Etale homotopy theory (after Artin-Mazur, Friedlander et al.)

Heidelberg March 18–20, 2014

Gereon Quick

Lecture 2: Construction

March 19, 2014

Towards the idea:

Let X be a scheme of finite type over a field k.

An "etale open set" of X is an etale map $U \rightarrow X$ which is the algebraic version of a local diffeomorphism.

These etale open sets are great for defining sheaf cohomology.

Cech coverings:

There is also a more "topological way" to compute etale sheaf cohomology:

Let F be a locally constant etale sheaf on X.

Let $\{U_i \rightarrow X\}_i$ be an etale cover.

For each n≥0, form

 $U_{i0,\dots,in} = U_{i0} \times_X \dots \times_X U_{in}$

Cech complex:

 $U_{i0,...,in} = U_{i0} \times \dots \times \times U_{in}$

Set $C^{n}(U_{\bullet};F) := TH^{0}(U_{i0,...,in};F)$.

This defines a complex $C^{*}(U_{\bullet};F)$ whose cohomology is denoted by $H^{n}(U_{\bullet};F)$.

But: The cohomology H*(U.;F) of a single covering does not compute the sheaf cohomology of X. The coverings are not "fine" enough.

(Would need: all $U_{i0,...,in}$ are contractible.)

Cech cohomology:

Solution: Make coverings "finer and finer" and consider all at once.

For a variety X over a field there is an isomorphism $H^n(X;F) \approx \operatorname{colim}_U H^n(U_\bullet;F)$

where the colimit ranges over all etale covers.

Observation: The global sections $H^{0}(U_{i0,...,in};F)$ only depend on the set of connected components $\pi_{0}(U_{i0,...,in})$.

The idea: Forming all possible $U_{i0,...,in}$'s yields a simplicial set $\pi_0(U_{\bullet})$.

For a variety X over a field, the colimit of the singular cohomologies of all the spaces $\pi_0(U_{\bullet})$'s computes the etale cohomology of X.

A candidate for an etale homotopy type:

the "system of all spaces $\pi_0(U_{\bullet})$'s".

In order to make this idea work in full generality we need some preparations.

Pro-objects:

A category I is "cofiltering" if it has two properties:

- for any i, j \in I there is a k with k \rightarrow i and k \rightarrow j;
- for any f,g: $i \rightarrow j$ there is an h:k $\rightarrow i$ with fh=gh.
- Let C be a category. A "pro-object" $X=\{X_i\}_{i\in I}$ in C is a functor $I \rightarrow C$ where I is some cofiltering index category.
- We get a category pro-C by defining the morphisms to be

Hom $(X, Y) = \lim_{j \to j} \operatorname{colim}_{i} \operatorname{Hom} (X_{i}, Y_{j}).$

Pro-homotopy:

Let H be the homotopy category of connected, pointed CW-complexes.

H is equivalent to the homotopy category of connected, pointed simplicial sets.

The objects of H will be called "spaces".

The objects of pro-H will be called "pro-spaces".

Pro-homotopy groups:

Let $X = {X_i}_{i \in I}$ be a pro-object in H.

The homotopy groups of X are defined as the progroups

 $\pi_n(X) = {\pi_n(X_i)}_{i \in I}.$

For A an abelian group, the homology groups of X are

 $H_n(X;A) = \{H_n(X_i;A)\}_{i \in I}.$

Cohomology of pro-spaces:

Let A be an abelian group. The cohomology groups of X are defined as the groups

 $H^{n}(X;A) = colim_{i} H^{n}(X_{i};A).$

If A is has an action by $\pi_1(X)$, then there are also cohomology groups of X with local coefficients in A.

Completion of groups:

Let L be a set of primes and let LGr be the full subcategory finite L-groups in the category of groups Gr.

There is an L-completion functor

 $\hat{}: Gr \rightarrow pro-LGr$

such that Hom $(G,K) \approx$ Hom $(G^{,K})$ for K in LGr.

Completion of spaces:

Let L be a set of primes and let LH be the full subcategory of H consisting of spaces whose homotopy groups are finite L-groups.

Artin and Mazur show that there is an L-completion functor

 $\hat{}: pro-H \rightarrow pro-LH$

such that Hom $(X,W) \approx$ Hom $(X^{,W})$ for W in LH.

Completion and invariants:

The canonical map $X \rightarrow X^{\uparrow}$ induces isomorphisms

of pro-finite L-groups

 $(\pi_1(X))^{\sim} \approx \pi_1(X^{\sim})$

of cohomology groups

 $H^{n}(X;A) \approx H^{n}(X^{;A})$

if A is a finite abelian L-group.

A warning: Isomorphisms in pro-H

A map $X \rightarrow Y$ in pro-H which induces isomorphisms on all homotopy groups is not necessarily an isomorphism in pro-H.

To see this, let $cosk_n: H \rightarrow H$ be the coskeleton functor which kills homotopy in dimension $\geq n$.

Let X be a space and let $X^{\#}$ be the inverse system

 $X^{\#} = \{ cosk_n X \}.$

A warning: Isomorphisms in pro-H

There is a canonical map $X \rightarrow X^{\#} = \{cosk_nX\}$ in pro-H, which induces an isomorphism on all (pro-) homotopy groups.

The inverse of this map would be an element in colimn Hom (cosknX, X). Hence the inverse exists if and only if

 $X = cosk_n X$ for some integer n.

Isomorphisms in pro-H:

This led Artin and Mazur to introduce the following notion:

A map $f:X \rightarrow Y$ in pro-H is a "#-isomomorphism" if the induced map $f^{\#}:X^{\#} \rightarrow Y^{\#}$ is an isomorphism in pro-H. Theorem (Artin-Mazur): A map $f:X \rightarrow Y$ in pro-H is a #-isomorphism if and only if f induces an isomorphism

 $\pi_n(f): \pi_n(X) \xrightarrow{\approx} \pi_n(Y)$ for all $n \ge 0$.

#-isomorphisms and a Whitehead theorem:

Let $X \rightarrow Y$ be map in pro-H and L a set of primes. Then $f^{*}:X^{*} \rightarrow Y^{*}$ is a #-isomorphism if and only if f induces isomorphisms

 π₁(X) ≈ π₁(Y) and
Hⁿ(Y;A) ≈ Hⁿ(X;A) for every n≥0 and every π₁(Y)-twisted coefficient group A which is a finite abelian L-group such that the action of π₁(Y) factors through π₁(Y)[^]. Completion vs homotopy (continued):

The canonical map $X \rightarrow X^{\uparrow}$ induces a group homomorphism for every n

 $(\pi_n(X))^{\uparrow} \rightarrow \pi_n(X^{\uparrow}).$

For $n \ge 2$, this map is in general not an isomorphism. But: Suppose that X is simply-connected and all $\pi_n(X)$'s are "L-good" groups. Then

 $(\pi_n(X))^{2} \approx \pi_n(X^{2})$ for all n. (There are improvements by Sullivan.)

Towards hypercoverings:

Let X be a connected, pointed scheme.

We assume that X is locally connected for the etale topology, i.e., if $U \rightarrow X$ is etale, then U is the coproduct of its connected components.

For example: X is locally noetherian.

Cech coverings:

Let $U \rightarrow X$ be an etale covering.

We can form the Cech covering associated to $U \rightarrow X$. This is the simplicial scheme $U_{\bullet} = cosk_0(U)_{\bullet}$

i.e. U_n is the n+1-fold fiber product of U over X.

From Cech- to hypercoverings:

To form a Cech covering, we take an etale map $U \rightarrow X$ and then we mechanically form U.

In other words, each U_n is determined by $U \rightarrow X$.

Drawbck: Cech coverings are often not fine enough to provide the correct invariants.

Problem: We have no flexibility for forming U_n .

Idea: Choose coverings in each dimensions for forming U_{\bullet} .

Hypercoverings:

• Take an etale covering $U \rightarrow X$ and set $U_0:=U$.

• Form $U_0 x_X U_0$ and choose an etale covering $U_1 \rightarrow U_0 x_X U_0$. $U_0 x_X U_0$ is in fact equal $(cosk_0 U_0)_1$.

• Turn U₁ into a simplicial object ($cosk_1U_1$). and choose an etale covering U₂ \rightarrow ($cosk_1U_1$)₂.

 Continuing this process leads to a hypercovering of X.

•••

Hypercoverings:

A "hypercovering" of X is a simplicial object U_{\bullet} in the category of schemes etale over X such that

• $U_0 \rightarrow X$ is an etale covering;

• For every $n \ge 0$, the canonicial map $U_{n+1} \rightarrow (cosk_nU_{\bullet})_{n+1}$ is an etale covering.

All hypercoverings of X form a category. But: This category is not cofiltering ! Homotopy and hypercoverings:

Solution: We take homotopy classes of maps as morphisms.

The category HR(X) of hypercoverings of X and simplicial homotopy classes of maps between hypercoverings as morphisms is cofiltering.

Verdier's theorem: Let F be an etale sheaf on X. Then for every $n\geq 0$ there is an isomorphism

 $H^{n}(X;F) \approx colim_{U \in HR(X)} H^{n}(F(U_{\bullet})).$

The etale homotopy type:

The "etale homotopy type" X_{et} of X is the pro-space

 $HR(X) \rightarrow H$ $U_{\bullet} \mapsto \pi_{0}(U_{\bullet}).$

The etale homotopy type is a functor from the category of locally noetherian schemes to pro-H.

Note: Since we had to take homotopy classes of maps of hypercoverings, X_{et} is only a pro-object in the homotopy category H.

Etale homology and cohomology:

Let F be a locally constant etale sheaf of abelian groups on X. Then F corresponds uniquely to a local coefficient group on X_{et} .

The cohomology of X_{et} is the etale cohomology of X: Hⁿ_{et}(X;F) ≈ Hⁿ(X_{et};F) for all n≥0 and every locally constant etale sheaf F on X.

Etale homotopy groups:

The etale homotopy groups are defined as $\pi_n(X) := \pi_n(X_{et})$ for all n≥0.

In general: $\pi_1(X_{et})$ is different from the profinite etale fundamental group of Grothendieck in SGA 1 (but it is the one of SGA 3).

For: $\pi_1(X_{et})$ takes all etale covers into account, not just finite ones.

Etale homotopy groups:

But: If X is "geometrically unibranch", i.e., the integral closure of its local rings is again local, then X_{et} is a pro-object in the category H_{fin} of spaces with finite homotopy groups.

In this case: $\pi_n(X_{et})$ is profinite and $\pi_1(X_{et})$ equals Grothendieck's etale fundamental group in SGA 1.

For example: every normal scheme (local rings are integrally closed) is a geometrically unibranch.

We achieved our goal:

 The etale homotopy type is an intrinsic topological invariant of X.

 It contains the information of known etale topological invariants.