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In this seminar we give an introduction to the theory of vertex algebras. The
main reference is [FBZ].

Introduction and definition

Introduction (N. Scheithauer)
Introduction to the subject and overview over the following talks.

Definition and properties I (N. Scheithauer)
Definition of a field (1.2.1), locality (the standard definition is 1.2.5), defi-
nition of a vertex algebra (1.3.1), subalgebras, ideals and homomorphisms
(1.3.4).
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Definition and properties

Definition and properties II

Normally ordered product of fields (2.2.2), Dong’s Lemma (2.3.4), Recon-
struction Theorem (2.3.11) (Dong’s Lemma and the Reconstruction Theorem
are the main results here and should be proved), definition of a conformal vec-
tor, a conformal vertex algebra (2.5.8) and a vertex operator algebra ([FHL],
2.2.1)

Definition and properties III

Goddard’s Uniqueness Theorem (3.1.1), associativity (3.2.1) (both should be
proved), Borcherds’ Identity (3.3.10) (the proof by contour integrals can be
sketched if time permits), a short remark on operator product expansions
(eq. 3.3.10) and conformal vertex algebras (3.4.3), Reconstruction Theorem
(4.4.1)
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Lie algebras and examples of vertex algebras

Lie algebras (M. Schwagenscheidt)
Definition, examples, semisimple and simple Lie algebras, Killing form, Car-
tan subalgebra, Cartan decomposition, Weyl group, Dynkin diagram, classi-
fication, Serre’s construction, modules, weights, universal enveloping algebra,
PBW Theorem, Verma modules, finite-dimensional irreducible modules. The
lecture of Carter in [CSM] gives a nice overview. Proofs can be found in [Hm]
and [S].

Examples of vertex algebras I (Y. Li)
Free bosons (2.1, 2.2, 2.3) (free bosons denote the vertex algebra associated
to a Heisenberg Lie algebra, the main result here is Theorem 2.3.7, more ge-
nerally S(ĥ−) has a vertex algebra structure, cf. sections 3.5, 4.7 in [K], the
vertex algebra structure follows easily from the Reconstruction Theorem),
lattice vertex algebras (5.4) (the better reference here is [K], section 5.4),
boson-fermion correspondence (5.3) (this should only be presented if time
permits, cf. also section 5.1 in [K]).
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Further examples and modules

Examples of vertex algebras II

Affine Kac-Moody algebras and their vertex algebras (2.4), the Segal-Suga-
wara construction (2.5.10 and 3.4.8), the simple quotient Lk(g) (4.4.3). [FZ]
is also a good reference for this talk.

Modules over vertex algebras

Definition of a module (5.1.1, cf. also section 4.1 in [FHL]), Proposition 5.1.2,
Remark 5.1.4, definition of a conformal module (5.1.9), description of the ir-
reducible modules of the lattice vertex algebra VL (5.5.5, the modules are
parametrised by L′/L, if time permits the proof in [D] can be sketched) and
of the affine vertex algebra Lk(g) (5.5.5).
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Zhu’s Theorem and the Verlinde Formula

Zhu’s Theorem (S. Möller)
Statement of the theorem, sketch of proof and examples ([Z]).

The Verlinde Formula (S. Möller)
Statement of the theorem, sketch of proof and examples ([H]).
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The monster vertex algebra and the moonshine conjec-
ture

The monster vertex algebra

The main reference here is [FLM]. Construction of the monster vertex al-
gebra V M (10.3.32), definition of the untwisted (8.5.5) and twisted (9.2.23),
(9.2.27) vertex operators, the graded dimensions of V M (Theorem 10.5.7 for
k = 1), the monster as automorphism group of V M (Theorem 12.3.4), the
invariant bilinear form on V M (Corollary 12.5.4). The monster vertex algebra
V M is an orbifold of the vertex algebra of the Leech lattice (cf. section 5.7.1
in [FBZ]).

The moonshine conjecture

A good reference for this talk is Borcherds’ original paper [B1]. [B2] gives
a nice overview. Statement of Conway and Norton’s moonshine conjecture
([B1], section 1), the monster Lie algebra (sections 6 and 7), Borcherds’ proof
of the moonshine conjecture (sections 8 and 9). We remark that using results
of Cummins and Gannon [CG] it is possible to simplify the last step of the
proof.

Frankfurt, 21st January, 2016
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