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1 Introduction

In the 1930’s, Carlitz [4] - playing on analogies with the work of Euler on the Riemann zeta values ζ(2),
ζ(4), ζ(6), . . . - constructed an explicit element π̃ ∈ Fq((1/t))( q−1

√
−t) such that, for all positive integers

k,
1

π̃k(q−1)

∑
a∈Fq [t]
monic

1

ak(q−1)
∈ Fq(t).

After normalizing these fractions suitably, by a “factorial” in Fq[t], he was able to determine their de-
nominators exactly, in parallel to the von-Staudt Theorem for the denominators of the classical Bernoulli
numbers. Goss rediscovered these “numbers” upon introducing Eisenstein series in characteristic p, and
he went on to develop a framework for studying L-functions with values in fields of positive characteristic
[9, Ch. 8]. Various authors studied the arithmetic content in the numerators of Carlitz’ fractions defined
above, and they were partially successful in relating these numerators to the Galois module structure of
class groups of extensions of the rational function field Fq(t) obtained by adjoining prime-torsion of the
Carlitz module. Sometime later, Anderson [1] succeeded in defining a finitely generated submodule of
integral points in Carlitz prime-torsion extensions of a rational function field which was directly relatable
to Goss’ abelian L-values

L(1, χ) :=
∑

a∈Fq [t]
monic

χ(a)

a

and which had the flavor of the classical cyclotomic units group; here χ is a positive characteristic valued
Dirichlet character. All of these results suggest the existence of Fq[t]-module analogs of class and unit
groups to which these special L-values relate.

In a series of papers [13, 14, 15, 16], L. Taelman introduced the appropriate Fq[t]-module analogs of
class and unit groups to give a very satisfactory arithmetic interpretation of the rational zeta values of
Carlitz and the abelian L-values of Goss. Further, his results culminated in a class number formula for
certain positive characteristic special L-values associated to Drinfeld modules. Taelman’s methods work
in great generality, and already they have been shown by F. Demeslay [5] and J. Fang [7, 8] to extend
into the worlds of Drinfeld modules over Tate algebras and Anderson t-modules, respectively. Obviously,
such discoveries open a huge door for interesting future research.

The goal of this seminar is to dig deeply into the work of L. Taelman. Specifically, we will study
his papers introducing the unit and class modules associated to a Drinfeld module, their algebraic
reformulation in the case of the Carlitz module, Taelman’s class number formula, and the work of
Anglès-Taelman on the Galois module structure of his unit and class modules in the case of Carlitz
prime torsion extensions of the rational function field. Throughout we will return our attention to the
special case of the Carlitz module, which has a close analogy with the multiplicative group functor
classically.

For consistency throughout the seminar, we would like to set the following notations:
Let Fq be the finite field with q elements and characteristic p, t an indeterminate over Fq, A := Fq[t],
k := Fq(t), k∞ := Fq((1/t)). We will denote a finite extension of k by K, and the integral closure of A
in K will be denoted by R or OK .
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2 Talks

Talk 1 (Review and motivation of Drinfeld modules, a result of Poonen about the integral points of a
Drinfeld module).
Start your talk with a reminder on the algebraic and analytic theory of Drinfeld modules over a global
function field (definition, uniformization by lattices, torsion points). Also mention the definition of a
Drinfeld module as a functor as in [15, Definition 2] because we will work with this definition.

Explain that the torsion points of the Carlitz module generate an abelian extension of the base field
(see, e.g., [9, Prop. 3.3.8]) and the analogy with cyclotomic fields, putting particular emphasis on the
example of the Carlitz module as the analogue of the multiplicative group over a number field as in [16,
Prop. 1]. Continue with a brief summary about Hayes’s explicit class field theory over function fields
(see [9, §§7.2-7.5, in particular Prop. 7.5.4] and/or [10, Part II]) which gives an explicit description of
the abelian extensions of a global function field completely split at a fixed place ∞.

As a first result towards an analogue of Dirichlet’s unit theorem state Poonen’s Mordell-Weil theo-
rem [12, Theorem 2] for Drinfeld modules (see also [9, §10.5]) which shows that the modules of integral
and rational points of a Drinfeld A-module over a global function field is the direct sum of countably
many copies of A and a finite torsion module. In the case of the Carlitz module this can be seen as a
partial analogue of Dirichlet’s unit theorem, but note that, in the classical case, the group of units of
the ring of integers in a number field is finitely generated.
References: [9, §§4, 7, 10.5], [15, §1], [12, §§6, 7]
Date: April 15, 2015 Speaker: Konrad Fischer

Talk 2 (Definition of Taelman’s unit and class module and a Dirichlet’s unit theorem for Drinfeld
modules).
The goal of this talk is to introduce Taelman’s unit and class modules and a regulator for Drinfeld
modules. Also, Taelman’s analogue of Dirichlet’s unit theorem [13, Theorem 1] should be formulated
and proved.

Start the talk by introducing the notation from Section 1 in [15], i.e., denote by K a finite extension
of a rational function field Fq(t) over a finite field Fq with q elements, by R the integral closure of Fq[t]
in K and by K∞ the Fq((t−1))-vector space K ⊗Fq(t) Fq((t−1)). The latter vector space should be seen
as the analogue of the R-vector space L⊗Q R for a number field L.

Then give the definition of Taelman’s unit module ker(E(R) → E(K∞)/ expE K∞), class module
E(K∞)/(E(R) + expE K∞) and regulator [R : exp−1

E E(R)] ∈ Fq((T−1)) for a Drinfeld module E
over R. Also formulate the analogue of Dirichlet’s unit theorem saying that the “lattice of logarithms”
exp−1

E (E(R)) is discrete and cocompact in K∞ and explain why it implies that the unit module of R
is finitely generated. Try to work out the analogy with the classical situation, in particular mention
the exponential sequence from Section 1 of [13], and say a few words about the analogy of the quantity
[R : exp−1

E E(R)] ∈ Fq((T−1)) with the regulator of a number field, cf. [13, Remark 4]. Finish your talk
by giving the proof of the analogue of Dirichlet’s unit theorem and the finiteness of the class module [13,
Theorem 1].
References: [13, §§1-3, 5], [15, §1]
Date: April 22, 2015 Speaker: David Guiraud

Talk 3 (The case of the Carlitz module).
Describe the unit module for the Carlitz module C over a ring R ⊂ K as in talk 2 ([13, Proposition 1]).
Also show that all torsion elements of the Carlitz module are in the unit module ([13, Proposition 2]).
Continue to explain that the class module of the Carlitz module for the Carlitz module over R = Fq[t]
is trivial and that its regulator is equal to logC(1) ([13, Proposition 3]).

The goal of the second part of the talk is to work out the details of [13, Remark 2]. For this,
first explain the statement of Anderson’s log-algebraicity theorem for the Carlitz module [9, Theorem
10.6.2.1] saying that certain formal power series Sm(T, z), m ≥ 1, are in fact polynomials in T and z
over Fq[t] (see also [11] for a good introduction to log-algebraicity). In particular, explain that, in the
case m = 1, it simply means the equality expC(logC(Tz)) = Tz of formal power series in T and z and
mention, for comparison, the classical equality [9, (10.6.1)] of formal power series (important note: to
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avoid confusion please continue to use the notation of [13] where t is a scalar in R ⊂ K. Therefore you
can use, for example, T as first variable in the considered power series).

In the sequel, fix an irreducible polynomial polynomial f ∈ A and let K be the finite extension of k
obtained by adjoining the f -torsion points C[f ] of the Carlitz module and R the integral closure of A
in K. Define Anderson’s module of special points L by the A-span (under the Carlitz module) of 1 and
all elements of the form Sm(x, 1) with x ∈ C[f ] and m ≥ 1 (compare [9, p. 398]). This module can be
seen as an analogue of cyclotomic units in cyclotomic number fields. Explain why L is contained in the
unit module UR for the Carlitz module over R and the quotient module UR/L is finite. Note that we
will relate the latter quotient module to Taelman’s class module in Talk 13. Conclude that the divisible
closure of L in C(R) is equal to UR. Also discuss the analogy with cyclotomic units in number fields.
References: [9, §10.6], [13, §§4, 5], [11]
Date: April 29, 2015 Speaker:

Talk 4 (Algebraic reformulation of Taelman’s unit and class modules for the Carlitz module).
We will show that Taelman’s unit and class modules for the Carlitz module can be realized purely
algebraically, which has independent interest. The goal of this talk will be to prove the following result.

For a smooth projective geometrically connected curve X over a finite field Fq with a surjective map
X → P1(Fq) = P1, we define, for each non-negative integer n, the sheaf OX(n∞) to be the pullback
over X → P1 of the sheaf OP1(n∞) on P1 of functions with poles of order at most n at the usual place

∞ ∈ P1. Let C be defined as the cokernel of the map of sheaves OX ⊗Fq A
∂→ OX(∞) ⊗Fq A given by

∂ : f⊗a→ f⊗ ta− (tf+fq)⊗a, where t is the coordinate on P1. Let Y be the preimage of P1 \∞ in X.
Finally, we arrive at the statement of Taelman’s result: The zeroth cohomology group H0(X, C) is finitely
generated as an A-module and gives rise to Taelman’s unit module as the image of the restriction map
C(X)→ C(Y ). The first cohomology group H1(X, C) is Taelman’s finite class module. The injectivity of
∂ is easy to show, and thus there is an exact sequence of sheaves on X given by

0→ OX ⊗Fq A
∂→ OX(∞)⊗Fq A→ C → 0.

This potentially gives a useful tool for computing (e.g. with Sage) the class and unit modules of Taelman,
since the first two sheaves in the sequence above along with cohomology in exact sequences are well
understood.

Cover Section 1 up through the statement of Theorem 1. Skip Sections 1.5 through 1.7. Cover
Sections 2 and 3 in full detail.
References: [14, §2,3]
Date: May 6, 2015 Speaker:

Talk 5 (Statement of Taelman’s class number formula and nuclear operators).
The goal of the first part of this talk is to formulate Taelman’s analogue of the class number formula
for Drinfeld modules following [15, §1]. Use the notation k = Fq(t), K, R, K∞ as in the previous talks.
Start with the definition of the “special L-value” ζ(R, 1) ∈ 1 + T−1Fq[[T−1]]. Note the formal analogy
with the Dedekind zeta function of a number field at s = 1.

Continue with [15, Proposition 1] which re-expresses the infinite product defining ζ(R, 1). This leads
to the definition of the value L(E/R) ∈ 1 + T−1Fq[[T−1]] for general Drinfeld modules E over R. If
it was not already done in talk 2, show the formula [15, Proposition 3] for the “index function” of two
lattices in a finite-dimensional Fq((t−1))-vector space. Then formulate the class number formula [15,
Theorem 1]. Discuss its correctness for the Carlitz module when R = Fq[t] with the results from talk 3
and point out the analogy with the classical class number formula (see [15, Remark 6]). As a remark,
mention [13, Theorem 2] which gave to Taelman some evidence towards his conjectured class number
formula before he proved it.

As an outlook to the coming three talks, present an overview of the proof of Taelman’s class number
formula in the case where the class module is trivial following the end of [15, §1].

In the remaining time, introduce normed vector spaces over fields with non-archimedean absolute
values and define locally contracting endomorphisms of them. Present [15, Proposition 6 and 7] with
proof and define for a compact normed Fq-vector space V the Fq[[Z]]/ZN -modules V [[Z]]/ZN and the
Fq[[Z]]-module V [[Z]] and nuclear endomorphisms of these modules ([15, Definition 4]).
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References: [15, §§1,2], [13, Theorem 2]
Date: May 13, 2015 Speaker:

Talk 6 (Determinants and characteristic power series).
After quickly recalling the definitions from the previous talk, present [15, Proposition 8] with proof.
Then explain how it enables us to define a determinant for endomorphisms of the form 1 + Φ for Φ a
nuclear endomorphism of V [[Z]]/ZN resp. V [[Z]] for a compact normed Fq-vector space V . Make clear
that V can be infinite-dimensional over Fq and that the defined determinant coincides with the usual
one if V is finite-dimensional over Fq. Also present the immediate properties [15, Proposition 9 and 10]
of the defined determinant.

Continue with the definition of the characteristic power series of a locally contracting endomorphism
of a compact normed Fq-vector space and explain that it is in fact a polynomial ([15, Example 7]). Then
present the properties [15, Theorem 2, Corollary 1] of characteristic power series with proof.

In the remaining time, introduce the notation from the beginning of [15, §3] and present Proposition
11 of loc.cit. with proof as a preparation for the statement of the trace formula in the next talk. Note
that, in the statement of the trace formula, the product K∞ of complete fields can be more general as
in the previous talks.
References: [15, §§2, 3]
Date: May 20, 2015 Speaker:

Talk 7 (Trace formula and maps infinitely tangent to the identity).
The first part of this talk should be devoted to the formulation and proof of Taelman’s trace formula [15,
Theorem 3] for certain nuclear endomorphisms. It will be used to express the value L(E/R) in the class
number formula as the determinant of an endomorphism of some compact Fq[[T−1]]-module. The proof
is quite technical, try to present its structure as well as possible.

At this point, mention Anderson’s trace formula [2, Thm. 1]. Taelman’s trace formula is a variation
of Anderson’s trace formula, in fact the latter can be deduced from the former, see [15, Remark 13]. If
time permits, give a sketch of this deduction.

In the rest of the talk, follow the beginning of [15, §4] to define the notion of Fq-linear maps γ :
M1 →M2 infinitely tangent to the identity for Mi := V/Λi ×Hi with V a finite-dimensional Fq((t−1))-
vector space, Λ1,Λ2 lattices in V and H1, H2 finite Fq[t]-modules. Conclude the talk by presenting [15,
Proposition 12] with proof which gives important examples of Fq-linear maps infinitely tangent to the
identity.
References: [15, §§3, 4], [2, Thm. 1]
Date: May 27, 2015 Speaker:

Talk 8 (End of the proof of the class number formula).
The goal of this talk is to put together the results from the previous talks to a proof of Taelman’s class
number formula. First present [15, Theorem 4] with proof. For a Fq-linear isomorphism γ : M1 → M2

infinitely tangent to the identity as in talk 7, this theorem expresses the ratio [Λ1 : Λ2]|H2|/|H1| of the
“volumes” of M2 and M1 as the determinant of 1 + ∆γ for some nuclear endomorphism ∆γ of M1[[T−1]]
depending on γ. Before going through the proof explain [15, Remark 16] saying that the above ratio of
“volumes” lies in fact in Fq[[T−1]]×.

Conclude the talk with a clear presentation of the proof of Taelman’s class number formula using his
trace formula and the theorem from the first part of this talk. Follow closely the exposition in [15, §5].
You should reserve about 30 minutes for this important proof.
References: [15, §§4, 5]
Date: June 3, 2015 Speaker:

Talk 9 (Galois equivariant class number formula for Carlitz prime torsion extensions).
The goal here is to understand the Galois module structure of Taelman’s unit and class modules in
the case of Carlitz prime torsion extensions of the rational function field. The main tool is a Galois
equivariant class number formula (ECNF) whose proof follows similar lines to what we have already
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done. Corollaries of this ECNF are particularly similar to classical results for unit and class groups of
cyclotomic number fields over the rational numbers.

Begin by setting notation: Let Fq be the finite field with q elements and A := Fq[t], k := Fq(t), k∞ :=
Fq((1/t)). Fix a monic irreducible (i.e. a prime) P ∈ A and set K as the Carlitz P -torsion extension of
k, OK as the integral closure of A in K, and ∆ := Gal(K/k) ∼= (A/PA)× (recall this isomorphism from
Talk 1, if it was proved there, otherwise sketch the proof via the action of Galois on Carlitz P -torsion!).
Cover the results about principal ideal rings from [3, §3].

Next move to Section 6 of op. cit.. Give Prop. 6.2 and its proof. Then use Cor. 6.3 and its proof as
the definition of the Galois equivariant L-value L(1,∆). Finish with 2.7 and the statement of Theorem
A.
References: [3, §§3 and 6]
Date: June 10, 2015 Speaker:

Talk 10 (ECNF and Anderson’s module of special points for the Carlitz module).
The goal of this talk is to finish the proof of the equivariant class number formula [3, Theorem A]. We
will then apply this to understanding the Galois module structure of “Anderson’s lattice of logarithms”
M, which is defined as the A-span of the elements

Lm :=
∑
σ∈∆

σ(λ)m
∑

a∈A+,σ

1

a
∈ K∞,

where λ is a fixed generator of Carlitz P -torsion and A+,σ is the set of monic elements which map to
σ in A/PA. We will observe that the module M gives rise to Anderson’s module of special points L,
as introduced in Talk 3 above, via the Carlitz exponential function expC ; indeed, one has expC M = L.
After the ECNF, the main result here is that inside K ⊗k k∞ (here the notation is as in the previous
talk) we have

M = FittA[∆]H(OK) · U(OK),

where FittA[∆]H(OK) is the Fitting ideal of the A[∆]-module H(OK). Beware the change in notation
from previous papers for the class and unit modules over OK .

Recall the definition of L(1,∆) (as given in the previous talk) and the statement of Theorem A in
[3]. Then finish the proof of Theorem A, beginning in Section 6.4. and finishing Section 6.

Cover Section 7 of op. cit. giving the details in 7.5–7.8. Stress the connection with Talk 3.
References: [3, §§6.4–7]
Date: June 17, 2015 Speaker:

Talk 11 (Gauss-Thakur Sums, Generalized Bernoulli-Carlitz numbers and the ‘odd’ part of Taelman’s
class module).
The goal here is to review various well-known facts about D. Thakur’s Gauss sums for Carlitz torsion
extensions which will be used in our analysis of the odd part of Taelman’s class module. One primary use
for these Gauss-Thakur sums is the explicit construction of a generator for the cyclic Galois module OK ,
see Theorem 5.5 and the remarks following in [3]. For an odd character χ : ∆→ (A/PA)×, the product of
the Gauss-Thakur sum and Goss abelian L-value for χ will turn out to be a rational (in (A/PA)⊗Fq k)
multiple of a fixed choice of fundamental period of the Carlitz module. This rational element will
essentially be our generalized Bernoulli-Carlitz number for χ, and the essential content of Theorem B
is that the generalized Bernoulli-Carlitz number for χ generates the fitting ideal in (A/PA) ⊗Fq A of
the χ-part of the Galois module (A/PA) ⊗Fq H(OK), where H(OK) is Taelman’s class module for K
coming from the Carlitz module; here a small modification must be made when χ extends to a ring
homomorphism on A.

Recall well-known results on Gauss-Thakur sums from [3, §5]. Define the notion of an odd character
as in 2.9 of loc.cit., and state Theorem B. Finish by stating and proving Prop. 8.2.
References: [3, 2.9, §5, 8.7, 8.2]
Date: June 24, 2015 Speaker:
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Talk 12 (The Fitting ideals of the odd part of Taelman’s class module and Carlitz von-Staudt).
The goal today is to finish the proof of Theorem B in [3] that “the generalized Bernoulli-Carlitz number
associated to an odd character χ generates the fitting ideal of the χ-part of (A/PA) ⊗Fq H(OK).” We
will then move toward the statement and proof of Taelman’s Herbrand-Ribet Theorem [3, Theorem C]
by introducing the Carlitz factorials {Π(n)}n≥0 ⊂ A and Bernoulli-Carlitz numbers {BCn}n≥0 ⊂ k (see
[3, 8.9–8.11] and [9, 9.1–9.2]), which are function field analogs of factorials and Bernoulli numbers in
the classical setting over the integers. For mathematical culture, we will state without proof Carlitz’
von-Staudt Theorem [9, Theorem 9.2.2], which gives a complete description of the denominators of the
Bernoulli-Carlitz numbers. We shall see in the next talk that the P -divisibility of the numerators of
Bernoull-Carlitz numbers BCn, with n < |P |∞, is directly related to the vanishing and non-vanishing
of the isotypic components of the odd part of Taelman’s class module for Carlitz P -torsion extensions.
It is interesting to note here that, despite all of the similarities between the classical Bernoulli numbers
and the function field Bernoulli-Carlitz numbers, there is no known analog of the Kummer congruences
for the Bernoulli-Carlitz numbers.

Continue in Section 8.3 of [3], and finish the proof of Theorem B.
Close by defining Carlitz factorials and Bernoulli-Carlitz numbers and state Carlitz von-Staudt Theo-

rem, as in [9, Theorem 9.2.2]. If time permits, state Theorem 8.15 (Taelman’s Herbrand-Ribet Theorem).
References: [3, 8.3–8.11], [9, 9.1–9.2]
Date: July 1, 2015 Speaker:

Talk 13 (Taelman’s Herbrand-Ribet Theorem and the even part of Taelman’s class module).
Our goal here is to prove Taelman’s Herbrand-Ribet Theorem which relates the vanishing and non-
vanishing of the isotypic components of the odd part of his class module for a Carlitz P -torsion extension
to the P -divisibility of the numerators of the Bernoulli-Carlitz numbers. The key here is a congruence
(mod P ) between the generalized Bernoulli-Carlitz number associated to an odd character χ and a
Bernoulli-Carlitz number BCn, with n depending on χ and in the range n < |P |∞. We shall finish our
investigations of Taelman’s class module for Carlitz P -torsion extensions by relating the A[∆]-Fitting
ideal of Taelman’s unit module modulo Anderson’s special units module to the A[∆]-Fitting ideal of the
even part of Taelman’s class module.

Cover Section 8.12 of [3], and finish with the proof of Theorem 9.3.
References: [3, §8.12 - §9]
Date: July 8, 2015 Speaker:

Talk 14 (Motivic interpretations: Reformulating the class and unit modules in terms of shtukas).
The goal of this final talk will be to relate Taelman’s class and unit modules for the Carlitz module to
Yoneda extension groups of certain shtukas. This tightens the analogy between the Carlitz module and
the Tate motive, Taelman’s unit module and the group of units of a number field, and Taelman’s class
module and the class group of a number field from a motivic point of view.

After introducing shtukas, and in particular, the unit and Carlitz shtukas, as in [14, §1.5], the
definition of Yoneda extension groups in the category of shtukas should be given. An appropriate
reference for this is the Stacks Project [17], §13.27 which builds on 13.9 and 13.11.3. Note that for an
object a in an abelian category, they write a[i] for the associated cochain complex with a in the minus
i-th position and 0’s elsewhere. Recall Theorem 1 from [14] and state Theorem 2 giving the proof from
Section 4. Hypercohomology groups must also be defined, and a reference here is the appendix of [6].
References: [14, §§1.5, 4], [17, §13]
Date: July 15, 2015 Speaker:
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