S)∧,

yp ≡ ϕ(y) mod p (Λ(W2)S)∧ .

Proof. We first assume that W1 is finite. We get

x̄p = ϕ(x̄) ∈ Fp[[W1]]

for the image x̄ of x in Fp[[W1]]. By taking inverse limits, we get the
general result for profinite groups.
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Note that the second statement is not trivial since S ∩ pΛ(W2)S = ∅.
Let a ∈ Λ(W2) and s ∈ S(W2). Then

ap ≡ ϕ(a) mod pΛ(W2) and sp ≡ ϕ(s) mod pΛ(W2).

Since

Λ(W2)S/pΛ(W2)S ∼= (Λ(W2)/pΛ(W2))S ,

this implies (a
s

)p
≡ ϕ

(a
s

)
mod pΛ(W2)S.

By passing to the inverse limit, the second assertion follows. �

Lemma 3.28. Let R1 = Λ(W1), where W1 is a p-adic Lie group and let

R2 = Λ̂(W2)S, where W2 is a pro-p p-adic Lie group with a surjection
ω : W2→→Zp. Put

R′1 := Qp[[W1]] or R′2 := Q′p[[W2]]S.

then the series

log(1− x) = −
∑
i≥1

xi

i
∈ R′i

converges for x ∈ Ji := J(Ri), i = 1, 2.

Proof. Fix i = 1 or i = 2. We first assume every element of Ji/pRi

is nilpotent. Hence for x ∈ Ji and n ∈ N, there is k ∈ N such that
xkn ∈ pnRi. Let b∗c be the largest integer ≤ ∗. Then xn ∈ pbn/kcRi and
xn

n
∈ 1

n
pbn/kcRi. But vp(

pbn/kc

n
) → ∞ for n → ∞ which proves xn

n
→ 0

for n→∞. (The above argument comes from [34, lemma 2.7].)

Clearly, the above assumption is satisfied for R1 = Λ(W1) when W1 is
a finite group. Let W2 be a one-dimensional p-adic Lie group with a

surjection ω : W2→→Zp and assume R2 = Λ̂(W2)S. By lemma 2.4,

Λ(W2)S/pΛ(W2)S = Q(Fp[[W2]]) =: Q.

Since every regular element of Fp[[W2]] becomes a unit in Q, every
element of J(Q) is a zero divisor. Since kerω is a finite p-group, there

is an integer k such that 〈gpk |g ∈ W2〉 ∼= Zp . Since [W2,W2] ⊂ kerω,
the pk-th power map defines a surjective homomorphism W→→Zp. By
corollary 2.6, we may define the ring homomorphism

ϕk : Q→ Q, g 7→ gp
k

for g ∈ W2.

This map induces a surjective ring homomorphism Q→→Q(Fp[[Zp]]).
Then ϕk(J(Q)) is isomorphic to a proper ideal of Q(Fp[[Zp]]). Since
Fp[[Zp]] is an integral domain, this implies ϕk(J(Q)) = 0. By lemma

3.27, ϕk(x) = xp
k

for x ∈ Q and hence R2 satisfies the above assump-
tion.
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Let U1 be the set of all open normal subgroups of W1 and let U2 be the
set of all open subgroups of kerω that are normal in W2. We get the
general case by passing to the inverse limits

lim←−
U∈U1

Λ(W1/U) = Λ(W1), lim←−
U∈U1

Qp[[W1/U ]] = Qp[[W1]],

lim←−
U∈U2

(Λ(W2/U)S)∧ = (Λ(W2)S)∧ , lim←−
U∈U2

Q′p[[W2/U ]]∧S = Q′p[[W2]]∧S .�

Let R be a commutative ring and let R〈〈X, Y 〉〉 be the ring of for-
mal noncommutative power series in two indeterminates. Let Wn ⊂
R〈〈X, Y 〉〉 be the set of formal (ordered) monomials of length n in two
variables X and Y . Define

δn : Wn → Wn, a1 . . . an 7→ ana1a2 · · · an−1 for ai ∈ {X, Y }.
For v, w ∈ Wn, we define the equivalence relation ∼ by setting v ∼ w
if there is a cyclic permutation that transforms v into w, i. e. if there
is l ∈ N such that δln(v) = w. We extend this relation linearly to
R〈〈X, Y 〉〉 as follows: Let W∗ :=

⋃
nWn and ϕ, ψ ∈ R〈〈X, Y 〉〉. Then

ϕ ∼ ψ if and only if there is a map λ : W∗ → W∗ with λ(w) ∼ w for
all w ∈ W∗ and

(21) ϕ− ψ =
∑
w∈W∗

aw(w − λ(w)).

Lemma 3.29. Let R be a commutative topological ring. Let S be a
topological R-algebra and let x, y ∈ S× be units. In case of convergence,
the evaluation homomorphism

R〈〈X, Y 〉〉/ ∼ → S/[S, S], X 7→ x, Y 7→ y

does not depend on the choice of representatives modulo ∼.

Proof. For ϕ, ψ ∈ R〈〈X, Y 〉〉 with ϕ ∼ ψ, we write ϕ − ψ as in
(21). For w ∈ W∗, we can obviously find ν ∈ W∗ such that λ(w)ν = νw.
Then ν(x, y) ∈ S× and

w(x, y)− λ(w)(x, y) = w(x, y)− ν(x, y)w(x, y)ν(x, y)−1 ∈ [S, S]

Hence ϕ(x, y)− ψ(x, y) ∈ [S, S]. �

We call a ring R divisible if R → R, x 7→ mx is surjective for all
m ∈ Z \ {0}.

Proposition 3.30. Let R be a divisible commutative topological ring
and define the power series log(1 + T ) ∈ R[[T ]] by

log(1 + T ) =
∑
i≥1

(−1)i−1

i
T i.



82 3. K1 OF CERTAIN NONCOMMUTATIVE IWASAWA ALGEBRAS

Then, in R〈〈X, Y 〉〉, we have the relation

log[(1 +X)(1 + Y )] ∼ log(1 +X) + log(1 + Y ).

Proof. We use the argument given in [34, lemma 2.7] to prove
our (more general) proposition.

For w ∈ Wn, let k(w) be the number of occurrences of XY in w. Let
r(w) be defined by the relation

(22) log(1 +X + Y +XY ) =
∑
w∈W∗

r(w)w.

Let rj(w) be defined by the relation (X +Y +XY )j =
∑

w∈W∗ rj(w)w.

Any summand w ∈ Wn of (X + Y + XY )j has exactly n − j factors
coming from the XY -summand and 2j−n factors coming from the X-
or Y -summands of X + Y +XY . As there are

(
k(w)
n−j

)
ways of choosing

n − j out of the k(w) occurrences of XY in w (and hence expressing

w in the above form), we see that rj(w) =
(
k(w)
n−j

)
. Clearly,

(23) r(w) =
∞∑
j=1

(−1)j−1

j
rj(w) =

k(w)∑
j=0

(−1)n−j−1

n− j

(
k(w)

j

)
.

For C ∈ Wn/ ∼, we define t, k ∈ N by

#C =
n

t
and k = max{k(w)|w ∈ C}.

Since Z/nZ ∼= {δln|l ∈ Z} operates transitively on C, we get by the
orbit-stabiliser theorem that t is the cardinality of the stabiliser of any
element of C. (In particular t = n

#C
∈ N.) If w ∈ C with k(w) = k,

then we have a t-to-one correspondence of occurrences of (XY )′s in w
and elements Y · · ·X ∈ C with k(Y · · ·X) = k − 1. Hence

#{w ∈ C|k(w) = k − 1} =
k

t
and

#{w ∈ C|k(w) = k} = #C − k

t
=
n− k
t

.
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Using (23), we get for any C ∈ Wn/ ∼∑
w∈C

r(w) =
k∑
j=0

(−1)n−j−1

n− j

[
k

t

(
k − 1

j

)
+
n− k
t

(
k

j

)]

=
k∑
j=0

(−1)n−j−1

n− j

[
k − j
t

(
k

j

)
+
n− k
t

(
k

j

)]

=
k∑
j=0

(−1)n−j−1

n− j
n− j
t

(
k

j

)

=

{
0 if k > 0

(−1)n−1

n
if k = 0 (so t = n).

For every C ∈ W∗/ ∼, we choose an element wC ∈ C. Combining the
above result with (22), we get

log(1 +X + Y +XY ) ∼
∑

C∈W∗/∼

(∑
w∈C

r(w)

)
wC

=
∞∑
n=1

(−1)n−1

n
(Xn + Y n)

= log(1 +X) + log(1 + Y ). �

In the further argument, we will not need the following interesting
corollary to the above proposition.

Corollary 3.31. Let R be a divisible commutative topological ring.
Let U ⊂ R〈〈X, Y 〉〉× be the subgroup of power series with constant
term 1 (i. e. U = {w ∈ R〈〈X, Y 〉〉×|w(0, 0) = 1}). The power series
log induces a homomorphism

log : U → R〈〈X, Y 〉〉/∼

Proof. We endow R〈〈X, Y 〉〉 with the natural topology. For ψ ∈
U , clearly log(ψ) converges. By lemma 3.29, the map

log : U → R〈〈X, Y 〉〉/[R〈〈X, Y 〉〉, R〈〈X, Y 〉〉], ψ 7→ log ◦ψ

does not depend on the choice of a representative of

[log] ∈ R〈〈X, Y 〉〉/∼ .

By proposition 3.30, it is a homomorphism. By lemma 3.4 (applied to
the monoid W∗), we have

〈v − w|v, w ∈ W∗, v ∼ w〉R = [R〈X, Y 〉, R〈X, Y 〉],
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where R〈X, Y 〉 = R[W∗] is the ring of noncommutative polynomials in
two variables. Taking quotients modulo the topological closure of this
group in R〈〈X, Y 〉〉, we get

R〈〈X, Y 〉〉/∼ ∼= R〈〈X, Y 〉〉/[R〈〈X, Y 〉〉, R〈〈X, Y 〉〉].

This finishes the proof. �

Corollary 3.32. Let W be a pro-p p-adic Lie group. There is a
homomorphism

log : K1(Λ(W ))→ Qp[[Conj(W )]], [1− x] 7→ [−
∑
i

xi

i
].

If I ⊂ J := J(Λ(W )) is a two sided ideal, we get a homomorphism

logI : K1(Λ(W ), I)→ Qp ⊗Zp I/[Λ(W ), I].

Proof. Let U ⊂ Zp〈〈X, Y 〉〉× be the subgroup of power series with
constant term 1. By lemma 3.29, in case of convergence, evaluation at
x, y ∈ 1 + J or x, y ∈ 1 + I induces the maps

Zp〈〈X, Y 〉〉/∼ → Qp[[W ]]/[Qp[[W ]],Qp[[W ]]] ∼= Qp[[Conj(W )]]

Zp〈〈X, Y 〉〉/∼ → Qp ⊗Zp I/[Λ(W ), I].

By lemma 3.28, log converges on 1 +J and by proposition 3.30, we get
homomorphisms

log : 1 + J → Qp[[Conj(W )]]

logI : 1 + I → Qp ⊗Zp I/[Λ(W ), I].

We put log(ζ) = 0 for ζ ∈ µp−1. (This is the unique homomorphism
µp−1 → Qp[[Conj(W )]].) By lemma 3.26, this induces the homomor-
phism

log : Λ(W )× → Qp[[Conj(W )]].

Since the images of log and logI are commutative groups, the homomor-
phism log (respectively logI) is well-defined on K1(Λ(W )) (respectively
K1(Λ(W ), I)). �

Proposition 3.33. Let R be a divisible commutative topological ring
and let U be as above. We define the power series

exp(T ) :=
∞∑
i=0

1

i!
T i ∈ R[[T ]].

Then

exp(X) exp(Y ) exp(−X − Y ) ∈ [U,U ] ⊂ R〈〈X, Y 〉〉.
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Proof. We define the Campbell-Hausdorff series

Φ(X, Y ) ∈ R〈〈X, Y 〉〉
and the commutator Campbell-Hausdorff series

Ψ(X, Y ) ∈ R〈〈X, Y 〉〉
by the relations

exp(Φ(X, Y )) = exp(X) exp(Y ) and

exp(Ψ(X, Y )) = exp(−X) exp(−Y ) exp(X) exp(Y ).

(For a proof of existence and uniqueness of these series, see [13].)
Clearly, exp(Ψ(X, Y )) ∈ [U,U ] and

Φ(X,Φ(Y, Z)) = Φ(Φ(X, Y ), Z)

Φ(X,−X) = 0

Φ(X, 0) = X.

By [13, theorem 6.28],

Φ(X, Y )−X − Y ∈ [R〈〈X, Y 〉〉, R〈〈X, Y 〉〉] and

Ψ(X, Y ) ∈ [R〈〈X, Y 〉〉, R〈〈X, Y 〉〉].
(24)

For n ∈ N, let deg n ⊂ R〈〈X, Y 〉〉 be the R-module generated by the
monomials of degree ≥ n. Then

Φ(X, Y ) ≡ X + Y mod deg 2 and

Ψ(X, Y ) ≡ XY − Y X mod deg 3.
(25)

For any power series

p(X, Y ) =
∑
i

[qi, ri] ∈ [R〈〈X, Y 〉〉, R〈〈X, Y 〉〉], qi, ri ∈ R〈〈X, Y 〉〉,

there is a power series Ψ(p) ∈ R〈〈X, Y 〉〉 such that Ψ(p)(X, Y ) =∑
i Ψ(qi, ri). If p ∈ deg n, n ≥ 1, then by (24) and (25)

Φ(p,−Ψ(p)) ∈ [R〈〈X, Y 〉〉, R〈〈X, Y 〉〉] ∩ deg(n+ 1).

Hence for each p as above, there is

q ∈ [R〈〈X, Y 〉〉, R〈〈X, Y 〉〉] ∩ deg(n+ 1)

such that

exp(p) exp(q)−1 = exp(Φ(p,−q)) ∈ [U,U ].

By induction, we get exp(p) ∈ [U,U ].

Since Φ(Φ(X, Y ),−X − Y ) ∈ [R〈〈X, Y 〉〉, R〈〈X, Y 〉〉], this implies

exp(X) exp(Y ) exp(−X − Y ) = exp
(

Φ(Φ(X, Y ),−X − Y )
)

∈ [U,U ]. �
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Corollary 3.34. The power series exp induces a homomorphism

exp : R〈〈X, Y 〉〉 → U/[U,U ].

Lemma 3.35. Let W be a pro-p p-adic Lie group and let I ⊂ Λ(W )
be a both sided ideal and assume that there is ξ ∈ Z(Λ(W )) such that
I ⊂ ξΛ(W ) and ξp ∈ pξΛ(W ). Then the logarithm series induces the
homomorphism

log : K1(Λ(W ), I)→ I/[Λ(W ), I]

If Ip ⊂ pIJ , J := J(Λ(W )), then log is an isomorphism whose inverse
map

exp : I/[Λ(W ), I]→ K1(Λ(W ), I).

is induced by the exponential series exp.

(This is a slight generalisation of [34, theorem 2.8].)

Proof. By assumption, Ip ⊂ ξpΛ(W )∩ I ⊂ pI and hence In ⊂ nI
for all n ≥ 1. This implies log(1 + I) ⊂ I and proves the first part of
this lemma.

Now assume Ip ⊂ pIJ . We show convergence of the exponential series.
Let n ≥ 1 be a natural number. The identity

vp(n!) =
∞∑
l=1

⌊
n

pl

⌋
is well known and can be verified easily. Let k ∈ N be the number such
that pk ≤ n < pk+1. Then

In ⊂ pb
n
p
cIb

n
p
cJ ⊂ . . . ⊂ p

Pk
l=1b

n

pl
c
IJk ⊂ n!IJk.

Thus 1
n!
In ⊂ I and since Λ(W ) is noetherian (cf. corollary 1.11)⋂

n
1
n!
In ⊂

⋂
n IJ

n = 0. Hence exp(x) converges in 1 + I for x ∈ I. �

Let P be a compact p-adic Lie group with a surjection ω : P→→Zp.

Lemma 3.36. Assume that Z := Z(P ) ⊂ P is an open subgroup. Every

unit x ∈ Λ̂(P )S
×

can be written as a product x = uv with u ∈ Λ̂(Z)S
×

and v ∈ Λ(P )×.

Proof. By lemma 2.10, we can write every element of Λ̂(P )S as a

product x = uv with u ∈ Λ̂(Z)S and v ∈ Λ(P ). When x is a unit, then
u, v are units, too (u is a right unit and since it is central, it is also a
left unit). �

The following proposition defines the integral logarithm.
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Proposition 3.37. Let P be a compact p-adic Lie group. There is a
well-defined group homomorphism

LP : K1(Λ(P ))→ Zp[[Conj(P )]], x 7→ (1− p−1ϕ) ◦ log(x)

Assume that there is a surjective homomorphism ω : P→→Zp. Let WP

be as in lemma 3.8. Then we can define

LP,S : K1((Λ(P )S)∧)→ Zp[[Conj(P )]]∧S ,

to be the composition of the natural homomorphism

K1((Λ(P )S)∧)→ lim←−
W∈WP

K1((Λ(P/W )S)〈p〉)

and the homomorphism

lim←−
W∈WP

K1((Λ(P/W )S)〈p〉)→ lim←−
W∈W

(
Zp[[Conj(P/W )]]S

)〈p〉
,

which is induced by the maps

K1((Λ(P/W )S)〈p〉)→
(
Zp[[Conj(P/W )]]S

)〈p〉
,

[x](Λ(P/W )S)〈p〉 7→
1

p
log(upϕ(u)−1) + (1− 1

p
ϕ) ◦ log([v]Λ(P/W )),

for all W ∈WP , where we write an element x ∈
(

(Λ(P/W )S)〈p〉
)×

in

the form x = uv with u ∈
(

(Λ(Z(P/W ))S)〈p〉
)×

and v ∈ Λ(P/W )×.

Remark. If P is commutative, the integral logarithm has the form

LP : Λ(P )× → Λ(P ) LP,S : Λ̂(P )S
×
→ Λ̂(P )S.

Proof. Note that by lemma 3.36, the decomposition x = uv exists

and by lemma 3.27, upϕ(u)−1 ∈ 1 + p (Λ(Z(P/W ))S)〈p〉. Since ϕ is a
continuous ring homomorphism, we get

1

p
log(upϕ(u)−1) = (1− 1

p
ϕ) ◦ log(u).

for u ∈
(

(Λ(Z(P/W ))S)〈p〉
)×
∩ Λ(P/W )×. Hence LP/W,S is indepen-

dent of the decomposition x = uv.

It suffices to prove the existence of LP,S in case Z(P ) ⊂ P is an open
subgroup. Since

log(1 + p (Λ(Z(P/W ))S)〈p〉) ⊂ p (Λ(Z(P/W ))S)〈p〉 ,

it suffices to show that LP is integral. Put R := Zp[[Conj(P )]].
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For any x ∈ J , we have

LP (1− x) = −
∑
i≥1

xi

i
+
∑
i≥1

ϕ(xi)

ip
.

For i ∈ Z \ pZ, n ≥ 1, clearly xi

i
∈ R and xp

n

pn
− ϕ(x

pn−1

pn−1 ) ∈ R implies

xp
ni

pni
− ϕ(x

pn−1i

pn−1i
) ∈ R. Hence, we only have to show

pn
∣∣∣[xpn − ϕ(xp

n−1

)]

for all n ≥ 1, x ∈ J . We write the image of x in R in the form

x̄ =
∑
i∈I

riclass(gi), ri ∈ Λ(Z(P )), gi ∈ P,

where I is a finite index set. We put q := pn. Then

xq =
∑
i∈Iq

ri1 · · · riqclass(gi1 · · · giq) =:
∑
i∈Iq

si ∈ R.

Let δq : Iq → Iq be the map defined by

δq((i1, . . . , iq)) = (iq, i1 . . . , iq−1).

Let C ∈ Iq/ ∼ be an equivalence class, where the relation ∼ is defined
by i ∼ j ⇔ si = sj. Define t = t(C) ∈ N by #C = pn−t. Then
sδtq(i) = si for all s ∈ C and hence

xq =
∑

C∈Iq/∼

pn−t(C)

pn−t(C)∏
j=1

rij

pt(C)

class

((
gi1 · · · gipn−t(C)

)pt(C)
)

=:
∑

C∈Iq/∼

pn−t(C)r̂p
t(C)

C class
(
ĝp

t(C)

C

)
∈ R

with r̂C ∈ Λ(Z(P )), ĝC ∈ P . For t(C) = 0, we get pn|
∑

y∈C y. We
calculate

ϕ(xpn−1) =
∑

i∈Ipn−1

ϕ(ri1 · · · ripn−1 )class
((
gi1 · · · gipn−1

)p)
=

∑
C∈Iq/∼
t(C)>0

pn−t(C)ϕ(r̂C)p
t(C)−1

class
(
ĝp

t(C)

C

)
.

Thus, we only need to show

pn
∣∣∣[pn−tr̂ptclass

(
ĝp

t
)
− pn−tϕ(r̂)p

t−1

class
(
ĝp

t
)

]

for t > 0. This follows from lemma 3.27. �
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Lemma 3.38. Let P be a compact p-adic Lie group. Then

K1(Λ(P )) ∼= lim←−
U

K1(Λ(P/U))

where the limit is over all open normal subgroups U of P . Assume that
there is a surjective homomorphism ω : P→→Zp. Then

K1((Λ(P )S)∧)→→ lim←−
W∈WP

K1((Λ(P/W )S)〈p〉)

is surjective.

Proof. The isomorphism follows from proposition 1.19. (The as-
sumptions of proposition 1.19 are satisfied by [16, 1.4.2].) Since for the
ring (Λ(P )S)∧ is semi-local by lemma 3.14, the second assertion follows
from lemma 1.20. �

4. Kernel and Cokernel of the Integral Logarithm

We use techniques developed by R. Oliver to prove the exactness of the
sequence

1→ µp−1 × P ab → K1(Λ(P ))
LP−→ Zp[[Conj(G)]]→ P ab → 1,

where P is a pro-p p-adic Lie group. This is a consequence of the
following theorem:

Theorem 3.39. Let W be a (finite) p-group. Define

ω = ωW : Zp[[Conj(W )]]→ W ab

to be the group homomorphism induced by classW (σ) 7→ [σ] for σ ∈ W .
Then, the sequence

1→ K1(Λ(W ))tors → K1(Λ(W ))
LW−→ Zp[[Conj(W )]]

ω−→ W ab → 1

is exact.

Proposition 3.40. Let W be a p-group. Let z ∈ Z(W ) be an element
of order p. Put L := (1− z)Λ(W ). Then the sequence

(26) 1→ 〈z〉 → K1(Λ(W ), L)
log→ L/[Λ(W ), L]

α′′→ Z/pZ→ 1

is exact (where the map α′′ will be constructed below) and
(27)

[(1− z)Zp[[Conj(W )]] : LW (1 + L)] =

{
1 if z is a commutator
p otherwise

.
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Proof. We give a more detailed version of the rather short proof
in [34, prop. 6.4].

We have

1 = zp = [1− (1− z)]p ≡ 1− (1− z)p mod pL

and hence (1− z)p ∈ pL. By lemma 3.35, there is a homomorphism

logL : K1(Λ(W ), L)→ L/[Λ(W ), L]

and an isomorphism

logLJ : K1(Λ(W ), LJ)
∼=−→ LJ/[Λ(W ), LJ ].

The following diagram is commutative:

K1(Λ(W ), LJ) //

logLJ∼=
��

K1(Λ(W ), L) //

logL

��

K1(Λ(W )
LJ

, L
LJ

) //

log0

��

1

0 // LJ/[Λ(W ), LJ ] // L/[Λ(W ), L] // L
LJ
/[Λ(W )

LJ
, L
LJ

] // 0,

(28)

where log0 is the homomorphism induced by logL. The first row is
exact by [30, remark 6.6]. From the inclusion

[Λ(W ),Λ(W )] = 〈gh− hg|g, h ∈ W 〉Zp
= 〈(1− g)h− h(1− g)|g, h ∈ W 〉Zp ⊂ [Λ(W ), J ],

we get

LJ ∩ [Λ(W ), L] = [Λ(W ), LJ ]

and hence the second row is exact.

Since Z/pZ is commutative, we can define

α′ : K1(Λ(W ), L)→ Z/pZ, 1 + (1− z)
∑
i

rigi 7→
∑
i

r̄i

α′′ : L/[Λ(W ), L]→ Z/pZ, (1− z)
∑
i

rigi 7→
∑
i

r̄i,

where ri ∈ Zp, gi ∈ W and r̄i is the image of ri in Z/pZ. By Vaserstein’s
identity (cf. [34, theorem 1.15]) and the description of J in lemma 3.26,
these maps induce the isomorphisms

K1

(
Λ(W )

LJ
,
L

LJ

)
∼= Z/pZ and

L

LJ

/[
Λ(W )

LJ
,
L

LJ

]
∼= Z/pZ.

We will now evaluate α′′(logL(1 + (1 − z)rg)), where r ∈ Zp, g ∈ W .
Since (1− z)p ∈ pL, we get for n > p

(1− z)n

n
∈ p(1− z)Λ(W )
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and hence α′′( (1−z)n
n

rngn) = 0. For n > 1, p - n, clearly

α′′(
(1− z)n

n
rngn) = 0.

It remains to calculate α′′( (1−z)p
p

rpgp). The set

1

p
((1−X)p − 1 +Xp) + (1−Xp)Zp[X] ⊂ Zp[X]

is the set of all polynomials such that evaluation for X = z gives (1−z)p
p

.

The image of
1
p
((1−X)p − 1 +Xp)

1−X
+

1−Xp

1−X
Zp[X]

=
1

p
((1−X)p−1 − 1− · · · −Xp−1) + (1 + · · ·+Xp−1)Zp[X]

under the evaluation homomorphism Zp[X] → Z/pZ, X 7→ 1 is
{−1}. Hence1

α′′(logL(1 + (1− z)rg)) = α′′((1− z)(rg − rpgp)) = r̄ − r̄p = 0.

Thus, the diagram (28) is just

K1(Λ(W ), LJ) //

logLJ∼=
��

K1(Λ(W ), L) //

logL

��

Z/pZ //

0
��

1

0 // LJ/[Λ(W ), LJ ] // L/[Λ(W ), L] // Z/pZ // 0.

Now the snake lemma yields the isomorphisms

ker(logL) ∼= Z/pZ and coker(logL) ∼= Z/pZ.

Since α′(z) = −1 and z ∈ ker(logL) (L/[Λ(W ), L] is p-torsion free), we
have ker(logL) = 〈z〉. Hence the sequence (26) is exact.

Let

p : L/[Λ(W ), L]→→(1− z)Zp[[Conj(W )]] ⊂ Zp[[Conj(W )]]

be the natural projection. For ξ ∈ Λ(W ),

logL(1 + (1− z)ξ) = (1− z)η

for some η ∈ Λ(W ). Since ϕ((1− z)η) = (1− zp)ϕ(η) = 0, we get

LW (1 + (1− z)ξ) = p ◦ logL(1 + (1− z)ξ).

By (26), the group

(1− z)Zp[[Conj(W )]]/LW (1 +L) = (1− z)Zp[[Conj(W )]]/p◦ logL(1 +L)

1Note that (1−z)2 - (1−z)p

p . The above argument does not work for 1
p (1−X)p ∈

Qp[X].



92 3. K1 OF CERTAIN NONCOMMUTATIVE IWASAWA ALGEBRAS

is a quotient of Z/pZ. It is the trivial group if and only if ker p 6= 0.
But this is equivalent to the existence of some x ∈ Λ(W ) with

x 6∈ [Λ(W ),Λ(W )] and (1− z)x ∈ [Λ(W ),Λ(W )].

Equivalently, z is a commutator. This proves (27). �

Lemma 3.41. Let W be a p-group. Then K2(Λ(W )) is torsion.

Proof. By [26, theorem 7.2.7], K2(Z[W ]) is finite. By [26, theo-
rem 7.2.2], the homomorphism

K2(Z[W ])→ K2(Q[W ])

induced by the natural inclusion Z[W ] ↪→ Q[W ] has finite kernel and
torsion cokernel. Hence K2(Q[W ]) is a torsion group.

By Maschke’s theorem, Q[W ] is a semisimple Q-algebra. As it is finite
dimensional, it is Artinian. Hence we get the Wedderburn decomposi-
tion

Q[W ] ∼=
r∏
i=1

Mni(Di),

where Di are finite dimensional skew fields over Q. By [39, Satz 2],
we get that the Di are actually fields. By tensoring with Qp and using
the isomorphisms Di⊗Q Qp

∼=
∏

v|p(Di)v, where the product is over all
primes v of Di lying over p, we get the isomorphism

Qp[W ] ∼=
r∏
i=1

Mni(Di ⊗Q Qp) ∼=
r∏
i=1

∏
v|p

Mni((Di)v)

of Qp-algebras.

Using the fact that for two rings R, S, we have K2(R× S) = K2(R)⊕
K2(S) (cf. [28, proposition 12.8]) and Morita invariance, we get

K2(Q[W ]) ∼=
r⊕
i=1

K2(Di)

K2(Qp[W ]) ∼=
r⊕
i=1

⊕
v|p

K2((Di)v).

By [2, theorem 5.2], the homomorphism

K2(Di)→
⊕
v

K2((Di)v),

where the direct sum is over all primes v of Di, has finite cokernel.
Hence K2(Qp[W ]) is a torsion group.
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Qp[W ] is a semisimple Qp-algebra that contains the maximal order
Zp[W ]. Hence, by [26, theorem 7.1.1 (c)]

K2(Zp[W ]) ↪→ K2(Qp[W ])

is injective. Therefore, we get that K2(Zp[W ]) is a torsion group. �

Let A be a semisimple Qp-algebra and let Λ ⊂ A be a Zp-order (i. e. a
subring Λ of A with A = QpΛ which is finitely generated over Zp). We
define

SK1(Λ) := ker(K1(Λ)→ K1(A)),

where the homomorphism on the right hand side is induced by the
natural inclusion Λ ⊂ A.

Theorem 3.42 (Wall). Let O be the ring of integers in a finite exten-
sion of Qp and let W be a finite group. Then

K1(ΛO(W ))tors = µ(O)×W ab × SK1(ΛO(W )),

where µ(O) := O×tors is the group of roots of unity of O.

Proof. [34, Theorem 7.3] �

Lemma 3.43. Let W be a p-adic Lie group. The map

1− 1

p
ϕ : Qp[[Conj(W )]]→ Qp[[Conj(W )]]

is injective and hence ker(LW ) = ker(log).

Proof. There is a descending sequence of subsets

Conj(W ) ⊃ ϕ(Conj(W )) ⊃ ϕ2(Conj(W )) ⊃ . . .

with
⋂
n ϕ

n(Conj(W )) = 1. Let x be an element of the kernel of
1 − 1

p
ϕ. If x 6∈ Qp1W , then there is a maximal n such that x ∈

Qp[[ϕ
n(Conj(W ))]]. Then

1

p
ϕ(x) ∈ Qp[[ϕ

n+1(Conj(W ))]] and x 6∈ Qp[[ϕ
n+1(Conj(W ))]].

This is a contradiction to the identity x − 1
p
ϕ(x) = 0. The restriction

of 1− 1
p
ϕ(x) to Qp1W is trivially injective. �

Proof of theorem 3.39. We extend the rather short proof given
in [34, theorem 6.6]. In particular, we provide a proof for the exactness
of the left column of diagram (29).
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Firstly, we consider the case W = 1. We have log(1 + pZp) = pZp and
hence log(K1(Λ(1))) = pZp. This implies

L1(K1(Λ(1))) = (1− 1

p
ϕ)(log(K1(Λ(1)))) = (1− 1

p
)(pZp)

= Zp = kerω1.

Clearly, ker L1 = µp−1 = K1(Λ(1))tors.

We will show, that ωW ◦LW = 1 for a p-group W 6= 1. Commutativity
of the diagram

K1(Λ(W ))
LW //

��

Zp[[Conj(W )]]
ωW //

��

W ab // 1

K1(Λ(W ab))
L
Wab // Zp[[Conj(W ab)]]

ω
Wab // W ab // 1

implies that we may assume W = W ab without loss of generality.

Let I = I(W ) be the augmentation ideal of Λ(W ). Since

K1(Λ(W )) ∼= µp−1 ×
(

1 + I + pΛ(W )
)

by lemma 3.26, it suffices to show LW (1 + I) ⊂ kerωW and LW (1 +
pΛ(W )) ⊂ kerωW . We get the latter inclusion from the inclusion
log(1 + pΛ(W )) ⊂ pΛ(W ) and the fact that ωW (x) = ωW (1

p
ϕ(x)) for

x ∈ pΛ(W ).

Let u ∈ 1 + I and write u = 1 +
∑n

i=1 ri(1 − τi)σi with ri ∈ Zp and
σi, τi ∈ W . Using the congruence

τ pi = [1− (1− τi)]p ≡ 1− p(1− τi)− (1− τi)p mod pI2

we get

up ≡ 1 + p
∑
i

ri(1− τi)σi +
∑
i

rpi (1− τi)pσ
p
i mod pI2

≡ 1 + p
∑
i

ri(1− τi)σi +
∑
i

ri(1− τi)pσpi mod pI2

≡ 1 + p
∑
i

ri(1− τi)σi +
∑
i

ri[(1− τ pi )− p(1− τi)]σpi

≡ 1 +
∑
i

ri(1− τ pi )σpi︸ ︷︷ ︸
=ϕ(u)

+ p
∑
i

ri(1− τi)(σi − σpi )︸ ︷︷ ︸
∈pI2

.
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Consequently, up ≡ ϕ(u) mod pI2. Since pI2 is an ideal, this is equiv-
alent to up

ϕ(u)
∈ 1 + pI2. Then

LW (u) =
1

p
log(up)− 1

p
ϕ(log(u))

=
1

p
log(

up

ϕ(u)
) ∈ I2.

On the other hand, we get for r ∈ Zp, τ1, τ2, τ3 ∈ W
ωW (r(1− τ1)(1− τ2)τ3) = ωW (r(τ3 − τ1τ3 − τ2τ3 + τ1τ2τ3))

= τ r3 (τ1τ3)−r(τ2τ3)−r(τ1τ2τ3)r = 1 ∈ W.

Hence I2 ⊂ kerωW and LW (1 + I) ⊂ kerωW .

Let z ∈ Z(W ) be an element of order p which is a commutator if W is
not abelian. (The existence of z follows from theorem [34, prop. 6.5].)

Define Ŵ := W/〈z〉.

We will prove the theorem by induction on the order of W . For W = 1,
we have already shown everything. Now, we assume that we have
already proven the theorem for Ŵ . Let

α : W → Ŵ

be the natural projection. For an abelian group K define K/tors =
K/Ktors. Put

L := (1− z)Λ(W ) ⊂ Λ(W ) and

Lconj := (1− z)Zp[[Conj(W )]] ⊂ Zp[[Conj(W )]].

We consider the following commutative diagram (where the maps L0

and ω0 are induced by LW and ωW , respectively):

1

��

1

��

1

��
1 // K1(Λ(W ), L)/tors

L0 //

��

Lconj
ω0 //

��

kerαab //

��

1

1 // K1(Λ(W ))/tors
LW //

K(α)
��

Zp[[Conj(W )]]
ωW //

H(α)
��

W ab //

αab

��

1

1 // K1(Λ(Ŵ ))/tors
LŴ //

��

Zp[[Conj(Ŵ )]]
ωŴ //

��

Ŵ ab //

��

1

1 1 1

(29)

We show that the left column is exact. First note that by [3, corollary

III.2.9], GL(Λ(W )) → GL(Λ(Ŵ )) is surjective and hence induces the
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surjections

K1(Λ(W ))→→K1(Λ(Ŵ )) and

K1(Λ(W ))/tors→→K1(Λ(Ŵ ))/tors.

If W is noncommutative, the kernel of W → Ŵ is generated by a
commutator and hence [35, lemma 14] implies that

SK1(Λ(W ))→ SK1(Λ(Ŵ ))

is surjective. Since SK1(Λ(W )) = 1 if W is commutative (cf. [10,
proposition 45.12]), this map is also surjective for commutative groups
W . Hence by Wall’s theorem (cf. theorem 3.42), the upper row in the
commutative diagram

K1(Λ(W ), L)tors //

��

K1(Λ(W ))tors //
� _

��

K1(Λ(Ŵ ))tors //
� _

��

1

1 // K1(Λ(W ), L)/K2
// K1(Λ(W )) // K1(Λ(Ŵ )) // 1,

is exact. The lower row, where K2 denotes the image of K2(Λ(Ŵ )) in

K1(Λ(W ), L), is also exact. Since K2(Λ(Ŵ )) is torsion by lemma 3.41,
the snake lemma yields the exact sequence

1→ K1(Λ(W ), L)/tors→ K1(Λ(W ))/tors→ K1(Λ(Ŵ ))/tors→ 1.

The right column in the diagram (29) is exact by definition of αab.
The exactness of the middle column follows from the exactness of the
sequence

1→ L→ Λ(W )→ Λ(Ŵ )→ 1.

Obviously, ω0 is surjective. By proposition 3.40, L0 is injective. We
have already shown that im (L0) ⊂ ker(ω0). By proposition 3.40, we
get that

#cokerL0 =

{
1 if z is a commutator
p otherwise

}
= # kerαab,
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i. e. the upper row is exact. By our induction hypothesis, the lower row
is exact. From ωW ◦LW = 1 and the 3 × 3 lemma2 (cf. [49, Exercise
1.3.2]), we deduce that the middle row is exact. �

Corollary 3.44. Let W be a pro-p p-adic Lie group with

SK1(Zp[W/U ]) = 1

for every open normal subgroup U of W . Then the sequence

1→ µp−1 ×W ab → K1(Λ(W ))
LW−→ Zp[[Conj(W )]]

ωW−→ W ab → 1

is exact.

Proof. Write W = lim←−U W/U where the limit is over all open
normal subgroups U of W . Then

W ab = W/[W,W ] = lim←−
U

(W/U)/[W/U,W/U ] = lim←−
U

(W/U)ab.

Since SK1(Zp[W/U ]) = 1, Wall’s theorem (cf. theorem 3.42) implies

K1(Λ(W/U))tors = µp−1 × (W/U)ab.

Since the inverse limit functor is left exact, we get from lemma 3.38
and theorem 3.39 the isomorphism

ker LW = lim←−
U

ker LW/U
∼= µp−1 ×W ab.

Theorem 3.39 implies that the sequences

1→ K1(Λ(W/U))/tors
LW/U−→ Zp[[Conj(W/U)]]

ωW/U−→ (W/U)ab → 1

are exact for all open normal subgroups U of W . Since Zp[[Conj(W/U)]]
is compact for all U , we get the short exact sequence

1→ lim←−
U

K1(Λ(W/U))/tors
LW−→ Zp[[Conj(W )]]

ω−→ W ab → 1

(cf. [51, lem. 15.16]). �

2The 3× 3 lemma says that if in the commutative diagram

1
��

1
��

1
��

1 // A1
//

��

B1
//

��

C1
//

��

1

1 // A2
//

��

B2
//

��

C2
//

��

1

1 // A3
//

��

B3
//

��

C3
//

��

1

1 1 1

in an abelian category, all columns, the top row and the bottom row are exact and
the composition A2 → B2 → C2 is zero, then the middle row is exact.
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Corollary 3.45. Let P be a pro-p p-adic Lie group that satisfies as-
sumption 3.1. Then, the sequence

1→ µp−1 × P ab → K1(Λ(P ))
LP−→ Zp[[Conj(P )]]

ωP−→ P ab → 1

is exact.

Proof. For every open subgroup U of P , [P/U, P/U ] is the central
cyclic group generated by the image of γ in P/U . Then a theorem of
R. Oliver (cf. [34, theorem 8.10 (ii)]) implies SK1(Zp[P/U ]) = 1. �

5. The Multiplicative Homomorphism θ

Let P be a group that satisfies assumption 3.1. In this subsection,
we will define subsets Ψ ⊂

∏
n Λ(Un/Vn)× and ΨS ⊂

∏
n Λ(Un/Vn)×S

and show that im θ = Ψ and im θS ⊂ ΨS for the homomorphisms
θ : K1(Λ(P ))→

∏
n Λ(Un/Vn)× and θS : K1(Λ(P )S)→

∏
n Λ(Un/Vn)×S .

We use the relation Tr◦ log = log ◦N to prove the following relations of
the integral logarithm with the homomorphisms τ and θ for all n ≥ 1:

τn(L (x)) = log(θn(x)ϕ(θn−1(x))−1) for all x ∈ K1(Λ(P ))

τn,S(LS(x)) = log(θn,S(x)ϕ(θn−1,S(x))−1) for all x ∈ K1(Λ̂(P )S).

To prove the inclusions

im θ ⊂ Ψ im θS ⊂ ΨS,

we need the facts that 1 + In is a group and

log : 1 + In → In

is an isomorphism. We show that θ surjects onto Ψ. As we have already
pointed out, we do this by proving that diagram (12) is commutative
with exact rows.

Define θn : K1(Λ(P ))→ Λ(Un/Vn)× to be the composition of

N : K1(Λ(P ))→ K1(Λ(Un)) and

p∗ : K1(Λ(Un))→ K1(Λ(Un/Vn)) = Λ(Un/Vn)×

For m ≤ n, m,n ∈ c, let Nm,n : Λ(Um/Vm)× → Λ(Un/Vm)× be the norm
map and pn,m : Λ(Un/Vn)× → Λ(Un/Vm)× be the projection map. For
n ≥ 1, define

ϕ : Un−1/Vn−1 → Un/Vn, σ 7→ σp.

From

(στ)p = σpτ p[τ, σ]
1
2
p(p−1) = σpτ p ∈ Un/Vn for σ, τ ∈ Un−1/Vn−1
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we get that ϕ is a continuous group homomorphisms. Let

ϕ : Λ(Un−1/Vn−1)→ Λ(Un/Vn)

be the continuous ring homomorphism induced by the group homomor-
phism ϕ. We define

Ψ := {(xn) ∈
∏
n∈c

Λ(Un/Vn)×|

(i) Nm,n(xm) = pn,m(xn) for m ≤ n, m, n ∈ c
(ii) xnϕ(xn−1)−1 ∈ 1 + In for n ≥ 1, n ∈ c}.

For n ≥ m, n,m ∈ c, let Nm,n : Λ(Um/Vm)×S → Λ(Un/Vm)×S be the norm

map and pn,m : Λ(Un/Vn)×S → Λ(Un/Vm)×S be the projection map.

By corollary 2.6, the group homomorphism ϕ induces the continuous
ring homomorphism

ϕ : Λ(Un−1/Vn−1)S → Λ(Un/Vn)S.

We define

ΨS := {(xn)n ∈
∏
n∈c

Λ(Un/Vn)×S |

(i) Nm,n(xm) = pn,m(xn) for m ≤ n, m, n ∈ c
(ii) xnϕ(xn−1)−1 ∈ 1 + In,S for n ≥ 1, n ∈ c}.

Define θn,S : K1(Λ(P )S)→ Λ(Un/Vn)×S to be the composition of

N : K1(Λ(P )S)→ K1(Λ(Un)S) and

p∗ : K1(Λ(Un)S)→ K1(Λ(Un/Vn)S) ∼= Λ(Un/Vn)×S .

Define

θS : K1(Λ(P )S)→
∏
n≥0

Λ(Un/Vn)×S , x 7→ (θn,S(x))n≥0.

Lemma 3.46. The map ϕ∗ : P → Ψ, g 7→ (ϕn(g))n≥0 is a well-defined
multiplicative map with ϕ∗(g) = θ([g]Λ(P )) for all g ∈ P .

Proof. Let (1, βp
m
, . . . , β(pn−m−1)pm) be a basis of Λ(Um/Vm) over

Λ(Un/Vm). Then

Nm,n(βp
m

) = det


0 βp

n

1
. . . 0
. . . 0

...
1 0

 = (−1)p
n−m−1βp

n

= βp
n

.
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From pn,m(βp
m

) = βp
m

and βp
n

= ϕ(βp
n−1

), we get that ϕ∗(β) =
(βp

n
)n∈c ∈ Ψ. Obviously, ϕ∗(g) ∈ Ψ for g ∈ U∞ and hence

ϕ∗(g) = (gp
n

)n = (θn([g]))n

for all g ∈ P and ϕ∗(P ) ⊂ Ψ. �

The main result of this chapter is the following theorem:

Theorem 3.47. The homomorphisms θn, n ∈ N (0 ≤ n ≤ c in case γ
is of finite order pc) induce an isomorphism

θ : K1(Λ(G))
∼=−→ Ψ, x 7→ (θn(x))n.

Remarks. • If G is abelian, K1(Λ(G)) = Λ(G)× = Ψ (note
c = 0 and V0 = 1) and

θ = id : Λ(G)× → Λ(G)×

is the identity isomorphism.
• It is not obvious that Ψ and ΨS are groups (In ⊂ Λ(Un/Vn)

and In,S ⊂ Λ(Un/Vn)S are not ideals, generally!) and that
im θ ⊂ Ψ, im θS ⊂ ΨS.

Lemma 3.48. Let W1 be a p-adic Lie group and let W2 be an open
subgroup of index n of W1. Assume that W2 is commutative. Let

Tr : Qp[[Conj(W1)]]→ Qp[[W2]]

be the trace homomorphism induced by Tr : Qp[[W1]] → Qp[[W2]]. Then
the following diagram is commutative:

K1(Λ(W1))
log //

N
��

Qp[[Conj(W1)]]

Tr
��

Λ(W2)×
log // Qp[[W2]].

In particular, the following diagram is commutative for any n ∈ N:

K1(Λ(P ))
log //

θn
��

Qp[[Conj(P )]]

τn
��

Λ(Un/Vn)×
log // Qp[[Un/Vn]].

(30)

Proof. We use parts of the proof of [34, theorem 6.2].

We assume first that W1 is a finite group. Since W2 is commutative,
we have the description (3) of the norm map. Hence

N(1 + pnx) ≡ 1 + pnTr(x) mod p2n−1



5. THE MULTIPLICATIVE HOMOMORPHISM θ 101

for x ∈ Λ(W1) and n > 0. Thus

log(N(1 + pnx)) ≡ log(1 + pnTr(x))

≡ pnTr(x) ≡ Tr(log(1 + pnx)) mod p2n−1

Let u ∈ 1 + J(Λ(W1)). Then the image of u in Fp[[W1]] is of finite

order and hence there is k ∈ N such that up
k ∈ 1 + pΛ(W1). Then

up
k+n ∈ 1 + pn+1Λ(W1) for all n > 0. Thus we get for n ≥ k

log(N(u)) = p−n−k log
(

Tr(up
k+n

)
)

≡ p−n−kTr
(

log(up
k+n

)
)

mod
p2(n+1)−1

pn+k
= pn−k+1

= Tr(log(u))

Since this holds for any n ≥ k, we get the equality

log(N(u)) = Tr(log(u)).

We prove this identity for not necessarily finite groups W1 by passing
to the inverse limit over all finite quotients of W1 and W2.

From the commutativity of the diagram

Λ(P ) //

��

Mn(Λ(Un))

��
Λ(P/Vn) // Mn(Λ(Un/Vn)),

we get that the diagram

K1(Λ(P ))
N //

p∗
��

K1(Λ(Un))

p∗
��

K1(Λ(P/Vn))
N // K1(Λ(Un/Vn))

(31)

is commutative. Recall that by lemma 3.20, τn can be written as the
composition

τn : Qp[[Conj(P )]]
π−→ Qp[[Conj(P/Vn)]]

Tr−→ Qp[[Un/Vn]].

We have already shown that the diagram

K1(Λ(P/Vn))
log //

N
��

Qp[[Conj(P/Vn)]]

Tr
��

Λ(Un/Vn)×
log // Qp[[Un/Vn]]

commutes. Since p∗(log(x)) = log(p∗(x)), this implies the commuta-
tivity of (30). �
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Lemma 3.49. For m,n ∈ c, m < n, There are the following commuta-
tive diagrams of Zp-modules:

Zp[[Conj(P )]]

p·τn−1

��

ϕ // Zp[[Conj(P )]]

τn
��

Λ(Un−1/Vn−1)
ϕ // Λ(Un/Vn)

Λ(Um−1/Vm−1)

Trm−1,n−1

��

ϕ // Λ(Um/Vm)

Trm,n
��

Λ(Un−1/Vm−1)
ϕ // Λ(Un/Vm)

Zp[[Conj(P )]]∧S

p·τn−1,S

��

ϕ // Zp[[Conj(P )]]∧S

τn,S

��

(Λ(Un−1/Vn−1)S)∧
ϕ // (Λ(Un/Vn)S)∧

Λ(Um−1/Vm−1)S

Trm−1,n−1

��

ϕ // Λ(Um/Vm)S

Trm,n
��

Λ(Un−1/Vm−1)S
ϕ // Λ(Un/Vm)S

Proof. We have

βp
n−1

σpβ−p
n−1

= σp ∈ Λ(Un/Vn)

for σ ∈ Un since [αp, βp
n−1

] ∈ Vn. Thus for σ ∈ Un−1,

τn ◦ ϕ(class(σ)) =

pn−1∑
i=0

class(βiσpβ−i) = p

pn−1−1∑
i=0

class(βiσpβ−i)

= p · ϕ

pn−1−1∑
i=0

class(βiσβ−i)


= p · ϕ ◦ τn−1(class(σ)).

For σ ∈ P \ Un−1, clearly

τn ◦ ϕ(class(σ)) = 0 = p · ϕ ◦ τn−1(class(σ)).

Since τn, τn−1 and ϕ are Zp-linear and continuous, we have proven the
commutativity of the top left diagram. Since τS is Λ(Z(P ))S-linear for
groups P with open centre, this also implies the commutativity of the
bottom left diagram.

Since

ϕ : Λ(Um−1/Vm−1)→ Λ(Um/Vm)

sends the Λ(Un−1/Vm−1)-basis (1, βp
m−1

, . . . , βp
n−1−1) of the domain to

the Λ(Un/Vm)-basis (1, βp
m
, . . . , βp

m−1) of the codomain, the top right
diagram is commutative. Using the same argument, we get the com-
mutativity of the bottom right diagram. �

Lemma 3.50. For n ∈ c, n ≥ 1, we have

τn(LP (x)) = log(θn(x)ϕ(θn−1(x))−1) for all x ∈ K1(Λ(P )),

τn,S(LP,S(x)) = log(θn,S(x)ϕ(θn−1,S(x))−1) for all x ∈ K1(Λ̂(P )S).
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Proof. We first prove the second equation. Since ϕ is a continuous
ring homomorphism,

logϕ(1− y) = −
∑
i≥1

ϕ(y)i

i
= ϕ(log(1− y))

for y ∈ J
(
(Λ(Un/Vn))S)∧

)
.

For x ∈ Λ̂(P )S
×

, we write x = uv with u ∈
(
(Λ(Z(P ))S)∧

)×
and

v ∈ Λ(P )× (cf. lemma 3.36). Note that Z(P ) ⊂ Un and hence (by the
remark after the definition of the norm map)

θn,S(u) = ūp
n ∈

(
(Λ(Un/Vn)S)∧

)×
.

Using lemma 3.48 and lemma 3.49, we get

log(θn,S([x])ϕ(θn−1,S([x]))−1)

= log(ūp
n

ϕ(ūp
n−1

)−1) + log θn,S([v])− logϕθn−1,S([v])

=
1

p
log θn,S((ūpϕ(ū)−1)) + τn,S log([v])− ϕτn−1,S log([v])

=τn,S ◦
1

p
log(ūpϕ(ū)−1) + τn,S log([v])− τn,S ◦

1

p
ϕ ◦ log([v])

=τn,S ◦LP,S([u]) + τn,S ◦ (1− 1

p
ϕ) ◦ log([v])

=τn,S ◦LP,S([x]).

A similar argument proves the first part of the lemma. �

Proposition 3.51. Let n ∈ c, n ≥ 1 be an integer. Then

(1) 1 + In is a multiplicative group.
(2) The logarithm induces an isomorphism

log : 1 + In
∼=−→ In.

Our proof of the proposition uses K. Kato’s sketch in [25].

We will first provide some lemmata, which we require for the proof of
proposition 3.51. We recall the definition of hn,i before lemma 3.19.

Lemma 3.52. If 0 ≤ i ≤ j ≤ n,

hn,ihn,j = pn−jhn,i.

Proof. Define

hn,s(T ) := (T p
n − 1)(T p

s − 1)−1 =

pn−s−1∑
t=0

T p
st ∈ Z[T ]
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for 0 ≤ s ≤ n. Since i ≤ j, we have (T p
i − 1)|(T pjt − 1) for any t > 0,

and hence

hn,j(T )− pn−j =

pn−j−1∑
t=0

(T p
jt − 1) ∈ (T p

i − 1).

Obviously, hn,i(T ) ∈ (T
pn−1

T pi−1
). Therefore,

hn,i(T )hn,j(T )− pn−jhn,i(T ) ∈ (T p
n − 1).

Substituting γ for T (and noting γp
n ∈ Vn), we get hn,ihn,j = pn−jhn,i.

�

Lemma 3.53. For i ≤ j ≤ n, we have hn,j|hn,i in Λ(Un/Vn).

Proof.

hn,i =

pn−i−1∑
k=0

γp
ik =

pn−j−1∑
r=0

pj−i−1∑
s=0

γp
i(rpj−i+s)

= hn,j

pj−i−1∑
s=0

γp
is �

Lemma 3.54. Let G and H be profinite groups with normal subgroups
G = G1 ⊃ G2 ⊃ . . . and H = H1 ⊃ H2 ⊃ . . . such that

⋂
i≥1Gi =

1,
⋂
i≥1Hi = 1. (Note that this implies G = lim←−nG/Gn and H =

lim←−nH/Hn, see [36, corollary 1.1.8].) Let

ϕ : G→ H

be a continuous group homomorphism such that ϕ(Gi) ⊂ Hi for all
i ≥ 1, and the induced maps

ϕi : Gi/Gi+1 → Hi/Hi+1 ∀i ≥ 1

are isomorphisms. Then ϕ is an isomorphism.

Proof. Let x ∈ kerϕ, x 6= 1 and i ≥ 1 such that x ∈ Gi, x 6∈ Gi+1.
Then ϕi(x) = 1 ∈ Hi/Hi+1 and hence x = 1 ∈ Gi/Gi+1, contradicting
x 6∈ Gi+1.

Let x = x1 ∈ H. We inductively define sequences (xk)k≥1, xk ∈ Hk

and (yk)k≥1, yk ∈ Gk such that

• xkϕ(yk)
−1 ∈ Hk+1 (The existence of yk for a given xk is clear

since ϕk is bijective.)
• xk+1 = xkϕ(yk)

−1.

Then ϕ(yk · · · y1) = x−1
k+1xk · · ·x

−1
2 x1 = x−1

k+1x1. Since (xk)k≥1 and
(yk)k≥1 converge to 1, y := limk→∞ yk · · · y1 exists and ϕ(y) = x. �
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Proof of proposition 3.51. (1) For i ≤ j, let x1 ∈ Un,i,
x1 6∈ Un,i+1 if i < n, x2 ∈ Un,j, x2 6∈ Un,j+1 if j < n. From
lemma 3.52 and lemma 3.53, we get

pihn,ix1 · pjhn,jx2 = pn · pihn,ix1x2 ∈ In
and hence InIn ⊂ In. Thus

(1 + In)(1 + In) = 1 + 2In + I2
n ⊂ 1 + In,

i. e. 1 + In is multiplicatively closed. For x ∈ In, we have

(1− x)−1 =
∑
i≥0

xi ∈ 1 + In,

i. e. every element of 1+In is invertible. So 1+In is a subgroup
of Λ(Un/Vn)×.

(2) By corollary 3.32, log is well-defined on 1+In and log(1+In) ⊂
Qp[[Un/Vn]]. For x ∈ In, n ≥ 1, we need to show xk/k ∈ In for
all k ≥ 1, or equivalently

xk ∈ pvp(k)In for all k ≥ 1.

For x ∈ In, xk is a Λ(Un,n/Vn)-linear combination of elements
of the form

k∏
r=1

pirhn,irxr, xr ∈ Un,ir , xr /∈ Un,ir+1 if ir < n.

We may assume i0 ≤ i1 ≤ . . . ≤ ik. Then, by lemma 3.52,
k∏
r=1

pirhn,irxr = p(k−1)n · pi0hn,i0x

with x :=
∏k

r=1 xr ∈ Un,i0 . Thus

xk ∈ p(k−2)nIn ⊂ pvp(k)In.

Let
logn : (1 + I in)/(1 + I i+1

n )→ I in/I
i+1
n

be the homomorphism induced by log. We get

logn(1− x) = −x− x2
∑
k≥2

xk−2

k
= −x.

Hence the maps logn are isomorphisms for all n ≥ 1. By
lemma 3.54, log is an isomorphism. �

We will denote the inverse map of log by

exp : In → 1 + In.

Lemma 3.55. Let I ′′n = 〈hn,ix1, px2|x1 ∈ Un,i/Vn, x1 6∈ Un,i+1/Vn, 0 ≤
i < n, x2 ∈ Un,n/Vn〉 as Λ(Un,n/Vn)-submodule of Λ(Un/Vn). Then we
have:
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(1) In ⊂ I ′′n
(2) I ′′nI

′′
n ⊂ I ′′n

(3) 1 + I ′′n is a group.
(4) I ′′nIn ⊂ In

Proof. (1) This is obvious.
(2) This follows from the fact that the elements

hn,ihn,j = pn−jhn,i (for i ≤ j), phn,j, p2 (for i = n)

are divisible by p and hn,k for i ≤ k < n.
(3) The inclusion (2) shows that 1 + I ′′n is multiplicatively closed.

Since (1 − x)−1 =
∑

i≥0 x
i ∈ 1 + I ′′n for x ∈ I ′′n, we get that

1 + I ′′n is a subgroup of Λ(Un/Vn)×.
(4) Let hn,jx1, px2 be generators of I ′′n and pihn,iy be a generator

of In (terminology as in the definition of I ′′n and In). Then,
using lemma 3.52, we get for i ≤ j:

(hn,jx1)(pihn,iy) = pn−j · pihn,ix1y ∈ In.

For i > j, we have:

(hn,jx1)(pihn,iy) = pn−i · pihn,jx1y ∈ In.

Obviously, (px2)(pihn,iy) ∈ In. Therefore, I ′′nIn ⊂ In. �

The following lemma will be needed in the next chapter, where we
calculate certain congruences for zeta functions.

Lemma 3.56. Let (xn) ∈
∏

n≥0 Λ(Un/Vn)× be an element that satisfies
condition (i) in the definition of Ψ. Then xn ≡ ϕ(xn−1) mod In for all
n ≥ 1 if and only if xnϕ(xn−1)−1 ∈ 1 + In for all n ≥ 1.

Proof. “⇒” Since ϕ(hk,i) =
∑pk−i−1

j=0 γp
i+1j = hk+1,i+1 for all k ∈

c with k ≥ 1, i ≤ k, it follows that ϕ(I ′′k ) ⊂ I ′′k+1. Since xk ≡
ϕ(xk−1) mod I ′′k for all k ≥ 1 (cf. lemma 3.55), we get

xn − ϕn(x0) =
n∑
k=1

ϕn−k(xk − ϕ(xk−1)) ∈ I ′′n.

Since ϕn(x0) ∈ Λ(Un,n/Vn) and since 1+I ′′n is a group (cf. lemma 3.55),
we have the equivalences

xn ≡ ϕn(x0) mod I ′′n

⇔ xnϕ
n(x−1

0 ) ∈ 1 + I ′′n

⇔ x−1
n ϕn(x0) ∈ 1 + I ′′n

⇔ x−1
n ≡ ϕn(x−1

0 ) mod I ′′n
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Hence,

x−1
n ϕ(xn−1)− 1

=− (x−1
n − ϕn(x−1

0 ))(xn − ϕ(xn−1))− ϕn(x−1
0 )(xn − ϕ(xn−1))

∈I ′′nIn + In = In,

or equivalently (using proposition 3.51) xnϕ(xn−1)−1 ∈ 1 + In.

“⇐” Since ϕ is a ring homomorphism, ϕ(I ′′k ) ⊂ I ′′k+1 implies ϕ(1+I ′′k ) ⊂
1 + I ′′k+1. Using lemma 3.55, we get

xnϕ
n(x0)−1 =

n∏
k=1

ϕn−k(xkϕ(xk−1)−1) ∈ 1 + I ′′n.

Since ϕn(x0) ∈ Λ(Un,n/Vn) and since 1 + In is a group, we get

ϕ(xn−1)− xn
=(xn − ϕn(x0))(x−1

n ϕ(xn−1)− 1) + ϕn(x0)(x−1
n ϕ(xn−1)− 1)

∈I ′′nIn + In = In �

Proposition 3.57. θ(K1(Λ(P ))) ⊂ Ψ and θS(K1(Λ(P )S)) ⊂ ΨS

Proof. Let x ∈ K1(Λ(P )). Then θ(x) satisfies the first condition
in the definition of Ψ since the diagram

K1(Λ(Un))
p∗ // Λ(Un/Vn)×

p∗

((QQQQQQQQQQ

K1(Λ(P ))

N
77oooooooooo

N ''PPPPPPPPPP

θn

33gggggggggggggggggggggg

θm

++XXXXXXXXXXXXXXXXXXXXXX Λ(Un/Vm)×

K1(Λ(Um)) p∗
// Λ(Um/Vm)×

N

66mmmmmmmmmm

(32)

commutes (see diagram (31)). A similar diagram shows that for y ∈
K1(Λ(P )S), θS(y) satisfies the first condition in the definition of ΨS.

Define

qn : K1(Λ(P ))→ Λ(Un/Vn)×, x 7→ θn(x)ϕ(θn−1(x))−1.

By lemma 3.50, τn ◦LP (x) = log(qn(x)) for all x ∈ K1(Λ(P )). We will
show that qn(x) ∈ 1 + In, i. e. the second condition in the definition of
Ψ is satisfied. It suffices to show that

log : im (qn)→ In

is injective, since then (by proposition 3.51) qn(x) = exp ◦ log(qn(x)) ∈
1 + In.
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Assume that log ◦qn(x) = 0. Then τn ◦LP (x) = 0. Using the fact that
τn is an isomorphism and the description of ker LP in corollary 3.45,
we deduce

x ∈ ker LP = µp−1 × P ab.

But then clearly qn(x) = 0.

We will now prove that

θn,S(y) · ϕ(θn−1,S(y))−1 ∈ 1 + In,S

for y ∈ K1(Λ(P )S). For W ∈ WUn , let ȳ be the image of y in

K1

(
(Λ(P/W )S)〈p〉

)
. Let θn,S(P/W ) (respectively In,S(P/W )) be the

homomorphism θn,S (respectively the module In,S) assigned to P/W .
Since the diagram

K1(Λ(P )S)
N //

��

K1(Λ(Un)S)
p∗ //

��

Λ(Un/Vn)×S

��
K1(Λ(P/W )S)

N // K1(Λ(Un/W )S)
p∗ // Λ(Un/WVn)×S ,

is commutative, the image of θn,S(P )(y) in Λ(Un/WVn)×S is θn,S(P/W )(ȳ).
Using the fact that

In,S = lim←−
W∈WUn

τn,S
(
Zp[[Conj(P/W )]]S

)
= lim←−

W∈WUn

In,S(P/W ),

we get that it suffices to show that

(33) θn,S(P/W )(ȳ) · ϕ (θn−1,S(P/W )(ȳ))−1 ∈ 1 + In,S(P/W ).

By lemma 3.36, we can write ȳ = uv with u ∈ Λ(Z(P/W ))×S and
v ∈ Λ(P/W )×. We have already shown that equation (33) holds for
ȳ = v. Since θn,S(P/W )(u) = up

n
and

pnΛ(Z(P/W )S) ⊂ In,S(P/W ),

it suffices to show that up
n
ϕ(up

n−1
)−1 ∈ 1 + pnΛ(Z(P/W ))S. But this

follows from lemma 3.27. �

Proof of theorem 3.47. We define

L̃P : Ψ→ Ω, (xn)n 7→ (yn)n,

where y0 = LU0/V0(x0) and yn = log(xnϕ(xn−1)−1) for n ≥ 1. We need
to show that this map is well-defined, i. e. that

• yn ∈ In for all n ∈ c
• Trm,n(ym) = pn,m(yn) for all m ≤ n, m,n ∈ c.
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The first condition follows from lemma 3.51 and the definition of Ψ
(recall that I0 = Λ(U0/V0)). By lemma 3.48 and lemma 3.49, we get
for m,n ∈ c, 1 ≤ m < n

Trm,n(ym) = Trm,n ◦ log(xm)− Trm,n ◦ ϕ ◦ log(xm−1)

= log ◦Nm,n(xm)− ϕ ◦ Trm−1,n−1 ◦ log(xm−1)

= log ◦Nm,n(xm)− ϕ ◦ log(Nm−1,n−1(xm−1))

= pm,n ◦ log(xn)− ϕ ◦ pn−1,m−1 ◦ log(xn−1)

= pm,n ◦ log(xnϕ(xn−1)) = pn,m(yn).

Now, it suffices to prove the second condition for n > 0, m = 0. Since
N0,n(x0) = pn,0(xn), we get (using lemma 3.48) that

Tr0,n(log(x0)) = pn,0(log(xn)).

Using lemma 3.49 and the above equation, we get

Tr0,n

(
1

p
log ◦ϕ(x0)

)
= ϕ

(
Tr0,n−1(log(x0))

)
= ϕ

(
pn−1,0(log(xn−1))

)
= pn,0

(
log ◦ϕ(xn−1)

)
.

Therefore, we have

Tr0,n(y0) = Tr0,n

(
log(x0)− 1

p
log(ϕ(x0))

)
= pn,0

(
log(xn)− log(ϕ(xn−1))

)
= pn,0(yn).

We define the continuous continuous group homomorphisms

ω̃ : Ω→ U0/V0, (xn)n≥0 7→ x0 if x0 ∈ U0/V0 ⊂ Λ(U0/V0)

θ̃ : µp−1 × P ab → Ψ, (ζ, g) 7→ (ζgp
n

)n∈c.

By lemma 3.46, θ̃ is well-defined.

Now, we claim that the following diagram is commutative with exact
rows:

1 // µp−1 × P ab // K1(Λ(P ))

θ

��

LP// Zp[[Conj(P )]]

∼= τ

��

ω // P ab // 1

1 // µp−1 × P ab θ̃ // Ψ
fLP // Ω

ω̃ // U0/V0
// 1

(34)

The left square is commutative by lemma 3.46. Commutativity of the
middle square follows from lemma 3.50. The right square is trivially
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commutative. The upper row is exact by corollary 3.45. We need to
show that the lower row is exact.

Injectivity of θ̃ is obvious.

The exactness of the upper row in diagram 34 implies im θ̃ ⊂ ker L̃P .

Let x ∈ ker L̃P . Since log : 1 + In → In is injective for all n ≥ 1
(cf. proposition 3.51), we can write x = (ϕn(x0))n≥0 for some x0 ∈
Λ(U0/V0)×. Since x ∈ Ψ, the image of ϕm(x0) under N : Λ(Um/Vm)→
Λ(Un/Vm) coincides with ϕn(x0) ∈ Λ(Un/Vm) for all m ≤ n. Let y be
an inverse image of x0 under p∗ : K1(Λ(P )) → Λ(U0/V0)×. Then the
commutativity of the diagram

K1(Λ(P ))
N //

p∗
��

K1(Λ(Un))

p∗
��

Λ(U0/V0)×
N // Λ(Un/V0)×

implies θn(y) = p∗ ◦N(y) = N ◦ p∗(y) = N(x0) = ϕn(x0), i. e. θ(y) = x.

Since x ∈ ker L̃P and τ is an isomorphism, we get y ∈ ker LP , i. e.
y = [ζg], ζ ∈ µp−1, g ∈ P , and this gives rise to an inverse image of x

under θ̃. Hence im θ̃ = ker L̃P .

We now show exactness at Ω. By corollary 3.45, im LPab = kerωPab .

This clearly implies im L̃P ⊂ ker ω̃. Since τ is an isomorphism,

τ(im LP ) = im (L̃P ◦ θ) ⊂ im L̃P

and τ(kerω) = ker ω̃, and we get the inclusion ker ω̃ ⊂ im L̃P .

Surjectivity of ω̃ is obvious.

By the five lemma, θ is an isomorphism. �

Corollary 3.58. Let P be a p-adic Lie group that satisfies assumption
3.1. Then

K1(Λ(P )) ⊂ K1(Λ(P )S).

Proof. This follows from the commutativity of the diagram

K1(Λ(P )S) // ΨS

K1(Λ(P ))
∼= //

OO

Ψ.
?�

OO

�

Corollary 3.59.
θS|K1(Λ(P )) = θ
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Proof. By corollary 2.11 the norm on K1(Λ(P )) is the restriction
of the norm on K1(Λ(P )S). �

Lemma 3.60.
ΨS ∩

∏
n∈c

Λ(Un/Vn)× = Ψ

Proof. This follows from the fact that the homomorphisms N,
p∗ and ϕ in the definition of Ψ are restrictions of the corresponding
homomorphisms in the definition of ΨS. �

Lemma 3.61. For every irreducible Artin representation ρ of P , there
is n ∈ c such that ρ is induced by a one dimensional representation χ
of Un. (Then ρ maps γ to a pn-th root of unity.)

Proof. Let ρ : P → GLk(Q) be the irreducible Artin representa-
tion. Let W ⊂ P be an open normal subgroup of P such that ρ factors
through P/W . Put Wi := W ∩ Ui for i ∈ N ∪ {∞}. Then

(35) P/W = U∞/W∞ o 〈β〉/〈βpn〉
for some n ∈ N. By [42, proposition 25], ρ = indPUn(χ) is induced by
an irreducible representation χ of U∞/W∞.

Since U∞ is abelian, χ : U∞/W∞ → Q× is a character. Assume that
n in (35) is minimal. Then U∞/W∞ = Un/Wn. By composing χ with
the projection

Un → Un/Wn = U∞/W∞,

we can regard χ as a character of Un.

Since γp
n

= [α, βp
n
] ∈ W ⊂ ker ρ, the image of γ under ρ is a pn-th

root of unity. �

We summarise what we have proved in the following theorem:

Theorem 3.62. Let P be a p-adic Lie group that satisfies assumption
3.1. Then the set I of pairs (Un, Vn), n ∈ c and the subgroups Ψ and
ΨS satisfy property 2.39.





CHAPTER 4

Hilbert Modular Forms

Deligne-Ribet [12], Wiles [52] and Kakde [24] have proven existence
and uniqueness of the p-adic zeta functions

ξn = ξΣ(FVn|FUn) ∈ Λ(Un/Vn)×S , n ∈ c
for FVn|FUn with respect to Σ (recall definition 2.36). In this chapter,
we will show that (ξn)n∈c ∈ ΨS. The main difficulty is to prove that

(36) ξnϕ(ξn−1)−1 ∈ 1 + In,S.

We will first develop the theory of Hilbert modular forms. For every
field FUn , we will recall the construction of the FUn-Hilbert Eisenstein
series En. We will define a restriction homomorphism on the space of
Hilbert modular forms. Let gn be the restriction of En to the Hilbert
modular variety of F . We will show that the map ϕ of the previ-
ous chapter is the transfer homomorphism and extend it to a map of
Λ(Un/Vn)-adic Hilbert modular forms. Let ϕ(gn−1) be the restriction
of ϕ(En−1) to the Hilbert modular variety of F . We will write gn as a
sum of the form

gn = 2−r(n)ξn +
n∑

m=0

ϕn−m(hm).

Then gn − ϕ(gn−1) = 2−r(n)ξn − 2−r(n−1)ϕ(ξn−1) + hn. We will show
that hn has coefficients in In,S. Now the q-expansion principle implies
ξn ≡ ϕ(ξn−1) mod In,S. By lemma 3.56, this is equivalent to (36).

1. Classical Hilbert Modular Forms

Let K be a totally real algebraic number field over Q and let r = [K :
Q]. Let

K → R, α 7→ α(i), i = 1, . . . , r

be the r embeddings of K into R. We write α � 0 if α is totally
positive, i. e. α(i) > 0 for i = 1, . . . , r. We define the Hilbert modular
group to be

ΓK := SL2(OK)/{±1},
where OK is the ring of integers of K. Let Γ ⊂ SL2(K)/{±1} be a
group commensurable with ΓK . (Two groups Γ1 and Γ2 are commen-
surable if [Γ1 : Γ1 ∩ Γ2] <∞ and [Γ2 : Γ1 ∩ Γ2] <∞.)

113
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Let H = {τ ∈ C|Im(τ) > 0} be the upper half plane of C. Then

GL+
2 (R) := {γ ∈ GL2(R)| det(γ) > 0}

acts on H by linear transformations:

τ 7→ γτ :=
aτ + b

cτ + d
for τ ∈ H and γ =

(
a b
c d

)
∈ GL+

2 (R).

We can define an embedding GL2(K) ↪→ GL2(R)r, using the r embed-
dings of K into R. This induces an operation of GL2(K) on Hr.

For a function f : Hr → C, k = (ki)i ∈ Zr and γ =

(
a b
c d

)
∈

GL2(K), we define f |kγ : Hr → C by

f |kγ(τ) := N((det γ)k/2(cτ + d)−k)f(γτ)

:=

[
r∏
i=1

(a(i)d(i) − b(i)c(i))ki/2(c(i)τi + d(i))−ki

]
f(γτ)

for τ = (τ1, . . . , τr) ∈ Hr. We will write f |kγ := f |(k,...,k)γ for k ∈ Z.

We define an operation of GL2(K) on P1(K):

τ 7→ γτ := (aτ0 + bτ1 : cτ0 + dτ1) ∈ P1(K)

for γ =

(
a b
c d

)
∈ GL2(K), τ = (τ0 : τ1) ∈ P1(K)

We define the set of cusps of Γ to be the set Γ\P1(K).

Remark. There is a natural bijection from Γ\P1(K) to the ideal class
group Cl(K) of K. (See [17, proposition 1.1])

Let f : Hr → C be a holomorphic function. Consider the cusp ∞ =
[(1 : 0)] of Γ. Define

M∞ := M∞(K, f) := {b ∈ K|f(x+ b) = f(x),

(
1 b
0 1

)
∈ Γ},

M∨
∞ := M∨

∞(K, f) := {x ∈ K|Tr(xb) ∈ Z for all b ∈M∞},

where Tr(xb) :=
∑r

i=1 x
(i)b(i). For x ∈M∨

∞, τ ∈ Hr, we put

qxK(τ) := exp(2πi · Tr(xτ)),

where Tr(xτ) :=
∑r

i=1 x
(i)τi.

Definition 4.1. Assume that M∞(K, f) 6= {0}. Then f can be de-
veloped in a Fourier expansion of the form

f(τ) =
∑
x∈M∨∞

a(x, f)qxK(τ), a(x, f) ∈ C,
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which is called the q-expansion of f at the cusp ∞ with respect to Γ.
Let κ = N∞ ∈ Γ\P1(K) be the translation of the cusp ∞ by some
N ∈ GL2(K). Then the q-expansion of f at the cusp κ with respect to
Γ for k ∈ Zr is defined to be the q-expansion of f |kN at the cusp ∞
with respect to N−1ΓN .

We say that f is holomorphic at cusp κ (for k) if a(x, f) 6= 0 implies
x� 0 or x = 0.

Definition 4.2. For r > 1, a Hilbert modular form of weight k ∈ Zr

on Γ is a holomorphic function f : Hr → C such that for all γ ∈ Γ,

f |kγ = f.

For r = 1 (i. e. K = Q), we add the condition that f is holomorphic
at the cusps (for k). We denote the vector space of Hilbert modular
forms of weight k on Γ by Mk(Γ). For any subring A ⊂ C, we define
the subspace

Mk(Γ, A) := {f ∈Mk(Γ)|a(x, f) ∈ A for all x ∈M∨
∞}.

Remark. The set M∞(K) = M∞(K, f) for f ∈Mk(Γ) is independent
of f .

Let L|K be a finite extension of totally real number fields. The con-
tainment K ⊂ L induces the canonical map

∗ : H[K:Q] ↪→ H[L:Q] (τ1, . . . , τr) 7→ (τ1, . . . , τ1︸ ︷︷ ︸
[L:K] times

, . . . , τr, . . . , τr︸ ︷︷ ︸
[L:K] times

).

Let Γ be a group commensurable with ΓL. Then Γ(K) := Γ∩GL2(K)
is commensurable with ΓK . For f ∈Mk(Γ), we define

resL|Kf : H[K:Q] → C, τ 7→ f(τ ∗).

Lemma 4.3. Let k ∈ Z be an integer. Then resL|K defines a homomor-
phism

resL|K : Mk(Γ)→M[L:K]·k(Γ(K)).

If the q-expansion of f is

f(τ) =
∑

y∈M∨∞(L)

a(y, f)qyL(τ), τ ∈ H[K:Q]

then

resL|Kf(τ) =
∑

y∈M∨∞(L)

a(y, f)q
TrL|K(y)

K (τ)

=
∑

x∈M∨∞(K)

a∗(x, f)qxK(τ), τ ∈ H[K:Q],

with a∗(x, f) :=
∑

y:TrL|K(y)=x a(y, f).
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Proof. Let

L→ R, α 7→ α(i,j), i = 1, . . . , [K : Q], j = 1, . . . , [L : K]

be the embeddings of L in R such that α(i,j) = α(i,j′) for α ∈ K and all
i, j, j′. For τ = (τi)i ∈ H[K:Q], we write τ ∗ = (τ ∗i,j)i,j ∈ H[L:Q] such that
τ ∗i,j = τi for all i, j. For y ∈M∨

∞(L), we have

qyL(τ ∗) = exp

2πi

[K:Q]∑
i=1

[L:K]∑
j=1

τ ∗i,jy
(i,j)


= exp

2πi

[K:Q]∑
i=1

τi(TrL|Ky)(i)

 = q
TrL|Ky

K (τ).

Let γ ∈ Γ(K) and let γ∗ be its image in Γ. Then

(resL|Kf)|[L:K]kγ(τ) = NK

(
det(γ)k/2·[L:K](cτ + d)−k·[L:K]

)
resL|Kf(γτ)

= NL

(
det(γ∗)k/2(c∗τ ∗ + d∗)−k

)
f(γ∗τ ∗)

= f |kγ∗(τ ∗) = f(τ ∗) = resL|Kf(τ). �

2. Λ-adic Hilbert Modular Forms

Let K be a number field and let L|K be a field extension such that
W := G(L|K) is a compact p-adic Lie group. Assume that there is a
surjective homomorphism ω : W → Zp and put S := S(W,ω) ⊂ Λ(W )
(cf. definition 2.2). Let

f =
∑
x∈M∨∞

a(x, f)qxK

be a formal sum with coefficients a(x, f) ∈ K1(Λ(W )S). We fix an
isomorphism Cp

∼= C. We define the evaluation of f at a continuous
representation ρ : W → GLn(O), where O is the ring of integers in a
finite extension of Qp, by

f(ρ) :=
∑
x∈M∨∞

a(x, f)(ρ)qxK ,

where a(x, f)(ρ) ∈ C is the evaluation defined in definition 2.13.

Definition 4.4. Let Γ be a group commensurable with ΓK . With the
notation as above, we define f to be a Λ(W )-adic K-Hilbert modular
form with respect to Γ if

f(ρκk) ∈Mk(Γ,OCp)
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for all but finitely many even k ≥ 1 and all Artin representations
ρ : W → GLn(C). We denote the set of Λ(W )-adic Hilbert modular
forms by

M(Γ, L|K).

Let K ′ be a finite extension of K contained in L. Let Γ be a group
commensurable with ΓK′ . By lemma 4.3, we get a homomorphism

resK′|K : M(Γ, L|K ′)→M(Γ(K), L|K),∑
x∈M∨∞(K′)

a(x, f)qxK′ 7→
∑

x∈M∨∞(K′)

a(x, f)q
TrK′|K(x)

K .

Let ∗ : K ↪→ K ′ be the canonical homomorphism. Let N , N ′ be the
maximal abelian extensions contained in L of K, K ′ respectively. Let
Γ be a group commensurable with ΓK . Let Ver : G(N |K)→ G(N ′|K ′)
be the transfer homomorphism. This induces the homomorphisms

Λ(G(N |K))→ Λ(G(N ′|K ′)) ⊂ Λ(G(N ′|K))

and
K1(Λ(G(N |K)S)→ K1(Λ(G(N ′|K)S)).

We define

Ver : M(Γ, N |K)→M(Γ, N ′|K),

∑
x∈M∨∞(K)

a(x, f)qxK 7→ resK′|K

 ∑
x∈M∨∞(K)

Ver(a(x, f))qx
∗

K′


=

∑
x∈M∨∞(K)

Ver(a(x, f))q
[K′:K]·x
K .

We show that this is well-defined. Let χ : G(N ′|K ′) → Q× be a

character and let χVer = χ ◦ Ver : G(N |K) → Q× be the character
induced by χ. Then

Ver(f)(χκkK′)(τ) = f(χVer(κK′)
k
Ver)([K

′ : K]τ)

for the cyclotomic character κK′ of K ′, for any even k ≥ 2 and for all
τ ∈ Hr. By [33, ch. I §5], Ver is the the corestriction

cor
G(L|K′)
G(L|K) : H1(G(L|K),Zp)→ H1(G(L|K ′),Zp).

By [33, cor. 1.5.7],

cor
G(L|K′)
G(L|K) ◦ res

G(L|K)
G(L|K′) = [K ′ : K].

Since

res
G(L|K)
G(L|K′)(σ)(ζ) = σ(ζ)

cor
G(L|K′)
G(L|K) ◦ res

G(L|K)
G(L|K′)(σ)(ζ) = σ(ζ)[K′:K]
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for all ζ ∈ µp∞ , this implies (κK′)Ver = (κK)[K′:K]. Hence

Ver(f)(χκkK′)(τ) = f(χVerκ
[K′:K]·k
K )([K ′ : K]τ)

for f ∈ M(Γ, N |K) and all even k ≥ 2 and thus Ver(f)(χκkK′) ∈
Mk(Γ,OK).

3. Existence of the p-adic Zeta Function

We keep the notation from the previous section. Assume that F∞|F
and G = G(F∞|F ) satisfy assumption 2.1 and 3.1 and that Ψ and ΨS

satisfy property 2.39.

Theorem 4.5. Let ξn be the p-adic zeta function for FVn|FUn. Then
(ξn)n ∈ ΨS.

Corollary 4.6. The p-adic zeta function for F∞|F with respect to Σ
exists and in this case, the main conjecture is true.

Proof. See theorem 2.40. �

For the proof of the above theorem, we will need the Λ-adic Eisen-
stein series, which we will now define. Let n ∈ c be a fixed integer.
Henceforth, we write Fn for FUn and Kn for FVn . Let

κn : G(Fn(µp∞)|Fn)→ Z×p
be the cyclotomic character. Put r(n) := [Fn : Q]. Then r(n) = pnr,
where r := [F : Q].

Let An be the monoid of non-zero integral ideals of Fn prime to Σ. Let
σa ∈ Un/Vn be the Artin symbol of a ∈ An. We define

R(Fm) := {(a, x)|a ∈ Am, x ∈ O�0
Fm ∩ a},

where O�0
Fm

:= {x ∈ OFm|x� 0}. Put R := R(Fn).

Let f be an integral ideal of OFn . We define

Γ00(f) := {
(
a b
c d

)
∈ SL2(Fn)|a, d ∈ 1 + f, b ∈ D−1, c ∈ fD},

where D is the different1 of Fn. Then Γ00(f) is commensurable with
ΓFn .

1The different of Fn is defined to be the inverse of the fractional ideal {x ∈
Fn|Tr(xb) ∈ Z for all b ∈ OFn

}.
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Lemma 4.7. There is an ideal fn ⊂ OFn with all its prime factors in Σ
such that the series

En := 2−r(n)ξn +
∑

(a,x)∈R

κn(σa)
−1σaq

x
Fn ∈M(Γ00(fn), Kn|Fn)

is a Λ(Un/Vn)-adic Hilbert modular form with respect to Γ00(fn). We
call it the Λ(Un/Vn)-adic Eisenstein series.

Proof. Let χn : Un/Vn → C× be an even (i. e. χn(g) = χn(g−1)
for all g ∈ Un/Vn) Artin character. Then χn induces a homomorphism

χn : An → C×, χn(a) := χn(σa).

There is a norm homomorphism defined by

N : An → C×, N(a) := (OFn : a) = κn(σa).

By [37, proposition 8], there is an integral ideal fn in Fn with all its
prime factors in Σ and a (classical) modular form Gk,χn ∈Mk(Γ00(fn))
with standard q-expansion

Gk,χn = 2−r(n)LΣ(1− k, χn) +
∑

x∈O�0
Fn

( ∑
x∈a∈An

χn(a)N(a)k−1

)
qxFn .

Using the interpolation property of ξ, we get

En(χnκ
k
n) = 2−r(n)ξ(χnκ

k
n) +

∑
(a,x)∈R

χnκ
k−1
n (σa)q

x
Fn

= 2−r(n)LΣ(1− k, χn) +
∑

x∈O�0
Fn

( ∑
x∈a∈An

χn(a)N(a)k−1

)
qxFn

= Gk,χn ∈Mk(Γ00(fn)).

Thus En is a Λ(Un/Vn)-adic Fn-Hilbert modular form. �

We recall the following well-known facts on the transfer homomor-
phism:

Lemma 4.8. The transfer homomorphism Verm,n : Um/Vm → Un/Vn,
m ≤ n, induces the homomorphism

ϕn−m : Λ(Um/Vm)→ Λ(Un/Vn), σ 7→ σp
n−m

for σ ∈ Um/Vm.

For a ∈ Am, we have

ϕn−m(σa) = σaOFn .
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Proof. For σ ∈ Um we write σ = αiβp
nj+pmkz with i, j ∈ Zp,

k ∈ {0, . . . , pn−m − 1}, z ∈ Z(Um). The explicit description of the
transfer homomorphism (cf. [33, ch. I, §5]) yields

Verm,n(σVm) =

pn−m−1∏
l=0

βp
mlσβ−p

m(l+k)Vn

= (αiβp
njz)p

n−m
Vn = σp

n−m
Vn

(note that (βp
mlUn)(αiβp

nj+pmkz) = βp
m(l+k)Un).

The second statement is part of class field theory. �

Proof of theorem 4.5. For P ∈ Ob(SZp), let I(P ), ΨS(P ) be
the sets defined in the previous section. Since

K1(Λ(G)) = lim←−
n

K1(Λ(G/Vn))

(cf. lemma 3.38), we get ΨS(G) = lim←−n ΨS(G/Vn). Since I(G) =⋃
n I(G/Vn), it suffices to prove the theorem for all groupsG/Vn, n ∈ N.

Since the image of γ in G/Vn is of finite order, we may assume that γ
is of finite order.

We need to prove the conditions (i) and (ii) in the definition of ΨS.
Let Nm,n : Λ(Um/Vm)×S → Λ(Un/Vm)×S be the norm map and pn,m :
Λ(Un/Vn)×S → Λ(Un/Vm)×S be the projection map. For (i), we need to
show

Nm,n(ξm) = pn,m(ξn) for m ≤ n, m, n ∈ c.
By definition 2.36 and lemma 2.14, this is equivalent to the equation

ξm(ind
Un/Vm
Um/Vm

(χκkn)) = ξn(inf
Un/Vm
Un/Vn

(χκkn))

for all characters χ : Un/Vm → Q× and all k ≥ 1, where inf
Un/Vm
Un/Vn

is

defined by

inf
Un/Vm
Un/Vn

(χκkn) : Un → C×, σ 7→ (χκkn)(σVn).

Equivalently,

LΣ(1− k, ind
Un/Vm
Um/Vm

(χ)) = LΣ(1− k, inf
Un/Vm
Un/Vn

(χ)).

But this is true by proposition 2.34.

We will now prove condition (ii):

ξnϕ(ξn−1)−1 ∈ 1 + In,S for all n ∈ c

For 0 ≤ m ≤ n, we put fm := fn ∩ OFm . Then

Γ00(fm) = Γ00(fn) ∩ Fm.
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We define

gm := resFm|F (Em) ∈M(Γ00(f0), Km|F ) and

ϕ(gn−1) := resFn−1|F (Ver(En−1)) ∈M(Γ00(f0), Kn|F ).

Remark. If gn−1 =
∑

x axq
x
F , then ϕ(gn−1) =

∑
x ϕ(ax)q

px
F .

We will now determine the q-expansion of gn−ϕ(gn−1) by writing R as
a disjoint union of subsets and by calculating the corresponding sums
separately.

We define

Rm :=
{

(a, x) ∈ R
∣∣∣G(Fn|Fm) = {σ ∈ G(Fn|F )|σ(a) = a, σ(x) = x}

}
.

Then R = ·
⋃
mRm. For 1 ≤ m ≤ n, define

R′m := {(b, y) ∈ R(Fm)|(b 6= cOFm for all c ∈ Am−1) or y 6∈ Fm−1}.

and put R′0 := R(F0). Let (b, y) ∈ R′m. For all σ ∈ G(Fn|Fm), we have
σ(bOFn) = bOFn and σ(y) = y. If m ≥ 1, there is σ ∈ G(Fn|Fm−1)
such that σ(bOFn) 6= bOFn or σ(y) 6= y. Hence we can define the map

R′m → Rm, (b, y) 7→ (bOFn , y).

By the above considerations, this map is bijective.

Define R′′m ⊂ R′m to be a set of representatives of G(Fm|F )\R′m. Let
l = l(b) be the largest element of {0, . . . ,m} such that σb ∈ Um,l/Vm.
Then

βσbβ
−1 = γp

ltσb

for some t ∈ Z×p . (We may assume σb = αp
liβjz with i ∈ Z×p , j ∈

pmZp and z ∈ Z(Um,l/Vm) and get the above identity from a direct
calculation.) For s ∈ G(Fm|F ), clearly σs(b) = sσbs

−1. Recall

G(Fm|F ) = G/Um = {1, β̄, . . . , β̄pm−1},

where β̄ is the image of β in G(Fm|F ). Hence we get

∑
s∈G(Fm|F )

σs(b) =

pm−1∑
i=0

βiσbβ
−i =

pm−1∑
i=0

σbγ
plti = plσbhm,l,
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where hm,l ∈ Λ(Um/Vm) is defined as in the previous section. By lemma
4.8, ϕn−m(σb) = σbOFn for b ∈ Am. Put Trn := TrFn|F . Then

gn =2−r(n)ξn +
n∑

m=0

∑
(b,y)∈R′′m

∑
s∈G(Fm|F )

κn(σbOFn )−1σs(bOFn )q
Trn(s(y))
F

=2−r(n)ξn +
n∑

m=0

∑
(b,y)∈R′′m

∑
s∈G(Fm|F )

ϕn−m
(
κm(σb)−p

n−m
σs(b)

)
q

Trn(s(y))
F

=2−r(n)ξn +
n∑

m=0

∑
(b,y)∈R′′m

pl(b)ϕn−m
(
κm(σb)−p

n−m
σbhm,l(b)

)
q

Trn(y)
F ,

Thus we get

gn − ϕ(gn−1) =2−r(n)ξn − 2−r(n−1)ϕ(ξn−1)

+
∑

(b,y)∈R′′n

pl(b)hn,l(b)κn(σb)−1σbq
Trn(y)
F .

Here, all the non-constant coefficients in the q-expansion are elements
of In,S. The q-expansion principle (cf. [12]) implies ξn ≡ ϕ(ξn−1) mod
In,S. By lemma 3.56, this is equivalent to ξnϕ(ξn−1)−1 ∈ 1+In,S. Hence
(ξn)n ∈ ΨS. �



Appendix: Commutative Main Conjecture

Assume that F∞|F is an abelian field extension that satisfies assump-
tion 2.1. Then the validity of the main conjecture is well known ([52]
and [24]). We show here that our formulation is equivalent to another
well-known formulation.

We assume F = Q and F∞ = Q(µp∞)+. Then

G = G(F∞|F ) ∼= Z×p /{±1} ∼= (µp−1/{±1})× (1 + pZp)

and hence G has no element of order p. HenceHΛ
S(G) = Λ(G)-modS-tors

and K0(Λ(G),Λ(G)S) = K0(Λ(G)-modS-tors). The exact sequence (4)
becomes

0→ Λ(G)× → Λ(G)×S
∂→ K0(Λ(G)-modS-tors)→ 0,

where ∂(f) = [Λ(G)/Λ(G)g] + [Λ(G)/Λ(G)s] for f ∈ Λ(G)S with f =
gs−1, g ∈ Λ(G), s ∈ S. Then ∂ induces the isomorphism

∂ : Λ(G)×S /Λ(G)×
∼=−→ K0(Λ(G)-modS-tors).

We will construct an inverse homomorphism of ∂. Let M be a finitely
generated projective S-torsion module. By the structure theory of
finitely generated torsion Λ(G)-modules, there is an exact sequence

0→
r⊕
i=1

Λ(G)/Λ(G)fi →M → D → 0,

where fi are non-zero divisors of Λ(G) and D is a module of finite
cardinality. Let FM := f1 · · · fr ∈ Λ(G) be the characteristic element
of M . (FM is defined up to units.)

We show that [D] = 0 ∈ K0(Λ(G)-modS-tors). There is a commutative
diagram

K1(Λ(G)S)
[(M,f)] 7→[(pM,f |pM )]

//

����

K1(Λ(G)S)

����
K0(Λ(G)-modS-tors)

[M ]7→[pM ]
// K0(Λ(G)-modS-tors).

Since pΛ(G)S
∼= Λ(G)S and K0(Λ(G)S) is generated by elements of the

form [(Λ(G)nS, f)], the top arrow is the identity. Hence the lower row is

123
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an isomorphism. Since there is n ∈ N such that pnD = 0, we get that
[D] = 0. Therefore,

∂(FM) =
r∑
i=1

∂(fi) =

[
r⊕
i=1

Λ(G)/Λ(G)fi

]
= [M ]

and hence the inverse homomorphism of ∂ is

K0(Λ(G)-modS-tors)→ Λ(G)×S /Λ(G)×, [M ] 7→ FM mod Λ(G)×.

Let chG(M) = FMΛ(G) be the characteristic ideal of M . Then

[Λ(G)/chG(M)] = ∂(FM) = [M ] ∈ K0(Λ(G)-modS-tors).

Since G is abelian, every irreducible Artin representation ρ is already a
character. It is well known that F∞|F is unramified outside p. Hence
Σ ⊂ Z is a finite set of primes with p ∈ Σ. We can write

LΣ(s, ρ) =
∏
q 6∈Σ

(1− ρ(σq)q
−s)−1,

where σq ∈ G is the element such that σqζ = ζq for all roots of unity
ζ ∈ F∞.

Let X = XΣ(F∞|F ) be the Galois group of the maximal abelian p-
extension of F∞ unramified outside Σ. Let I(G) the kernel of the
augmentation map Λ(G) → Zp. We call an element f ∈ Q(G) a
pseudo-measure if (g − 1)f ∈ Λ(G) for all g ∈ G. For the definition of
the integral ∫

G

ρ(g)df(g)

of an Artin character ρ : G→ Q× against a pseudomeasure f , we refer
to [9, §3.2]. We denote by

κ : G(Q(µp∞)|Q)
∼=−→ Z×p

the cyclotomic character.

Main Conjecture 5.1.

• There is a unique element ξ = ξΣ ∈ Λ(G)×S such that

(37) ξΣ(ρκr) = LΣ(1− r, ρ)

for all continuous characters ρ : G→ Q× and all even integers
r ≥ 2.
• ∂(ξΣ) = [XΣ]− [Zp]
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Main Conjecture 5.2.

• There is a unique pseudo-measure ξ ∈ Q(G)× such that

(38)

∫
G

κ(g)rdξ(g) = (1− pr−1)ζ(1− r)

for all even integers r ≥ 2.
• chG(X) = I(G)ξ

Remarks. • In the proof of one of the above two conjectures,
the second part constitutes the main difficulty. (The name
“Main Conjecture” often denotes only this part.)
• For a proof of main conjecture 5.2, see [9].

Proposition 5.3. Main conjecture 5.1 implies that main conjecture
5.2 holds.

Proof. Assume that equation (37) holds for ρ = 1 (the trivial
character) and Σ = {p}.

We first show that ξ = ξ{p} is a pseudo-measure. Let θ be a generator
of I(G) as a Λ(G)-module. Then

∂(θ) = [Λ(G)/I(G)] = [Zp],

and hence (by the assumption on ξ)

∂(ξθ) = ∂(ξ) + ∂(θ) = [X] = ∂(FX).

Therefore ξθ
FX
∈ Λ(G)× and thus ξθ ∈ Λ(G). Since

I(G) = 〈g − 1|g ∈ G〉Λ(G),

we have

(g − 1)ξ = θ−1(g − 1) · ξθ ∈ Λ(G) for all g ∈ G,

i. e. ξ is a pseudo-measure.

By assumption, ξ(κr) = LΣ(1−r,1) = (1−pr−1)ζ(1−r). By definition
of the integral, ξ(κr) =

∫
G
κr dξ for all positive even integers. By [9,

lemma 4.2.2], this determines ξ uniquely.

We get the second statement of main conjecture 5.2 from the equiva-
lences

(39)

[X] = [Zp] + ∂(ξ) ⇔ ∂(FX) = ∂(θξ)

⇔ FX ≡ θξ mod Λ(G)×

⇔ chG(X) = I(G)ξ.

�
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Proposition 5.4. Assume that main conjecture 5.2 is true. Then
equation (37) holds for ρ = 1 and Σ = {p}. The element ξ ∈ Λ(G)×S
is determined uniquely by its values on κr for positive even integers r.
The equation

∂(ξ) = [X{p}]− [Zp]

holds.

Proof. Let g be a topological generator of G. Then the Λ(H)-
module

Λ(G)/Λ(G)(g − 1) ∼= Zp

is finitely generated and hence g − 1 ∈ S. Since µ(F∞|F ) = 0 (see
[15]) and since X and Λ(G)/(g − 1)ξΛ(G) have the same µ-invariant,
this implies that p - (g− 1)ξ. By lemma 2.4, this implies (g− 1)ξ ∈ S.
Therefore, ξ ∈ Λ(G)×S .

Since (1− pr−1)ζ(1− r) = L{p}(1− r,1), we get

ξ(κr) = L{p}(1− r,1)

for all positive even integers r. By assumption, these equations deter-
mine ξ uniquely.

The second statement of main conjecture 5.1 for Σ = {p} follows from
the equivalences (39). �

Remark. In the above argument, we used the fact that µ(F∞|F ) = 0.
This is only known when F |Q is abelian. For more general fields, we
need the assumption µ(F∞|F ) = 0 to deduce proposition 5.4.

Proposition 5.5. Let q 6∈ Σ be a prime number and put Σ′ := Σ∪{q}.

• There is an element πq ∈ Q(G)× such that

πq(ρκ
r) = 1− ρ(σq)q

r−1

for all even integers r ≥ 2.
• ∂(πq) = [XΣ′ ]− [XΣ]

Proof. We put πq := 1− 1
q
σq. We only need to show that ∂(πq) =

[XΣ′ ]− [XΣ].

Let FΣ := (F∞)Σ(p) be the maximal pro-p extension of F∞ unramified
outside Σ. Recall that GΣ = G(FΣ|F∞) and put GΣ′

Σ := G(FΣ′|FΣ).
Since H2(GΣ,Qp/Zp) = H−2(C•)∨ = 0 (see lemma 2.19), we get the
exact five term sequence

0→ H1(GΣ,Qp/Zp)→ H1(GΣ′ ,Qp/Zp)→ H1(GΣ′

Σ ,Qp/Zp)
GΣ → 0.



APPENDIX: COMMUTATIVE MAIN CONJECTURE 127

Put XΣ′
Σ := H1(GΣ′

Σ ,Qp/Zp)
∨. We dualise the above exact sequence to

get the exact sequence

0→ (XΣ′

Σ )GΣ
→ XΣ′ → XΣ → 0.

Hence,

[XΣ′ ]− [XΣ] = [(XΣ′

Σ )GΣ
].

By [33, 10.5.4],

H1(GΣ′

Σ ,Qp/Zp) ∼= lim−→
F ′

⊕
q|q

H1(GF ′q ,Qp/Zp),

where the limit is over all finite extensions F ′ of F inside FΣ, q runs
through the prime ideals of F ′ that divide q and GF ′q is the absolute

Galois group of F ′q. Recall thatH1(W,Zp) = W ab(p) is the p-component
of the abelianisation of W for any profinite group W . Then

XΣ′

Σ = lim←−
F ′

⊕
q|q

Gab
F ′q

(p) =
⊕
q|q

Gab
FΣ,q

(p)

Since FΣ,q|Fq is unramified and F ab
q (p)|FΣ,q is totally ramified (F ab

q (p)
is the maximal abelian pro-p extension of the q-completion of F ), we
get that

Gab
FΣ,q

(p) = T (F ab
q (p)|Fq) =: Tq

is the inertia group of F ab
q (p)|Fq.

Put KΣ := G(FΣ|F ) and KΣ,q := G(FΣ,q|Fq). Let

Gq = G(FH,q′ |Fq) ⊂ Γ

be the decomposition group of q′ := q∩FH over F . There are the short
exact sequences

1→ GΣ → KΣ → G→ 1

1→ GFH,q′
→ KΣ,q → Gq → 1.

We may regard XΣ′
Σ as a Λ(KΣ,q)-module and as a Λ(KΣ)-module.

Then ⊕
r|q

Gab
FΣ,r

(p)⊗Λ(KΣ) Λ(G) = Gab
FΣ,q

(p)⊗Λ(KΣ,q) Λ(G)

= Tq ⊗Λ(KΣ,q) Λ(Gq)⊗Λ(Gq) Λ(G)

Equivalently,

(XΣ′

Σ )GΣ
= ind

Gq
G

(
(Tq)GFH,q′

)
.

The ramification group of F ab
q (p)|Fq is pro-p and pro-q, hence it is

trivial. Since vq(F
ab
q (p)×)/vq(F

×
q ) = Qp/Zp, [31, II, 9.15] implies

Tq ∼= Hom
(
Qp/Zp, µ(F ab

q (p))
)
.
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By lemma 2.26, Gq is an open subgroup of Γ and hence 〈σq〉 = Gq
∼= Zp.

Thus, since µp∞ ⊂ F ab
q (p) and µp∞ = Qp/Zp(1),

Tq = Hom (Qp/Zp,Qp/Zp(1)) = Zp(1).

Since πq(x) = 0 for x ∈ Zp(1), we get

∂(πq) = [Λ(G)/πqΛ(G)] = [Zp(1)⊗Λ(Gq) Λ(G)]

= [ind
Gq

G (Zp(1)GFH,q′
)] = [(XΣ′

Σ )GΣ
]. �

Proposition 5.6. Assume that the main conjecture 5.1 is true for
Σ = {p}. Then it is true for any finite set Σ of primes of F with
p ∈ Σ.

Proof. Assume that we have proven this for some set Σ and set
Σ′ = Σ∪{q} for a prime q 6∈ Σ. By proposition 5.5, there is an element
πq ∈ Q(G)× such that

πq(ρκ
r) = LΣ(1− r, ρ)/LΣ′(1− r, ρ)

for all even r ≥ 2. Define ξΣ′ := ξΣπ
−1
q ∈ Q(G)×. Then ξΣ′(ρκ

r) =
LΣ′(1− r, ρ) for all even r ≥ 2.

The second assertion follows from

∂(ξΣ′) = ∂(ξΣ)− ∂(πq) = [XΣ′ ]− [Zp]

(cf. proposition 5.5). �
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[45] R. Swan, Algebraic K-theory, LNM 76, Springer, 1968.



BIBLIOGRAPHY 131

[46] P. Symonds, T. Weigel, Cohomology of p-Adic Analytic Groups, in:
M. du Sautoy, D. Segal and A. Shalev, Editors, New Horizons in
pro-p Groups, Progr. Math. 184, Birkhäuser (2000), 349-410.
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leitung verfasst habe, dass ich keine anderen als die angegebenen Quel-
len und Hilfsmittel benutzt habe, und dass ich alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entlehnt sind, durch
die Angabe der Quellen kenntlich gemacht habe.

Datum Unterschrift




