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The common theme of the Fontaine-Mazur conjectures is the idea that irreducible p-adic repre-
sentations ρ : Gal(Q|Q) −→ GLn(Qp) of the absolute Galois group, which look like they come
from algebraic geometry actually do come from algebraic geometry. Since their formulation
in 1993, they have spawned a large body of work. While the case of one-dimensional repre-
sentations is essentially proved via class field theory, higher dimensional cases are much more
difficult to tackle. To study representations of higher dimension, it is natural (and has proved
successful) to use modularity lifting results: Show that ρ actually comes from an automorphic
representation of some G(Afin), the finite adelic points of a reductive group G.

Major progress has been made by Colmez, Emerton and Kisin. The final result of this seminar
is the following:

Theorem 1 (Fontaine-Mazur conjecture 3c for n = 2). Let E be a finite extension of Qp and let
ρ : Gal(Q|Q) −→ GL2(E) be a continuous, odd, absolutely irreducible representation that only
ramifies at finitely many places and of which the restriction toGal(Qp |Qp) is de Rham1 of distinct
Hodge-Tate weights. Then a twist of ρ by a character is modular.

We will use a number of results as black boxes and concentrate our efforts on understanding
the role Emerton’s completed cohomology plays in the proof. At first glance it might seem as
if completed cohomology is a technical and auxiliary construction, but according to Emerton
it should be thought of as a suitable replacement for a space of p-adic automorphic forms —
which so far is either undefined or not accessible by representation-theoretic methods. One
of its technical key features is that completed cohomology carries a Hecke, Galois and G(Qp)-
action. It has for example been used to construct eigenvarieties and, as wewill see in the course
of this seminar, to realize certain parts of the p-adic local Langlands correspondence.

In [Eme06] and [Eme11], he uses this completed cohomology to formulate and later prove a
certain local-global compatibility in the p-adic Langlands programme. This is the main focus
of our seminar; deducing the theorem above is then quite simple in comparison.
1In the original article, the property “potentially semi-stable” is used here instead. Today we know by Berger’s
proof of the p-adic monodromy theorem that the properties “de Rham” and “potentially semi-stable” are in fact
equivalent, which at the time the Fontaine-Mazur conjecture was formulated was still a conjecture. We decided
to just use the de Rham property, since we can then omit introducing the notion of potential semistability.
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We will mostly follow [Bre12] for this seminar, although we would like to point out that many
arguments are taken from [Eme11], which sometimes provides more (or at least different) de-
tails.

Talk 1: The classical Langlands correspondences. The classical local Langlands corre-
spondence gives a “well-behaved” bijection between isomorphism classes of certain n-dimen-
sional Weil-Deligne representations of a local field F and those of certain representations of
GLn(F ). They are completely proven. We focus on the special case n = 2.

First we explain the equivalence of Galois representations of Gal(F |F ) with coefficients in a
finite extension ofQℓ , where ℓ is different from the residue characteristic of F , andWeil-Deligne
representations. Then we introduce the notions of smooth and admissible representations of
GL2(F ) with complex coefficients and mention that smooth irreducible ones are automatically
admissible. We mention that one can attach L- and ε-factors to all those representations. Then
we can state the local Langlands correspondence: There is a bijection between isomorphism
classes of semisimple two-dimensional Weil-Deligne representations of F and those of smooth
admissible representations of GL2(F ) respecting L- and ε-factors and compatible with character
twisting.

Next we look at the global picture, which is still conjectural. We define an automorphic rep-
resentation of a global field K as a representation of GL2(AK ) (whereAK is the ring of adeles
of K ) occuring as a subquotient in the standard L2-representation. Each such representation is
built from local ones for each place of K by the Tensor Product Theorem. Conjecturally, there
should be a correspondence between such automorphic representations and representations of
Gal(K |K). Moreover, this correspondence should be compatible with the local one in a pre-
cise sense: This is the local-global compatibility conjecture for the classical (i. e., not p-adic)
Langlands programme and is very similar to the analogous compatibility in class field theory.

Talk 2: (ϕ,Γ)-modules andp-adicHodge theory. In this talk we introduce (ϕ,Γ)-modules
following [Col10]. The category of representations of Gal(Qp |Qp) on p-adic vector spaces is a
equivalent to the full subcategory of étale (ϕ,Γ)-modules.

The next citations all refer to [Col10]. Begin by introducing the field E and the rings OE and
O+

E from §i.1.1 (see also §1 in the introduction). Then cover the material from §i.2.1, §i.2.2 and
§i.3.1.

After that give a short overview on some notions of p-adic Hodge theory, where we refer to
[BC09]. We need the period rings BHT, BdR and Bcris. We suggest to give the definition [BC09,
Def. 2.4.7] of BHT following the motivation in [BC09, §2.1–3], but for the other period rings
to only explain how they relate to each other: BdR is a filtered ring whose associated graded
is BHT and which contains Bcris as a subring. Then you can define Hodge-Tate, de Rham and
crystalline Galois representations and Hodge-Tate weights as in [BC09, §5]. We will not need
any further details except these basic definitions.
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Without any examples, it is hard to get a feeling for the meaning of these properties. We
recommend you mention [BC09, Ex. 6.3.9, Cor. 9.3.2] and [Dal05, §1].

Other useful references for p-adic Hodge theory might be [Ber04, chap. I, II] or [FO08].

Talk 3: The p-adic local Langlands correspondence via the Colmez functor. In the
p-adic Langlands programme we look on the one side at two-dimensional representations of
Gal(Qp |Qp)with coefficients in a finite extension ofQp , the category of which is fully faithfully
embedded into the category of (ϕ,Γ)-modules. On the other side we look at representations of
GL2(Qp) now on p-adic Banach spaces. There is a functor from the category of the latter ones
to the category of étale (ϕ,Γ)-modules constructed by Colmez (sometimes called the “Montréal
functor”).

We start with some background on p-adic representations of GL2(Qp). Give the definitions
at the beginning of [Col10, §iii.1.3], skip remark iii.1.3 and lemmas iii.1.4/5, then explain the
content of §iii.1.4. For this you need the tree introduced in §iii.1.2 (middle of p. 72) and some of
the notation from §iii.1.1. Explain the notationW(0)(Π) which is introduced at the beginning
of §iii.1.6 and state proposition iii.1.16. We probably won’t have time for its proof, but you
should mention remark iii.1.17. Finally introduce the notion of duals from the beginning of
§iii.2.1.

After these preliminaries we can start with the construction of Colmez’s functor. Explain the
content of §iv.1.1–3 and lemma iv.1.8, proposition iv.1.9, then continue with §iv.2.2. As a
motivation for this construction, youmight also want to read §6 in the introduction and [Bre12,
§3.1]. Some technical results from earlier sections that we did not cover might be quoted here
(such as lemma iii.1.10); we won’t have time to go into detail. At some point theorem iv.2.1
is quoted, which rests on a classification of representations of GL2(Qp) that we unfortunately
cannot cover. Instead of stating this theorem, just explain that we rest on such a classification
at this point. Finally explain §iv.2.3.

After these efforts we know how to associate a Galois reprenstation to a representation of
GL2(Qp). For the Langlands correspondence we need to be able to go in the other direction as
well. Although Colmez also constructs such a functor, we follow [Bre12, §3.2] instead, where
deformation theory is used to associate a representation of GL2(Qp) to certain Galois repre-
sentations. This is less general, but more suited to our application. We cannot say anything
about the proof of theorem 3.3, but apart from that you should explain the material from §3.2.

Talk 4: Modular curves andmodular Galois representations. This talk introduces mod-
ular curves and Hecke operators and sketches the construction of the Galois representation
attached to a normalized eigenform. In this whole talk we will always work with Q-schemes,
so we don’t have to bother with non-invertible integers.

Introduce elliptic curves and level structures as in [DR73, §iv.2.3, §iv.3, p. 68ff.] and [Eme06,
§2.4] (note that “levelH -structures” and “levelKf -structures” are the same). State that themod-
uli functors that associate to aQ-scheme the set of isomorphism classes of such level structures
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are representable by affine curves over Q whenever n is large resp. Kf is small enough, and
that in the remaining cases we still have coarse moduli spaces.2

The complex points of these curves can be identified with appropriate quotients of the upper
half plane, see [Con09, §2.3.1, theorem 4.2.6.2], [DS05, §1.5]. Using the strong approximation
theorem for GL2 [Bum97, p. 293/294] they can alternatively be described as quotients of the
adelic points of GL2.

After that define Hecke operators acting on the étale cohomology H1
ét(Y ×Q Q,Qp) of mod-

ular curves. Here you could follow [Hid86, p. 565/566]. There, Φ is a congruence subgroup
of SL2(Z) and Y is the quotient of the upper half plane by Φ and M is an abelian group with
a certain additional action of a semigroup, which we may take as the trivial one here.3 For
certain matrices α an operator [ΦαΦ] on the (singular) cohomology with coefficients in the
constant4 sheaf M of Y is defined. The very same construction still works when we replace Φ
by a subgroup Kf ⊆ GL2(Af) as before and singular by étale cohomology. That the occurring
maps between modular curves are then defined overQ is not obvious, but can be shown using
the methods from [DR73]. Alternatively, one can use the comparison isomorphism between
singular and étale cohomology to obtain the operators. The operators Tℓ and Sℓ are then ob-
tained by setting α to

(
1 0
0 ℓ

)
and

(
ℓ 0
0 ℓ

)
, respectively. An alternative way to introduce Hecke

operators is shown in [Con09, §2.3.1].

For the topics mentioned so far, the overview given in [Füt17, §ii.1.1, §ii.1.2, §ii.3.1–3] might
be helpful (as well as a chat with its author).

Having defined Hecke operators, we can now view the étale cohomology of a modular curve
as a module over the corresponding Hecke algebra, which is defined to be the Qp-subalgebra
of the endomorphisms of this cohomology generated by the operators Tℓ and Sℓ . On these
cohomology groups we also have an action of the absolute Galois group of Q which obviously
commutes with the Hecke action.

The crucial step in the construction of the Galois representation is then the Eichler-Shimura
relation, which says the following: if ℓ , p is a prime that does not divide the level of a
modular curve Y , the characteristic polynomial of the geometric Frobenius Frobℓ acting on
H1
ét(Y ×Q Q,Qp) is X 2 −TℓX + ℓSℓ . Here we view the étale cohomology as a module over the

Hecke algebra, hence the polynomial has coefficients in this algebra. The proof of this theorem
relies on an analysis of the reduction of the modular curve at ℓ; it is very deep and we probably
cannot say much about it. See [Con09, esp. Thm. 4.1.2.1] or, for a short overview, [Pot].

After this insight, the construction of the Galois representation attached to a single normalized
modular eigenform f of weight 2 is easy: f corresponds to a morphism λ from the Hecke

2More precisely: If n ≥ 3 or Kf is torsion free, the geometric points of the representing stack do not have any
nontrivial automorphisms, hence the stack is in fact an algebraic space [DR73, §IV.2.6]. By [DR73, Thm. IV.3.4
and p. 69] they are in fact schemes.

3This corresponds to restricting to weight 2, which is a good idea anyway, because many important phenomena
can already be seen in this special case, while some technical complications can be avoided.

4In the higher weight case, the sheaf is no longer constant.
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algebra to Qp sending Tℓ and Sℓ to the respective Hecke eigenvalues, and we just have to
tensor the H1

ét(Y ×Q Q,Qp) with Qp over the Hecke algebra along this morphism.

In the higher weight k case, one has to replace the constant sheaf Qp in étale cohomology by
Symk−2 R1π∗Qp , where π denotes the map from the universal elliptic curve to the modular
curve.

Talk 5: Completed cohomology. In this talk we introduce Emerton’s completed cohomol-
ogy and study some of its basic properties.

You should cover the following parts of [Eme11]: Start from §5 until the bottom of p. 45, then
skip Lemma 5.1.3–4, continue with §5.2 until Rem. 5.2.3, skip the deformation theory stuff,
state Lemma 5.2.4, skip the remainder of §5.2 and continue with §5.3, skipping Remarks 5.3.10
and 5.3.12, otherwise everything until Prop. 5.3.15.

Talk 6: Emerton’s local-global compatibility conjecture in the p-adic Langlands pro-
gramme. State Emerton’s local-global compatibility conjecture, which is [Eme11, conjecture
1.1.1]. Then define what it means for a Galois representation to be promodular [Bre12, Def. 4.2]
and state Breuil’s special case of Emerton’s conjecture [Bre12, Thm. 2.1,], which we are going
to prove during the next talks. Then present the first reduction step in Breuil’s proof following
[Bre12, §4.2]. A comparison with [Eme11, proposition 6.1.12] might be useful. We also found
Emerton’s thoughts on Ihara’s lemma on StackExchange rather illuminating: https://math.
stackexchange.com/questions/629707/how-should-i-think-about-iharas-lemma

It will also be insightful to actually look at the explicit Langlands correspondence: In the sit-
uation we consider, the representation ρ is unramified, hence it factors as a representation
of Ẑ, which is (after semisimplification) a sum of two unramified characters χ1 and χ2. The
classical local Langlands correspondence is very explicit in this situation: It associates to ρ
the principal series representation B(χ1, χ2) (it has to because of its compatibility with class
field theory, but see also (4.1.8) in https://www2.math.uni-paderborn.de/fileadmin/
Mathematik/People/wedhorn/publications/LocalLanglands.pdf). Breuil then claims
(implicitly) that the representation c-indGL2(Qp )

GL2(Zp )
1/(Tℓ − λ(Tℓ), Sℓ − λ(Sℓ)) is isomorphic to

B(χ1, χ2). This follows from [Bum97, Thm. 4.6.4, Prop. 4.6.6].

Talk 7: Proof of the local-global compatibility I. The main result here is that the set
of classical crystalline maximal ideals of the Hecke algebra is Zariski dense, which is a key
ingredient later on.

Using deformation theory, this yields a certain universal representation πΣ, which will play an
important role later in the definition of XOE .

First, state [Bre12, theorem 4.1] and especially equation (6) (for a definition of locally algebraic
vectors and representations see [Col10, beginning of §vi.2.1,2]). Afterwards, follow §4.3 (loc.
cit.).
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Talk 8: Proof of the local-global compatibility II. The aim of this talk is to prove [Eme11,
theorem 6.3.12], disguised as [Bre12, lemma 4.6], which studies the properties of a certain
module over a Hecke algebra that Breuil denotes XOE while Emerton calls it X (πm

Σ ). The non-
vanishing of certain submodules of this module (which is subject of the following talk) will
then imply the weak version of local-global compatibility.

As we don’t have time to review the theory of the eigencurve, we can’t prove [Eme11, lemma
5.4.9], but apart from that, everything in §6.3 up to 6.3.12 (loc. cit.) should be proved. (We can
make an exception for details concerning locally convex vector spaces.) For the O-torsion-
freeness used in the proof of Thm. 6.3.12 see [Eme06, Lem. 7.2.1].

Talk 9: Proof of the local-global compatibility III. After having studied the structure of
XOE in the previous talk, we will use this module to show [Bre12, theorem 2.1] as done in §4.4
(loc. cit.). We joyfully restrict ourselves to p > 2 and absolutely irreducible ρp .

The idea is basically the following: One can show that for classical crystalline maximal ideals p
not containing p in the Hecke algebra, XOE has non-vanishing p-torsion. A density argument
then implies that XOE has non-vanishing p-torsion for every maximal ideal p not containing p
of the Hecke algebra. This in turn yields a nontrivial morphism ρ ⊗E B(ρp) −→ Ĥ1

E,Σ, which
finishes the proof of the aforementioned theorem.

Talk 10: Deducing a special case of a Fontaine-Mazur conjecture. The Fontaine-Mazur
conjectures are a number of conjectures that were published in [FM95]. In this talk, the relevant
conjectures should be introduced and given a bit of context (the original source seems very ade-
quate). The focus should of course be on conjecture 3c. Explain how conjecture 3c follows from
conjecture 1 via Khare-Wintenberger. Our previous work implies HomGal(Q |Q)(ρ, (Ĥ

1
E)

alg) , 0,
and the description of (Ĥ1

E)
alg together with the construction of the Galois representation at-

tached to a modular form yields the result.

It might be interesting to see how other conjectures can also be derived with the same methods
(cf. [Bre12, §2.2, remainder of §5.2]), but only if time allows.
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