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Abstract. We give a survey on class field theory for varieties over finite and
over algebraically closed fields and explain some recent developments.

The aim of class field theory is the description of the abelian étale coverings of
a scheme in terms of its arithmetic/geometric invariants. In this note we will focus
on the case of varieties. We use the notation Sch/k for the category of separated
schemes of finite type over a field k.

We start with a look at algebraic topology. Let T be a (sufficiently good)
topological space and let x ∈ T be a point. As is well known, there are two
descriptions of the fundamental group of (T, x):

1) (The “outer” description): π1(T, x) = Aut(F ), where F is the fibre functor

F : Cov(T ) −→ Sets

(T ′
π−→ T ) 7−→ π−1(x).

If T̃ → T is a universal covering space of T , then π1(T, x) ∼= Aut(T̃ /T ), the
isomorphism being canonical up to inner automorphisms.

2) (The “inner” description):

π1(T, x) = [(S1, ∗), (T, x)]
= loops modulo homotopy.

For a locally noetherian scheme X with geometric base point x̄→ X, we have the
étale fundamental group πet

1 (X, x̄), a profinite group which is defined by the natural
analogue of the outer description 1). It classifies finite, étale coverings of X. For
normal schemes, the étale fundamental group can be understood in the language
of classical Galois theory as follows (we omit base points from the notation):

• If X = Spec(K) is the spectrum of a field, then πet
1 (X) ∼= GK (the absolute

Galois group of K).
• Let X be normal connected with function field k(X). Then there is a natural

surjection Gk(X)
∼= πet

1 (k(X)) � πet
1 (X), which identifies πet

1 (X) with the
Galois group Gal(L/k(X)) where L is the maximal extension of k(X) inside
k(X)sep with the property that the normalization XL of X in L is unramified
over X.
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The question for an inner description of πet
1 (X) occurs naturally but has no

satisfying answer so far. The considerably weaker task of describing the maximal
abelian quotient πab

1 (X) of πet
1 (X) runs under the slogan “class field theory”. There

is no formal definition of what a class field theory for a scheme X should be but in
all existing examples it always comes along with the following data:

• for every finite étale covering Y → X an abelian group CY , which is defined
in an explicit way out of Y .

• for all Y ′ → Y → X finite étale, compatible norm maps NY ′/Y : CY ′ → CY .

• homomorphisms recY : CY → πab
1 (Y ) for all Y → X finite étale, such that the

diagrams

CY ′
rec′

Y //

NY ′/Y

��

πab
1 (Y ′)

can

��

CY
rec′

Y // πab
1 (Y )

commute and induce isomorphisms

CY /NY ′/Y CY ′
∼→ Gal(Ỹ ′/Y ),

where Ỹ ′/Y is the maximal abelian subcovering of Y ′/Y .

The easiest example of a class field theory is given for the spectrum of a finite field:
For X = Spec(F), F a finite field, put CX = Z and

rec : Z −→ GF = Gab
F
∼= Ẑ, 1 7−→ FrobF.

The norm map NF′/F : Z→ Z is multiplication by [F′ : F]).

For a one dimensional local field K = F((t)) and X = Spec(K) we have

CX = K×, rec : K× → Gab
K (reciprocity map of local class field theory).

As is well known, one obtains a short exact sequence

0 −→ K× −→ Gab
K −→ Ẑ/Z −→ 0.

K. Kato [Ka] gave a generalization to higher dimensional local fields:

K = F((t1, . . . , tn)), X = Spec(K):

rec : KM
n (K) −→ Gab

K (KM
n = n-th Milnor K-group).

This can be globalized to

Theorem 1 (Global class field theory of Kato/Saito [KS2]). Let X be a
smooth, connected variety of dimension d over a finite field. Then we have a short
exact sequence

0 −→ lim←−
I⊂OX̄
I|X=OX

Hd
Nis(X̄,KMd (OX̄ , I))

rec−→ πab
1 (X) −→ Ẑ/Z→ 0.

Here X̄ is a normal compactification of X, KMd is the d-th relative Milnor K-sheaf
and Hd

Nis is cohomology in dimension d for the Nisnevich topology (cf. [Ni]).
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This solves the problem of describing the abelianized fundamental group π1(X)ab in
terms of geometric data attached to X. Unfortunately, the class module is difficult
to understand and, in particular, contains a cohomology group. It is therefore
desirable to find a more direct description.

For a connected topological space X, we have the Hurewicz isomorphism

π1(X)ab ∼= Hsing
1 (X,Z).

Recall that the singular homology of X with values in an abelian group A is defined
as follows: put

∆n = {(x0, . . . , xn) ∈ Rn+1 | xi ≥ 0, Σ xi = 1},

Cn(X) = free abelian group on Mapcts(∆n, X),

and set d =
∑n
i=0(−1)iδ∗i , where δi : ∆n−1 → ∆n, i = 0, . . . , n are the face maps.

Then (C•(X), d) is a complex and

Hsing
i (X,A) = Hi(C•(X)⊗A).

Returning to the case of varieties over some field k we can define

∆n
k = Spec(k[T0, . . . , Tn]/ ΣTi − 1),

but we are confronted with the problem that Mork(∆n
k , X) is too small for a general

k-variety X. It was the idea of A. Suslin to use multi-valued morphisms (=finite
correspondences) instead.

Definition 2 ([SV]).

Cn(X) = free abelian group on integral subschemes Z ⊂ X ×∆n

such that Z → ∆n is finite and surjective.

The face maps are algebraic and (C•(X), d) with d =
∑n
i=0(−1)iδ∗i is a complex.

The group

HS
i (X,A) = Hi(C•(X)⊗A)

is called the Suslin homology of X in dimension i with values in the abelian group A.

Example 3. C0(X) = Z(|X|) is the free abelian group on the set of closed
points of X, i.e., the group of 0-cycles. Hence

HS
0 (X,Z) = Z(|X|)/ ∼,

where ∼ is some equivalence relation on the group of 0-cycles.

Fact 4 (cf. [Sc], Cor. 5.2). If X is proper, then ∼ is rational equivalence.

Fact 5 (Homotopy equivalence, cf. [Sc], Thm. 4.1).

HS
i (X,A) ∼= HS

i (X ×A1
k, A).

However, if char(k) = p > 0, then πab
1 (X) 6= πab

1 (X ×A1
k), hence a Hurewicz

isomorphism in perfect analogy to the situation in topology does not exist. This
problem is resolved by passing to the tame fundamental group.
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Definition 6 (cf. [KSc]). Let C ∈ Sch/k be a regular curve and C ′ the
unique regular compactification of C. We call a finite étale morphism D → C tame
if every v ∈ C ′ r C (considered as a discrete valuation of k(C)) is tamely ramified
in k(D)/k(C).

For an arbitrary X ∈ Sch(k), a finite étale morphism Y → X, is tame if for
every morphism C → X with C a regular curve, the base change C ×X Y → C is
tame.

The tame fundamental group πt1(X) of X ∈ Sch(X) classifies tame finite
étale coverings of X (cf. [KSc]) and is a quotient of the usual étale fundamen-
tal group πet

1 (X) in a natural way. Dually, for every m ∈ N, we have the sub-
group H1

t (X,Z/mZ) ⊂ H1
et(X,Z/mZ) which classifies isomorphism classes of tame

Z/mZ-torsors over X. The inclusion is equality if X is proper or if p - m.

Next we construct a reciprocity map for the abelianized tame fundamental
group. Let k = F be a finite field. Sending a closed point x ∈ X to its Frobenius
automorphism Frobx defines a homomorphism

C0(X) −→ πab
1 (X)

from the group of zero cycles of X to its abelianized fundamental group. By [Sc,

Thm. 8.1], the composite C0(X)→ πab
1 (X) � πt,ab1 (X) factors through HS

0 (X,Z)
inducing

recX : HS
0 (X,Z)→ πt,ab1 (X). (1)

We denote the kernel of the degree map HS
0 (X,Z)→ HS

0 (F,Z) ∼= Z by HS
0 (X,Z)0

and the kernel of πt,ab1 (X)→ πt,ab1 (F) ∼= Ẑ by πt,ab1 (X)0.

Theorem 7 (Artin if dimX = 1, Kato-Saito if X is proper, Schmidt/Spieß for
general X). If X is smooth, then recX fits into an exact sequence

0 −→ HS
0 (X,Z)

rec−→ πt,ab1 (X) −→ Ẑ/Z −→ 0.

The induced map on the degree zero subgroups rec0
X : HS

0 (X,Z)0 → πt,ab1 (X)0 is an
isomorphism of finite abelian groups.

See [SS], [Sc] for a proof of Theorem 7. It generalizes the unramified class field
theory of Kato and Saito [KS1], [Sa] to the case of smooth, not necessarily proper
schemes. Recently, Kerz and Saito [KeS] found a generalization which describes
the full fundamental group πab

1 (X) by using “Chow groups with modulus” instead
of Suslin homology.

Note that the assumption on X being smooth is vital in Theorem 7. The
cokernel of recX classifies completely split coverings and can be large if X is not
geometrically unibranch. Furthermore, even for proper, normal schemes there are
examples where recX is not injective [MAS].

Next we are going to construct a reciprocity map for varieties over algebraically
closed fields. For U, X ∈ Sch/k with U regular, the group of finite correspondences
from U to X is defined by

Cor(U,X) = free abelian group on integral subschemes Z ⊂ X × U such that
Z → U is finite and surjective over a connected component of U.
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Fact 8. Let α ∈ Cor(U,X) be a finite correspondence and let m be a positive
integer. There exists a functor

α∗ : PHS(X,Z/mZ) −→ PHS(U,Z/mZ)

from the category of étale Z/mZ-torsors on X to those on U which gives back the
usual pull-back map α∗ : H1

et(X,Z/mZ)→ H1
et(U,Z/mZ) on isomorphism classes

and which sends tame torsors to tame torsors.

Now let k be algebraically closed. For a tame Z/mZ-torsor T on X and a
finite correspondence α : ∆1 → X we obtain the tame, hence trivial torsor α∗(T )
on ∆1 ∼= A1. Parallel transport therefore induces an isomorphism

Φpar : 0∗(α∗(T ))
∼−→ 1∗(α∗(T ))

of Z/mZ-torsors over ∆0. If α represents a 1-cocycle in the modm Suslin complex,
we furthermore obtain the tautological identification

Φtaut : 0∗(α∗(T ))
∼−→ 1∗(α∗(T ))

in addition. We conclude that there is a unique 〈α, T 〉 ∈ Z/mZ such that

Φpar = (translation by 〈α, T 〉) ◦ Φtaut.

Theorem 9 (Geisser/Schmidt). For any X ∈ Sch/k the assignment (α, T ) 7→
〈α, T 〉 induces a pairing

HS
1 (X,Z/mZ)×H1

t (X,Z/mZ) −→ Z/mZ.

The induced homomorphism

recX : HS
1 (X,Z/mZ) −→ πt,ab1 (X)/m

is surjective. It is an isomorphism of finite abelian groups if (m, char(k)) = 1, and
for general m if resolution of singularities for schemes of dimension ≤ dimX + 1
holds over k.

A proof of Theorem 9 can be found in [GS1].

Returning to the case that k = F is finite, we recall the notion of Weil-Suslin
homology introduced by Geisser [Ge]: Let F̄ be an algebraic closure of F, X ∈
Sch/F and X̄ = X ×F F̄. The Frobenius automorphism Frob ∈ Gal(F̄/F) acts on
Cn(X̄) = Cor(∆̄n, X̄) for all n and the Weil-Suslin homology of X with values in
an abelian group A is defined by

HWS
n (X,A) = Hn

(
cone(C•(X̄)⊗A 1−Frob−→ C•(X̄)⊗A)

)
.

The obvious homomorphism HS
0 (X,Z)→ HWS

1 (X,Z) is conjectured to be an iso-
morphism if X is smooth.

In a similar spirit as above, one constructs compatible pairings for all m

HWS
1 (X,Z/mZ)×H1

t (X,Z/mZ) −→ Z/mZ.

These pairings and the natural maps HWS
1 (X,Z) → HWS

1 (X,Z/mZ) induce a
homomorphism

recWS
X : HWS

1 (X,Z)→ πt,ab1 (X) (2)

such that composition with H0
S(X,Z) → HWS

1 (X,Z) is the map recX defined in
(1) above.
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Theorem 10 (Geisser/Schmidt). Let X ∈ Sch/F and assume that resolution
of singularities holds for schemes of dimension ≤ dimX + 1 over F. Then recWS

X

induces an isomorphism

HWS
1 (X,Z)∧ → πt,ab1 (X)

on profinite completions.

A proof of Theorem 10 can be found in [GS2].
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