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Abstract

In the Lubin-Tate setting we study pairings for analytic (pr,T')-modules and prove
an abstract reciprocity law which then implies a relation between the analogue of Perrin-
Riou’s Big Exponential map as developed by Berger and Fourquaux and a p-adic regulator
map whose construction relies on the theory of Kisin-Ren modules generalising the concept
of Wach modules to the Lubin-Tate situation.

Introduction

Classically explicit reciprocity laws or formulas usually mean an explicit computation of
Hilbert symbols or (local) cup products using e.g. differential forms, (Coleman) power se-
ries etc. and a bunch of manifestations of this idea exists in the literature due to Artin-Hasse,
Iwasawa, Wiles, Kolyvagin, Vostokiov, Briickner, Coleman, Sen, de Shalit, Fesenko, Bloch-
Kato, Benois ... In the same spirit Perrin-Riou’s reciprocity law gives an explicit calculation of
the Iwasawa cohomology pairing in terms of big exponential and regulator maps for crystalline
representations of G,; more precisely, the latter maps are adjoint to each other when also
involving the crystalline duality paring after base change to the distribution algebra corre-
sponding to the cyclotomic situation.

The motivating question for this article is to investigate what happens if one replaces the
cyclotomic Zjy-extension by a Lubin-Tate extension Ly over some finite extension L over Q,
with Galois group I', = G(Le/L) and Lubin-Tate character xz7 : Gr — o] which all arise
from a Lubin-Tate formal group attached to a prime 7y, € or; by ¢ we denote the cardinality
of the residue field oy, /or 7. We try to extend the above sketched cyclotomic picture to the
Lubin-Tate case at least for L-analytic crystalline representations of the absolute Galois group
G, of L. As pointed out in [SV15] already, the character 7 := x¢yc - XE% plays a crucial role.

To this aim we study (¢r,I'r)-modules over the Robba ring R with coefficients in an
appropriate extension K of L which contains the period 2 of the dual of the fixed Lubin-
Tate group. One ingredient is the theory of Schneider and Teitelbaum: Via Fourier theory
and the Lubin-Tate isomorpshism the locally L-analytic distribution algebra D(op, K) of the
additive group of the ring of integers oy of L with coefficients in K becomes isomorphic to
the subring Rt € R consisting of those functions which converge on the full open unit disk,
while the functions in R in general only converge on some annulus r < |Z| < 1 for some radius
0 < r < 1. This isomorphism induces the Mellin-transform, i.e., a topological isomorphism
between D(o},K) and the D(o}, K)-submodule (RT)¥2=0 of R* on which the 1/ -operator
- up to a scalar a left inverse of the Lubin-Tate pr-operator - acts as zero. After introducing



the Robba group ring R(I'z) containing D(I'p, K) we extend the Mellin transform to an
isomorphism of R(T'z) and (R)¥2=0. This is a special case of the following

Theorem 1 (Theorem [2.33). If M denotes a L-analytic (¢, T1)-module over R, then M¥L=0
is a free R(I'L)-module of rank rkgr M.

A second ingredient is Serre duality on the open unit disk and more general on the character
variety of the group 'y, which induces a residue pairing

(,}:UXxR-K
for the differentials Q' = RdZ and also a pairing
<, >: R(PL) X R(FL) - K,

which  induces topological isomorphisms Hompg cts(R(I'z), K) ~ R(T'z) and
Hompg s (R(I'r)/D(I'r, K), K) = D(I'r,, K). For a L-analytic (¢r,'1)-module M we finally
define on the one hand the two Iwasawa pairings

{, Yorrw MYL=0 x M¥L=0 5 R(T1)

and .
{, Imqw: MYETED x MU=l D(I'p, K),

where M := Homp (M, Q'). They are linked by the commutative diagram

{ barrw : MYP"70 M¥1=!' . D(I'p, K)
‘PL_ll ?wll [
{, }IM,Iw D Myr=0 x MYr=0 ——R(T'L).

Now assume that M arises as DL o(W) under Berger’s equivalence of categories (see Theo-

rem D from a L-analytic, crystalline representation W of G, whence M = Dii g(W* (xr))-
Then, on the other hand we obtain the pairing

[ ) ]Dcm‘s,L(W) : RwL:O ®r Dcris,L(W* (XLT)) X RwL:O ®r, Dcris,L(W) — 'R,(FL)

by base extension of the usual crystalline duality pairing. The work of Kisin and Ren provides
comparison isomorphisms

1 1

comp,, : M|—] = R|— ]| ®r Deris,.(W)
trr trr
and
o1 1 i
comp py - M[tLT] = R[tLT] &L Dcris,L(W (XLT))'

Here t;7 = logr(Z) € R denotes the Lubin-Tate period which stems from the Lubin-Tate log-
arithm. The Lubin-Tate character x 7 induces isomorphism I'y, = of aswell as Lie(I'y) = L,
and we let V € Lie(I'r) be the preimage of 1. Then the abstract reciprocity law we prove is
the following statement.



Theorem 2 (Theorem . For all x € MY:=0 and y € M¥L=Y for which the crystalline
pairing is defined via the comparison isomorphism, it holds

{5x7 y}/]\/l,lw = [x7 y]DcriS,L(W).

As an application we show the adjointness of big exponential and regulator maps. Recall
that Berger and Fourquaux have constructed for V' an L-analytic representation of G and
an integer h = 1 such that

. Fﬂithm'S’L(V) = Dcris,L(V) and

h

L4 Dcm’s,L(V)wL=ﬂ—Z =0

a big exponential map & la Perrin-Riou

q

Qg t (RTYE=0 @y Deyis (V) — DL (V)P =7

rig
which up to comparison isomorphism is for h = 1 given by f = (1 — ¢r)x +— Vz and which
interpolates Bloch-Kato exponential maps ELPLV(x7 ,)-

On the other hand, based on an extension of the work of Kisin and Ren in the first section,
we construct for a lattice T < V, such that V(7 1) is L-analytic and crystalline and such that
V' does not have any quotient isomorphic to L(7), a regulator map & la Loeffler and Zerbes

LY : H}y(Loo/L, T) = Dpp(T(r~))" =" = (R*)E= ®p Depis . (V(771))

as applying the operator .
I-——¢r
q

up to comparison isomorphism. Then we derive from the abstract version above with W =
V(1) the following reciprocity formula

Theorem 3 (Theorem [3.2). Assume that V*(1) is L-analytic. If Fil 'Depis (V*(1)) =
Deris,.(V*(1)) and Dms,L(V"‘(1))“:”21 = Deyis,p(V*(1))PL=1 = 0, then the following di-

agrai commutes:

¢>D(FL7(CP)

Dl (v*(1)" =7 x D(V (7 1))vr=!
TQV*(I),I QL(\)/\L

(R¥)¥2=0 @y, Dois. 1 (VF(1)) x (RF)¥2=0 @, Doyas (V1) D(T1,C,).

While the crystalline pairing satisfies an interpolation property (Proposition for triv-
ial reasons, the statement that the second Iwasawa pairing interpolates Tate’s cup product
pairing is more subtle (Proposition . Eventually the interpolation property of Berger and
Fourquaux for Qy,j, combined with the adjointness of the latter with £Y, implies an interpola-
tion formula for the regulator map, which interpolates dual Bloch-Kato exponential maps see
Theorem [3.26]



Notation

Let Q, € L c C, be a field of finite degree d over Q,, or, the ring of integers of L, 71, € of, a
fixed prime element, k;, = or/mror, the residue field, g := |kz| and e the absolute ramification
index of L. We always use the absolute value | | on C, which is normalized by |rr| = ¢~ L.
We fix a Lubin-Tate formal or-module LT = LTy, over o, corresponding to the prime
element 77,. We always identify LT with the open unit disk around zero, which gives us a global
coordinate Z on LT. The or-action then is given by formal power series [a|(Z) € or[[Z]]. For
simplicity the formal group law will be denoted by +r7.
The power series %KX Y)=(2.0) is a unit in or[[Z]] and we let grr(Z) denote its
inverse. Then grr(Z)dZ is, up to 7sca1arys, the unique invariant differential form on LT ([Haz]
§5.8). We also let

(1) logrr(Z) =2+ ...

denote the unique formal power series in L[[Z]] whose formal derivative is gz p. This log; 1 is
the logarithm of LT (|[Lan| 8.6). In particular, gr7dZ = dlog; . The invariant derivation diny
corresponding to the form dlog;r is determined by

f/dZ = df = ainv(f)legLT = ainv(f)gLTdZ

and hence is given by

(2) 6inv(f) = 92’11“ .

For any a € oy, we have

(3) logrr([a](Z)) = a-logr  and hence  agrr(Z) = grr([al(Z)) - [a]' (Z)

(|[Lan| 8.6 Lemma 2).

Let T be the Tate module of LT. Then T, is a free or-module of rank one, say with
generator 71, and the action of G := Gal(L/L) on T} is given by a continuous character
xrr ¢ Gr, — o] . Let T). denote the Tate module of the p-divisible group Cartier dual to
LT with period © (depending on the choice of a generator of 7)), which again is a free of-
module of rank one. The Galois action on 7. = T*(1) is given by the continuous character
T 1= Xeye * XZ%, where Xy is the cyclotomic character.

For n > 0 we let L,,/L denote the extension (in C,) generated by the 7}/-torsion points of
LT, and we put Ly := | J,, Ln. The extension Ly /L is Galois. We let I'z, := Gal(Le/L) and
Hp, := Gal(L/Ls). The Lubin-Tate character x 7 induces an isomorphism I'f, = of.

Henceforth we use the same notation as in [SV15]. In particular, the ring endomorphisms
induced by sending Z to [71](Z) are called ¢, where applicable; e.g. for the ring o7, defined
to be the my-adic completion of or[[Z]][Z7!] or By, := o/ [n;'] which denotes the field of

fractions of «77,. Recall that we also have introduced the unique additive endomorphism 1y, of
Ay, (and then 77,) which satisfies

_ -1
proYr =mg “traceg; /o, (#;) -

Moreover, projection formula

Yrer(f1)f2) = fivrn(fe) for any f; € Zr,



as well as the formula ¢
Yo =—-id
s

hold. An étale (¢r,')-module M comes with a Frobenius operator ¢p; and an induced
operator denoted by ;.

Let Et := lim oc, /poc, with the transition maps being given by the Frobenius ¢(a) = a?.
We may also identify E* with liLnon/TrLo(cp with the transition maps being given by the
g-Frobenius ¢,4(a) = a?. Recall that E* is a complete valuation ring with residue field F, and
its field of fractions E = lim C,, being algebraically closed of characteristic p. Let mg denote
the maximal ideal in E*.

The g-Frobenius ¢, first extends by functoriality to the rings of the Witt vectors W(fﬁ) -
W(E) and then oz-linearly to W(ET),, (E+)®0L or, € W(E)L, := W(E) ®o,, 0L, Where
Ly is the maximal unramified subextension of L. The Galois group G obviously acts on E
and W(f}) 1 by automorphisms commuting with ¢,. This G'r-action is continuous for the weak
topology on W (E), (cf. [GAL] Lemma 1.5.3).

Sometimes we omit the index ¢, L, or M from the Frobenius operator, but we always write
¢p when dealing with the p-Frobenius.

1 Wach-modules a la Kisin-Ren

1.1 Wach-modules

In this section we recall the theory of Wach-modules a la Kisin-Ren [KR] (with the simplifying
assumption that - in their notation - K = L, m = 1 etc.).

By sending Z to wrp € W(E'), (see directly after [SVI5, Lem. 4.1]) we obtain an G-
equivariant, Frobenius compatible embedding of rings

or[[Z]] — W(E");

the image of which we call AT, it is a subring of Ay, (the image of <7, in W(E).). The latter
ring is a complete discrete valuation ring with prime element 7y, and residue field the image Ep,
of k1 ((Z)) — E sending Z to w := wyr mod 7. We form the maximal integral unramified
extension (= strict Henselization) A" of Ay, inside W (E)y. Its p-adic completion A still is
contained in W (E)y. Note that A is a complete discrete valuation ring with prime element 7,
and residue field the separable algebraic closure E}” of Ef, in E. By the functoriality properties
of strict Henselizations the g-Frobenius ¢, preserves A. According to [KR] Lemma 1.4 the G-
action on W (E)y respects A and induces an isomorphism Hy, = ker(xr) = Aut®"(A/Ap).
We set A+ := A A W(E");.

Set @) := M € AJr which satisfies per definitionem ¢ (wrr) = Q - wrr.

Following [KR] we wrlte O = Or(B) for the ring of rigid analytic functions on the open
unit disk B over L, or equivalently the ring of power series in Z over L converging in B. Via
sending wyr to Z we view A as a subring of O. We denote by ModgL’FL"m the category
consisting of finitely generated free O-modules M together with the following data:

(i) an isomorphism 1 ® paq : (@EM)[%] ~ M[é]

(ii) a semi-linear I'z-action on M, commuting with ¢ and such that the induced action

on D(M) := M/wrrM is trivial.



We note that, since M/wprM = M[é]/wLTM[é] the map ¢ induces an L-linear endo-
morphism of D(M), which we denote by pp(aq)- As a consequence of (1) it, in fact, is an
automorphism.

The I'z-action on M is differentiable (|[BSX| Lemma 3.4.13) , and the corresponding de-
rived action of Lie(I'z) is L-bilinear ([BSX| Remark 3.4.15).

Similarly, we denote by Modiﬂ’FL " the category consisting of finitely generated free Aj-

modules N together with the folloLWing data:
(i) an isomorphism 1 ® @y : (@TLN)[%] ~ N[é]

(ii) a semi-linear I'z-action on N, commuting with ¢ and such that the induced action on
N/wrrN is trivial.

The map ¢ induces an L-linear automorphism of D(N) := N[}%]/wLTN[%] denoted by ¢ p()-

Obviously we have the base extension functor O ®Az — . Mod¥ulewen ModgL’FL"m.

A7
It satisfies

(4) D(O®,+ N) = D(N) .

We write 1\/[0d“(09L’FL’0 for the full subcategory of Mod%L’FL"m consisting of all M such that
R ®o M is gure of slope 0. Here R denotes the Robba ring.
By ModL’@q we denote the category of finite dimensional L-vector spaces D equipped

with an L-linear automorphism ¢4 : D = D and a decreasing, separated, and exhaustive
filtration, indexed by Z, by L-subspaces. In Modf’% we have the full subcategory Modf’@q’wa
of weakly admissible objects. For D in Modf’wq’wa let V(D) = Fil°(Bpis, ®r D)?4=" where,

as usual, Beris,, := Beris @1, L. In order to formulate the crystalline comparison theorem
in this context we also consider the category Modf’;gg@p p, of finitely generated free Lo ®q, L-

modules ® equipped with a (¢, ® id)-linear automorphism ¢, : © =, © and a decreasing,
separated, and exhaustive filtration on ®p, := D ®r, L, indexed by Z, by L ®gq, L-submodules.

. F,
For ® in Mod;’??  we define, as usual,
Lo®q, L

V(@) = (Bcris ®L0 @)Lp:l M FﬂO(BdR ®L @L) .

Let Rep,, ¢(G1) denote the category of finitely generated free or-modules equipped with a

continuous linear G'z-action and Repzzisjéan(G 1) the full subcategory of those T" which are free
over or, and such that the representation V' := L®,, T is crystalline and analytic, i.e., satisfying
that, if Dgr(T) := (T ®z, Bar)“*, the filtration on Dyp(T)m is trivial for each maximal ideal

m of L ®q, L which does not correspond to the identity id : L — L. Correspondingly we let

Rep§®(Gp), resp. RepCLMS"m(G L), denote the category of continuous Gp-representations in
finite dimensional L-vector spaces which are crystalline, resp. crystalline and analytic. The

base extension functor L ®,, — induces an equivalence of categories Repi’js]}an(G L) ®z, Qp =
Repim’a"(G ). Here applying ®z,Q, to a Zy-linear category means applying this functor
to the Hom-modules. For V in Rep] """ (GL) we set Deyis (V) := (Beris,p ®1 V)9 =

(Beris ®r, V)GL and Deris(V) := (Beris ®q, V)GL. The usual crystalline comparison theorem
says that D5 and V are equivalences of categories between Repf**(G) and the subcategory
Fipq

of weakly admissible objects in Mod Lo®g, L*
P



Lemma 1.1. ([ST4/ Lemma 5.3 and subsequent discussion, or [KR] Cor. 3.3.1) There is a
fully faithful ®-functor

~o. F,‘Pq F:SD
: Mod; "™ — ModL()@QpL

Dl—)[)::Lo®@pD,

whose essential image consists of all analytic objects, i.e., those for which the filtration on the
non-identity components is trivial. A quasi-inverse functor from the essential image is given
by sending ® to the base extension L ®Lo®q, L D for the multiplication map Lo ®q, L — L.

Lemma implies that
(5) Diris, (V)™ = Depis(V) for any V in Rechris’an(GL).

We denote by M (A1) the category of étale (g, I'z)-modules over Ay, (cf. [SVI5], Def.
3.7]) and by Smjf(A 1) the full subcategory consisting of those objects, which are finitely
generated free as Ar-module. For M in E)JZ?(AL), resp. for T'in Rep,, ¢(G), weput V(M) :=
(A ®a, M)#®u=1 resp. Dip(T) := (A ®,, T)kertxer).

Having defined all of the relevant categories (and most of the functors) we now contemplate
the following diagram of functors:

M (AL)
VlZTDLT
Tr.,an ~ cris,an <
MOdifi’ L Rep, “7*"(Gr) —Rep,, ;(GrL)
— r
OB+ Modiﬁ’ L @z, Qp o=
L
1%
Mod#r 10 ——2—> \[oqFews —Z> R IS )
(@ -~ L 5; Pr, L
cris,L
e Cl
F,
ModgL’FL"m ~ Mod, "
M

The arrows without decoration are the obvious natural ones. The following pairs of functors
are quasi-inverse ®-equivalences of ®-categories:

~ (Drr, V) by [KR] Thm. 1.6;
— (Deris,1, V1) by the crystalline comparison theorem ([E1] Rem. 3.6.7) and Lemma

- (D, M) by [KR] Prop. 2.2.6 (or [BSX] Thm. 3.4.16) and |[KR] Cor. 2.4.4, to which we
also refer for the definition of the functor M.

In particular, all functors in the above diagram are ®-functors. The second arrow in the left
column, resp. the left arrow in the upper horizontal row, is an equivalence of categories by [KR]



Cor. 2.4.2, resp. by [KR] Cor. 3.3.8. The lower square and the upper triangle are commutative
for trivial reasons.
We list a few additional properties of these functors.

Remark 1.2. i. For any M in S)ﬁjf(AL) the inclusion V(M) € A®a, M extends to an
isomorphism

(6) A Qo V(M)iA@)ALM )
which is compatible with the p4- and I'-actions on both sides.

it. The functors Dpp, V, and V(Ap ®pt —) respect exact sequences (of abelian groups).

iii. ([BSX|[ Prop. 3.4.14) For any M in ModfgL’FL"m the projection map M[%] —> D(M)

restricts to an isomorphism M[%]FL =5 D(M) such that the diagram

MG —== D(M)

tor

@Mi iSOD(M)

MIFEE]E —= D(M)

tor

is commutative; moreover, M[{EL] = O[TEL| @ M[%]FL = O[FEL ] @ D(M).
Now we recall that A..;s is the p-adic completi~0n of a divided power envelope of W(E*)
and let Agpis, := Aeris @r, L. The inclusion W(ET) € A5 induces an embedding A <
W(E+)L < Acris,L-
We observe that tr7 = logpr(wrr) belongs to By ;. Indeed, by [Co3l §I1I.2] we know
that ¢,(Bmaz) S Beris © Bmag, whence we obtain

SOq(Bma:v ®L0 L) < Bcris,L € Bnaz ®L0 La

where the definition of B,,q, can be found in (loc. cit.). By [Codl Prop. 9.10, Lem. 9.17,89.7| t 11
and wpr are invertible in Byae, 1, © Bmar ®r, L (This reference assumes that the power series
[r](Z) is a polynomial. But, by some additional convergence considerations, the results can
be seen to hold in general (cf. [GAL] §2.1 for more details)). Hence, by the above inclusions
and using that cpq(tLT) = mrtrr, we see that tpr is a unit Be., . In particular, we have
an inclusion ACMS,L[%,é] C Byris,.- Moreover, since ¢,(wrr) = Quwrr is invertible in
wq(Bmam ®r, L), the elements wrr and @ are units in Bris,r, as well. In particular, we have
an inclusion
(7) AT [ﬁ] - Bcris,L'

Next we shall recall in Lemma below that the above inclusion AJLr C Acris,, extends
to a (continuous) ring homomorphism

(8) 0 — Acm‘s,L[%] < Bcris,L-

Forae ET ~ proj lim,, oc, we denote by o9 as usual its zero-component.



Lemma 1.3. The following diagram of or,-modules is commutative

W (E") oc, 0

J
0 —> ker(©p) —= W(E+), 2> og, — =0,

(9) 0

where J = ker(0), ©%;,olan]p™)) = 220 aglo)p" and similarly ©r(3,,~olan]7])) =
(0)

Zn>0 a7}, while u denotes the canonical map as defined in [FF, Lem. 1.2.3], it sends Te-
ichmiiller lifts [a] with respect to W(E*) to the Teichmiiller lift [o] with respect to W(EV)y.

Proof. First of all we recall from [GAL, Lem. 1.6.1] that © and ©, are continuous and show
that also w is continuous, each time with respect to the weak topology, of which a fundamental
system of open neighbourhoods consists of

m—1
Uam = {(bo,b1,...) € W(ET)|bo, ... . b1 € a} = Y Vi([a]) + p" W (ET)
i=0
and similarly Ucﬁm := {(bg, b1,...) € W(]i)*)dbo7 ..ybm—1 € a} for open ideals a of E* and
m = 0; see §1.5 in (loc. cit.). By or,-linearity, we see that u(p™W (E*)) < p™W (E1).. Using

the relation »
u(Vyr) = LoVe, (u(F/ 1))

from [FF], Lem. 1.2.3], where V7 denotes the Verschiebung, one easily concludes that

w(VI(BD) = (v (7)),

p I

whence w(Usm) S UZ,, and continuity of u follows.
Since the commutativity is clear on Teichmiiller lifts and on p by or,-linearity, which
generate a dense ideal, the result follows by continuity. O

The following lemma generalizes parts from [PR] Prop. 1.5.2.].
Lemma 1.4. Sending f =Y, . ganZ" lo f(wrr) induces a continuous map

1

TL

O - Acris,L[ ]7

where the source carries the Fréchel-topology while the target is a topological or,-module, of
which the topology is uniquely determined by requiring that A..s1 is open, i.e., the system
P Acris,, with m = 0 forms a basis of open neighbourhoods of 0.

Proof. First of all, the relation JP € pA..;s from [PRl §1.4.1, bottom of p. 96] (note that
JP € Wp(R) regarding the notation in (loc. cit.) for the last object) implies easily by flat base
change

(10) J£ < pAcris,L



with Jp, := J ®,, or. By [GAL, Lem. 2.1.12] we know that wrr belongs to ker(©p). Now

we claim that there exists a natural number 7’ such that wi’T lies in W7 = Jp, + pW(ﬁ+)L,
whence for 7 := pr’ we have w} € W, with Wy, := W{" for all m > 0. To this aim note that
diagram @ induces the following commutative diagram with exact lines

(11)
0 Wi W(E+) ®0L0 oL, L (O(Cp ®0L0 OL)/p(O(Cp ®0L0 0L> —0
| .| /|

0 —>ker(©y) + pW (ET),, W(E"), oc, /pog, —————————0,

Or

where the map p is induced by sending ¢ ® b to ab and a reference for the middle vertical
isomorphism is [GALL Prop. 1.1.26]. By the snake lemma the cokernel of the left vertical map
is isomorphic to

ker (1) € ker ((oc, @y, 01)/p(0c, @0y, 01) = F)

= ker (oc,/poc, @ or/por, — oc,/mc, @k or/mLoL)

= mc, ® or/por + oc,/poc, @ TLOL/pPOL
and thus consists of nilpotent elements whence the claim follows. Here mc, denotes the max-
imal ideal of oc,.

Now let f = >, - a,Z" satisfy that |a,|p" tends to zero for all p < 1. Writing n = gnr+ry
with 0 < r, < r, we have

n r r
AnWrr = anwL%“(wLT)qn € aanqn < anpancris,L;

where the last inclusion follows from (T0). But |a,p®| < |an|,p'~" tends to 0 for n — 0.

Thus the series Y ~qa,wi converges in Acris,L[%]-
Moreover, since one has sup|a,p '+ 7+

we obtain for any m that

{f| ||f||ﬂ < pimil} - {f € O|f(wLT) € pmAcris,L}7

whence the latter set, which is the preimage of p™ Ay 1, is open. This implies continuity. [

| < pl|f]|, for the usual norms || -], if 1 > p>p7%,

Lemma 1.5. The big square in the middle is a commutative square of ®-functors (up to a
natural isomorphism of ®-functors).

Proof. We have to establish a natural isomorphism

(12) L®o, V(AL @+ N) 2 Vi(D(O®,+ N))  for any N in Mod#5 "0,

L
In fact, we shall prove the dual statement, i.e., using , that

(13) (L ®o, V(AL®p+ N))* = VL(D(N)),
where * indicates the L-dual. From the canonical isomorphisms
HOmAqu (M, A) = HOInA#,q(A ®AL ]\47 A)
=~ Homa , (A®,, V(M),A)
=~ Hom,, (V(M), A=)
=~ Hom,, (V(M),or),

10



where we used @ for the second isomorphism and write M for A; ® At N, we conclude that
the left hand side of is canonically isomorphic to Homa, o (Af ®Az N,A)®,, L. Let
At := A A W(ET)L. On the one hand, by [KR] Lemma (3.2.1), base extension induces an

isomorphism

Homy s, (N, A*[51]) = Homa, o, (AL ®,1 N, A) .

wrLT

On the other hand, in [KR] Prop. (3.2.3) they construct a natural isomorphism
(14) Homyy , (N, A*[55]) @, L = Homp g, mil(N/wrrN)[3], Beris,L) -
Therefore, the left hand side of becomes naturally isomorphic to

(15) Homp, o, 7it(D(N), Beris,r) = Vi(D(N)*),

where the last isomorphism is straightforward. Thus the proof of is reduced to the canon-
ical identity

(16) VL(D(N)*) = VL(D(N))*.

This can be proved in the same way as in [F'1l Rem. 3.4.5 (iii), Rem. 3.6.7|: Since V7, is a rigid
®-functor, it preserves inner Hom-objects, in particular duals.

In order to see that is compatible with tensor products note that base change, taking
L-duals or applying comparison isomorphisms are ®-compatible. Thus the claim is reduced to
the tensor compatiblity of the isomorphism the construction of which we therefore recall
from [KR]. It is induced by a natural map

HOHIA+ (N A+[ ]) ®0L L— HomL((N/wLTN)[ ] ch’s,L)

which comes about as follows. Let f € Hom A} (N, A+[wLT])‘ By composing f with the inclu-
sion . we obtain f1 : N — Berisr- By base extension to O via and then localization in
@ the map fi gives rise to a map fa : (O ®AZ N)[é] — Bepis,1,- This one we precompose with
the isomorphism 1 & @y to obtain

fs: (O Qa1 )[%] = (0 Qp+ N)[%] — Beris,L -

Now we observe the inclusions
(O®ps,, MBI (O®pr ., MIEL] 2 (0@, Nlpr(22)]

= O®O7¢L ((O ®A+ N) YLT )

trr

They only differ by elements which are invertible in B,;s 1. Therefore giving the map f3 is

equivalent to giving a map f1 : O®o,,, ((O N N)[‘:LLJT]) — Beris 1. Finally we use Remark
L

[1.2]iii which gives the map

& (N/wrrN)[G] <= (0 ®p1 MIEED)"™ = (0 @py N[7]

By precomposing f4 with 1 ® & we at last arrive at a map f5 : (N/wLTN)[%] — Bepis, 1. From
this description the compatibility with tensor products is easily checked. O
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Suppose that N is in Modiﬁ’rban and put T := V(AL ®a+ N) in Repi”sfan(GL). Then,
by Remark [I.2]iii and Lemma we have a natural isomorphism of ®-functors

(17) comp : O[MLT] C@A+ N = O[UJLT] ®L Deris L(L ®0L )

which is compatible with the diagonal ¢’s on both sides. '
In the proof of [KR] Cor. 3.3.8 it is shown that, for any T in Rep, "3""(GL), there exists
an A7 -submodule M € Dy (T) which

(N1) lies in Mod“OL’FL"m with @op and the I'z-action on 9 being induced by the (¢4, I'1)-
structure of DLT(T), and

(N2) satisfies Ap, ®Opr M = Drr(T).

Note that property (N2) implies that 9 is p-saturated in Dpp(T), i.e., sm[%] N Dpp(T) =M,
since Az is obviously p-saturated in Aj;
We once and for all pick such an N(T") := 9. This defines a functor

N - Repcris,an(GL) _ Modiﬂ’m"m

or,f f

which is quasi-inverse to the upper left horizontal arrow in the above big diagram. Note that
N is in a unique way a ®-functor by [Sal 1.4.4.2.1].

Remark 1.6. For T in Repgzij;a”(GL) and N := N(T) in Modiﬁ’rban we have:

L

(i) If L®,, T is a positive analytic crystalline representation, then N is stable under pn;

(ii) If the Hodge-Tate weights of L®,, T are all = 0, then we have N € A} - pn(N), where
the latter means the AT -span generated by on(N).

Proof. The corresponding assertions for M := O ® At N are contained in [BSX] Cor. 3.4.9.

Let n1,...,ng be an AJr basis of V.
For () we have to show that ¢n(n;) € N for any 1 < j < d. Writing pon(n;) = 2?21 fijni
we know from the definition of the category Mod‘pL’FL’(m that fije AT [Q] and from the above

observation that f;; € O. This reduces us to showmg that oL[[Z]][é] N O C or|[|Z]]- Suppose
therefore that Q"h = f for some r > 1, h € O, and f € or[[Z]]. The finitely many zeros of
Q € or[[Z]], which are the nonzero mp-torsion points of the Lubin-Tate formal group, all lie
in the open unit disk. By Weierstrass preparation it follows that @) must divide f already in
or[[Z]]- Hence h € or[[Z]].

For (ii) we have to show that n; = 2?21 fijen(n;), for any 1 < j < d, with f;; € A}. For
the same reasons as in the proof of (1) we have n; = Z fjcpN(nz) = Z‘Ll U@N(m) with
1 € A*[ | and f> € O. Then e 1(fi; = fi))en(ni) = 0. But, again by the definition of the

Fran , the pn(n;) are hnearly independent over A+[ | and hence over O[ ]

It follows that ij = l’; € Aj-:. O

category Mod“"L’

cris ,an

First we further investigate any 1" in Rep,, """ (G) whose Hodge-Tate weights are all

< 0, i.e., which is positive. For this purpose we need the ring AT = A A W(ET),. One has
the following general fact.
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Lemma 1.7. Let F' be any nonarchimedean valued field which contains o /w01, and let op
denote its Ting of integers; we have:

i. Let « € W(F) be any element; if the W(og)r-submodule of W(F)r generated by
{gpfl(a)}@o is finitely generated then o€ W(op)p.

it. Let X be a finitely generated free op-module, and let M be a finitely generated W (og) -
submodule of W(F), ®o, X; if M is ¢4 ® id-invariant then M S W (op)r, ®o, X.

Proof. i. This is a simple explicit calculation as given, for example, in the proof of [Col]
Lemma II1.5. ii. This is a straightforward consequence of i. O

Proposition 1.8. For positive T in Repgf‘j}an(GL) we have
N(T) € D} p(T) := (At ®,, T)kerur) |
and N(T) is p-saturated in D (T).

Proof. By Remark .i the A -submodule N(T) of W(E)L ®o,, T is ¢4 ® id-invariant (and
finitely generated). Hence we may apply Lemma .ii to M := W(E"), - N(T) and obtain
that N(T) € (W(E') L ®o, T) N (A®,, T)krer) = D} (T). Since N(T') is even p-saturated
in Dpr(T), the same holds with respect to the smaller DF.(T). O

Corollary 1.9. For positive T in Repgzisjm(GL) the AT -module D} .(T) is free of the same
rank as N(T).

Proof. By the argument in the proof of [Col] Lemma II1.3 the A} -module D} (T) always is
free of a rank less or equal to the rank of N(T'). The equality of the ranks in the positive case
then is a consequence of Prop. [L.§ O

Next we relate N(7T') to the construction in [Be| Prop. I1.1.1.

Proposition 1.10. Suppose that T in RepgTLisjzm(GL) is positive. For N := N(T) we then

have:
i. N is the unique A7 -submodule of Dy (T) which satisfies (N1) and (N2).
#. N is also the unique A} -submodule of D}, (T) which satisfies:

(a) N is free of rank equal to the rank of D} (T);
(b) N is T'p-invariant;

(c) the induced I'r-action on N/wrrN is trivial;
(d) Wi Di(T) S N for somer = 0.

Proof. Let P = P(A}) denote the set of height one prime ideals of A}. It contains the prime
ideal o := ((,L)LT).

Step 1: We show the existence of a unique A7 -submodule N’ of D}.(T) which satisfies
(a) - (d), and we show that this N’ is ¢p,-invariant.

Egistence: We begin by observing that the A}-submodule N := N(T) of Df(T) has the
properties (a), (b), and (c), but possibly not (d). In particular, the quotient D} .(T)/N is an
A7 -torsion module. Hence the localizations N, = D} ,.(T), coincide for all but finitely many

13



p € P. By [B-CA| VII.4.3 Thm. 3 there exists a unique intermediate AT-module N € N’ <
D} (T) which is finitely generated and reflexive and such that N} = N,, and Ny = D} .(T),
for any p € P\{po}. Since AT is a two dimensional regular local ring the finitely generated
reflexive module N’ is actually free, and then, of course, must have the same rank as N and
D} (T). We also have N’ = Mo Vo = Noo 0 oo D7F(T),. Since py is preserved by $pt (1)
and I'y, it follows that N’ is Ppt (1) and I'z-invariant. Next the identities

L®0L N/wLTN = Npo/wLTNpo = N’;O/Q)LTN;(] = L®0L N’/UJLTN/ 2 N//OJLTN/

show that the induced I'r-action on N'/wrrN' is trivial. By using [B-CA] VIL.4.4 Thm.
5 we obtain, for some my,...,mq = 0, a homomorphism of A}-modules D} .(T)/N' —
G—)?:lAz /pS’”A}: whose kernel is finite. Any finite Aj{—module is annihilated by a power of the
maximal ideal in A7. We see that D} (T')/N’ is annihilated by a power of pg, which proves
(d).

Uniqueness: Observing that v(wrr) = [xzr(¥)](wrr) for any v € T ([GAL] Lemma
2.1.15) this is exactly the same computation as in the uniqueness part of the proof of [Be]
Prop. 11.1.1.

Step 2: We show that N’ is p-saturated in Dj(T). By construction we have (N')(;, ) =
D} p(T)(x,)- This implies that the p-torsion in the quotient D}, (T)/N" is finite. On the other
hand, both modules, N’ and DZT(T), are free of the same rank. Hence the finitely generated
A7 -module D}, .(T)/N' has projective dimension < 1 and therefore has no nonzero finite
submodule (cf. [NSW]| Prop. 5.5.3(iv)).

Step 3: We show that N’ = N. Since both, N and N’, are p-saturated in DZT(T) it suffices
to show that the free B} -modules N(V) := N[%] and N'(V) := N’[%] over the principal
ideal domain B} := Az[%] coincide. As they are both I'z-invariant, so is the annihilator
ideal I := annB+(N’( )/N(V)). Hence, by a standard argument as in [Be| Lemma 1.3.2, the

ideal I is generated by an element f of the form w73 ]}, PP H(Q)* with certain oy, > 0,
0 < n < s, for some (minimal) s > 0. Since N(V),,,) = N'(V)w, ) by the construction of
N', it follows that ag = 0. Assuming that M := N'(V)/N(V) # 0 we conclude that s > 1
(with a5 > 1), i.e., that, with p, := (¢771(Q)), we have M,, # 0 while M,_,, = 0. We claim
that (o7 M)y, ,, # 0. First note that we have have an exact sequence

0 (B)! 5 (B! > M -0,
with f dividing det(A) € B \(B7} )y, which induces an exact sequence
0 (B)* Y (B ) > piM - 0.

Since ¢ (f) = 1—[24;12 " 1(@)n1 divides det(pr,(A)) we conclude that det(pr,(A)) belongs
to psr1 which implies the claim.
Now consider the following diagram with exact rows

00— (i N(M)lgl —=NV)[g] —=0——0

N

0—— (@GN (VG —= N'(V)[§] —=C—o.
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The upper isomorphism comes from the definition of the category Modiﬁ’rb(m in which NV
L

lies. The map (go}:N’(V))[é] — N’(V)[%] is injective since ¢ N’ — N’ is the restriction of
the isomorphism ¢} Dpr(T) = Dpr(T). By the snake lemma and as Q ¢ ps41 we obtain an
injection

0# (PLM)poyy = My, =0,
which is a contradiction. Thus M = 0 as had to be shown. O

Remark 1.11. (i) N(or(x71) = wirA] ®o, orn® ! and N(or) = Aj}.

(ii) Let or(x) = opto with x : G — o} unramified. Then there exists an a € W (k)] with
oa =x '(0)a for all o € G1, by Remark ;in particular,

N(oL(x)) = Dip(or(x)) = Afng for ng = a®to,

vr(a)

where T'p, fives no and @y, (v))(0) = cng with ¢ := 2= € of .

Proof. Each case belongs to a positive representation 7' in all cases the right hand side of
the equality satisfies the properties characterizing N(T') in Prop. [1.10ii (cf. [GAL] Lemma
2.1.15). O

Lemma 1.12. For any T € Repgzisj;an(GL) we have:
i. N(T) is the unique AT -submodule of D (T) which satisfies (N1) and (N2);
i. N(T(x77) = wipN(T) o, 0n®".

Proof. First we choose r = 0 such that T'(x, ) is positive. Sending N to wj, N(T) ®o,
orn® " < Dpr(T) Qo orn® " viewed in Dpp(T) ®,, orn® " = Drr(T(x1)) sets up a
bijection between the A -submodules of Dy (T) and Drr(T(x 7)), respectively. One checks
that NNV satisfies (N1) and (N2) if and only if its image does. Hence i. and ii. (for such r) are
a consequence of Prop. [[.10]i. That ii. holds in general follows from the obvious transitivity
property of the above bijections. O
Proposition 1.13. Let T be in Repgzij;“”(GL) of op-rank d and such that V. = L ®,, T is
positive with Hodge-Tate weights —r = —rg < -+ < —r1 < 0. Taking as an tdentification
we then have

(18) (ZEL)"O®p+ N(T) € O®L Deris,1.(L ®o, T) € O®p+ N(T)

wrLT

with elementary divisors

[O®@p+ N(T) : O @1 Deris,n (L ®op, T)] = [(FEL)™ + -+ (ZEL)"].

wr wrLT

S

Proof. We abbreviate D := D5 (V). By the definition of the functor M in [KR] we have

(19) O®LD<C M(D)c (L2)y"O0®L D .

wrLT

On the other hand, the commutativity of the big diagram before Remark|[L.2)says that M(D) =
(@] ®pt N(T). This implies the inclusions (18].
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Concerning the second part of the assertion we first of all note that, although O is only
a Bezout domain, it does satisfy the elementary divisor theorem ([ST1]| proof of Prop. 4.4).
We may equivalently determine the elementary divisors of the O-module M(D)/(O ®r, D).
The countable set S of zeros of the function ffz—? € O coincides with the set of nonzero torsion
points of our Lubin-Tate formal group, each occurring with multiplicity one. The first part
of the assertion implies that the module O-module M(D)/(O ®;, D) is supported on S. Let
M (D), resp. O, denote the stalk in z € S of the coherent sheaf on B defined by M(D), resp.
O. The argument in the proof of [BSX] Prop. 1.1.10 then shows that we have

M(D)/(0®L D) = [M.(D)/(0:® D) .

z€S

The ring O, is a discrete valuation ring with maximal ideal m, generated by tLTT We consider
on its field of fractions Fr(O,) the m-adic filtration and then on Fr(O,) ®; D the tensor
product filtration. By [Kis| Lemma 1.2.1(2) (or [BSX| Lemma 3.4.4) we have

M. (D) = Fil’(Fr(0.) ® D) for any z € S,

and this isomorphism preserves O, @, D. At this point we let 0 < 81 < ... < 8, < 7 denote
the jumps of the filtration Fil* D, i.e., the r; but without repetition. We write

D=D1®..®D,, suchthat FilI**D=D,®...®D,,

For the following computation let, for notational simplicity, R denote any L-algebra which
is a discrete valuation ring with maximal ideal m. We compute

Fil’(Fr(R)®;, D) = Y m~ @, FiV D = >> m™ @, FiV D
jEZ j=0

m m m
=Y m M LFI*D =) Y m™ QL D,

i=1 i=1j=i

m
SO e D= Y m e
j=1i=1 j=1

Hence we obtain
Fil’(Fr(R) ® D)/(R®L D) = @/L,m™* /R®L D; = @], R/m* @ D; .
By combining all of the above we finally arrive at

M(D)/(0®;, D) = [ [Mo(D)/(0: & D) = | [Fil’(Fx(0.) ®. D)/(0. ®. D)

Z€S z€S

> [ [(@]10./m¥ @ D) = &L, ([ [(0:-/(22)% 0. @1 D;))

zeS Z€S

= &Ly Hoz/ (Lz) )®LDj:@T=10/(iLLTT)SJO®LD .

wLT
Z€ES
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For a first application of this result we recall the comparison isomorphism

(20) N(V)
N(V)[§] —= O[] @5+ N(V) —==> O[4E] @1 Deyis, (V)

for any T in Repg”sfan(GL), V= L®, T, and N(V) := N(T)[%] The left horizontal
inclusion comes from the fact that f)LTTT is a multiple of @) in O. In particular, we have the
commutative diagram

comp

N(V) O[tLT] QL Deris L(V)

PN(V)
PN(V) PL®Pcris

NOV) —== N(V)[] % O[42] @, Deris (V)

where @5 denotes the g-Frobenius on Deyis (V') and where

N (V) := the A7 -submodule of N(V)[é] generated by the image of N (V') under ¢ (yy-

We note that, since Q is invertible in Ay, N(¥) (V') can also be viewed as the Az—submodule of
Dir(V)=Ap ®AZ N (V') generated by the image of N (V) under ¢p, ,.(v. from this one easily

deduces (use the projection formula for the t-operator) that the map ¢ p, .y on Drr(V)
restricts to an operator
Uyt NO(V) — N(V) .

Corollary 1.14. Assume that the Hodge-Tate weights of V' are all in [0,r]. Then we have

(21) comp(N(V)) € O®r, Deyis,r.(V), comp(N(S")(V)) C O®r Deris,r.(V), and
(22)  comp(N@(V)¥n1=0) € O¥L=0 @} D pis (V) .

Proof. Apply Proposition m to T'(x7r), then divide the resulting (left) inclusion in by
t7 7 and tensor with or,(x7} ). This gives the first inclusion by Lemma upon noting that
t" 7 Deris..(L ®o, T) ®L Ln®™" = Depis 1.(L ®o, T(x;71))- The second inclusion easily derives
from the first by using that the map comp is compatible with the ¢’s.

For the third inclusion we consider any element = = > fipnw)(z:) € N&)\(V), with
fi € AT and z; € N(V), such that Yny (@) = 25 ¢L(fi)ri = 0. We choose an L-basis
e1,...,em of Deris (V) and write comp(z;) = Zj fij ®e; with f;; € O. Then

0 = comp(Yn(v)(7) ZwL fi)comp(z;) = ZZ@ZJL fi)fij ®e;

%

and it follows that
L(Z fivr(fi;) = Zl/JL(fi)fij =0,
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i.e., that Y, fipr(fi;) € O¥E=9. On the other hand we compute
comp(z Z fienony (i) Z filer ® @eris)(comp(x;))
= 22 filer(fij) ® @eris(e;))
Z Ef#PL i) ® @eris(ej) -

Corollary 1.15. In the situation of Proposition[I.15 we have

Iy

Deris, (V) = (O @p+ N(T))

Proof. We set M := O ®a+ N(T) and identify D(M) and D¢yis,,(V') based on Lemma

and using (18). The proof of [KR] Prop. (2.2.6)] combined with Remark iii. implies the
commutativity of the following diagram

D(M)——= O[42] @, D(M) —— M2

incl. trr trr
\ jincl. J\incl.
incl.

M(D(M)) M,

in which the right vertical map is the canonical inclusion while the left vertical map stems from
the definition of the functor M as in (19)) (which also implies the commutativity of the left
triangle). Taking I'p-invariants and using the fact that the upper line induces the isomorphism
D(M) = M[‘;LL—TT]FL in Remark E (iii) the result follows. O

Corollary 1.16. In the situation of Proposition we have Q"N (V) € N@) (V).

Proof. In the present situation py() @ N(V) — N(V) is an semilinear endomorphism of
N(V) by Remark i). Then Po®, + N(V) = PLOPN(V) O ®Opt N({V)—- 0O ®pr N(V) is
an endomorphism as well. The correstonding linearized maps are

PNy AL ®pt o, N(V) = N¥(V) = N(V)
f®xr— fono(z)
and

O, ) = ido () O®pt ,, N(V) = 0®,+ (Af @ps,, N(V))

Since O is flat over AF[2] it follows that
TL

O®ps N(V)/im(ey , nv)) = O @y (N(V)/ND(V)) .

L
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But O is even faithfully flat over A+[ ] Hence the natural map
NVNOW) — 0@ NV im(es )

is injective. This reduces us to proving that

Q" (0 Qp+ N(V)) < 1m(¢l(géA+N(v))
As for any object in the category Mod% """, we do have

Q"o ®p+ N(V)) < im(SOZgéAZN(V)) :
for some sufficiently big integer hA. On the other hand, says that

(fJLL—?)’"comp(O N N(V)) € O®L Deris,.(V) S comp(O ®pt N(V)) .

Since pqris is bijective we can sharpen the right hand inclusion to

@ XL Dcv'is,L(V) < Comp(lm((pl(g%@ +N(V))) :

It follows that (tLT ) (O ®p N(V)) c im(gogé N(V))' Since the greatest common divisor of

Q" and (tLT )" is Qmn(h7) we finally obtain that Q" (O ®pr N(V)) < 1m(gpl(gé +N(V)) O
Corollary 1.17. In the situation of Proposition we have, with regard to an AJLr—basis of
N := N(T) and with s := Zf-lzl i, that

det(on : N(T) — N(T)) = det(pnvy : N(V) = N(V)) = @
up to an element in of - (pr — 1)((A})*).

Proof. Note first that N is py-stable by Remark [L.6{i). Moreover, the determinant of ¢n
acting on N (V') equals the determinant of o1 ®p N acting on (’)@)Azr N(T), since we can take for

both an A7 -basis of N(T). Since ‘PL(wLL:;) = %ZLTTT, by propositionthe latter determinant
equals (%)_5 multiplied by the determinant of ¢, ® Frob acting on O ®r, Deyis (V). The
latter is equal to the determinant of Frob on Deys 1,(V'), which is 7§ up to a unit in oy, since
the filtered Frobenius module D5 1,(V) is weakly admissible. This shows the claim up to an
element in o} - (¢, — 1)(O*). But O* = 7% x (A])* by [Lazl] (4.8). Hence (o, — 1)(O0>) =
(o1 — 1) ((A)%). ]

1.2 The determinant of the crystalline comparison isomorphism

Let T be any object in Repi”sfan(GL) of op-rank d and such that V' = L®,, T has Hodge-Tate
weights —r = —rg < -+ < —rq; we set s := 2?21 riy, N := N(T') and M = O ® N. Consider
the integral lattice

D :=D(T) € Deyis,n.(V)

which is defined as the image of N/wrrN € D(N) under the natural isomorphisms D(N) =~
D(M) = D¢yis, (V) arising from Lemma and (). Then with N(—) also D(—) is a @
functor. The aim of this subsection is to prove the following result.
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Proposition 1.18. With regard to bases of T and D the determinant of the crystalline com-
parison isomorphism

Beris,t, @1V = Beris,r, ®L Deris,n.(V)
belongs to t5, W (kr)y.

We write /\ V for the highest exterior power of V over L.
Remark 1.19. If V is L-analyic (Hodge-Tate, crystalline), then so is \ V.

Since Dps,1, is a tensor functor, we are mainly reduced to consider characters p : G, — L*,
for which we denote by V), its representation space.

Remark 1.20. (i) IfV, is Hodge-Tate, then p coincides on an open subgroup of the inertia
group I, of G, with
—1 -
H g OXZLLT’

O'EEL

for some integers n,, where X1, denotes the set of embeddings of L into L and XoL,LT 18
the Lubin-Tate character for oL and o(7r).

(ii) If, in addition, V, is L-analytic, then p coincides on an open subgroup of the inertia
group Iy, with X'} for some integer n.

Proof. This follows from [Se(] ITI.A4 Prop. 4 as well as ITI.A5 Theorem 2 and its corollary. [

Remark 1.21. Let p be a crystalline (hence Hodge-Tate) and L-analytic character. We then
have:

(i) If p factorizes through G(L'/L) for some discretely valued Galois extension L' of L, then
the determinant of the crystalline comparison isomorphism for V, belongs to (W(kL)L[%]) %
(with respect to arbitrary bases of V- and Depis 1,(V').)

(ii) If p has Hodge-Tate weight —s, then the determinant of the crystalline comparison iso-
morphism for V, lies in tsLT(W(kL)L[I%])X.
(ili) p is of the form x},x"" with an integer n and an unramified character x"".

Proof. We shall write Kg for the maximal absolutely unramified subextension of K, any alge-
braic extension of Q,. Taking Gr/-invariants of the comparison isomorphism shows that the
latter is already defined over

Béy = (L ®ry Beris)® = L ®r, (Beris)®Y = L ®r, E) c W(];L)L[}l,]a

cris, L —

whence (i). Using Remark (ii) and applying (i) to px ;1 gives (ii). By the same argument it
suffices to prove (iii) in the case of Hodge-Tate weight 0. Then its period lies in the completion
of the maximal unramified extension of L by (i), whence the claim that p is unramified follows,
as the inertia subgroup of G, must act trivially. 0l

By Proposition [I.8] we have

N(T) < D} (T)S A" ®,, T
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if T is positive. Using (N2) and the isomorphism

A@a, Dir(T) 2 A®,, T
we obtain a canonical injection
(23) AT ®at N(T) > A" ®,, T.

Proposition 1.22. If T s positive, then the determinant of with respect to bases of
N(T) and T is contained in w5, (A7) - W(kp)].

Proof. Let M € My(A™) be the matrix of a basis of N(T') with respect to a basis of T
and P € My(A7}) the matrix of ¢y, with respect to the same basis of N(T'). Then we have
er(M) = MP. By Corollarywe have det(P) = Q%o (f)f 'u for some f € (AT)* and
u€e o). But Q = goL(wLT)wZ%. We deduce that

or(det(M)) = o (Wirf)(wirf)fudet(M) | ie., that (wipfa) ™t det(M) e AL~ =of .

with a € W (kp)] such that ¢ (a)/a = u. It follows that det(M) € w§ oL (AF)> W(l_fL)z But
we also have det(M) € A*. Hence we finally obtain det(M) € wipor(AL)* - W(kp)F nAX =
wip(A)* - W(k)F.

0l

Remark 1.23. For T = op(x) with unramified x as in Remark the map maps the
basis ng to a ® ty.

Lemma 1.24. If T is positive, then we have:
. O ®0L D(T) =0 ®L Dcris,L(V) < Comp(o ®Az N(T));

it. the determinant of the inclusion in i. with respect to bases of D(T) and N(T') belongs to
(Z2)*(AT).
LT
iii. for T = or,(x) with unramified x as in Remark|1.11: comp(ng) = pr(a) @ty = ca®ty €

Deyis, (V) with ¢ = ‘pLT@ € oy ; in particular, the element a ® ty is a basis of D(T).

Proof. By construction the comparison isomorphism is of the form

comp = ido[%] ®r, compy

with
compy : (O @3 N[$41)" " = NfwprN[}] = DIN) = Deris (V)

i
the right hand arrow being the natural isomorphism from Lemma [I.5] For positive T' we know
in addition from the proof of Lemma |1.15| that ((9 ®AZ N)FL = ((9 ®AZ N[‘;’LL—TT])FL. We
deduce that

comp(O @, + N) 2 0@y, compy((0®,+ N)'*) = O @ Deis, (V) -

By Proposition we know that the determinant in ii. is of the form (f)LL—TT)Sf(wLT) with
f(wrr) € O*. On the other hand, if we base change the inclusion in i. to L = O/wrrO then
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we obtain the base change from oy, to L of the isomorphism D =~ N/wrrN. By our choice
of bases the determinant of the latter lies in o] . Since evaluation in zero maps (%)S flwrr)

to f(0) it follows that f(0) belongs to o and hence ([Lazl] (4.8)) that f(wrr) belongs to
(A7)

Now we prove iii.. By the above description of comp, we have to show that the image
np € D(N(T)) of ng is mapped to ca ® ty under the natural isomorphism from Lemma
Since under the crystalline comparison isomorphisms these elements are sent to a®(a~'®ng) €
Beris, . @1 VL(D(N)) and ca®to € Beris,r. ®o,, T, respectively, it suffices to show that the map
sends a= ! ®@ng € L ®,, V(AL ®AZ N) (which corresponds to tp under the canonical

isomorphism 7' =~ V(Ap ®p+ N)) to (ca)™! ® g € VL(D(N)). Dualizing, this is equivalent
to the claim that the map sends the dual basis §,-1gy,, € (L ®o, V(M))* of a~! ® ng to
(ca)-1@no € VL(D(N))*. Note that the isomorphism

wrT

(L ®o, V(M))* = L ®,, Homa, o, (AL ®pt N,A) = L®,, HomAzwq(N’ A1)

sends 0,-1gy,, t0 ady,. Thus it suffices to show that the map sends ady, to cadp, in
HOmL7@q7Fi]((N/(.ULTN)[%],BCTZ‘S’L)7 since the latter corresponds under to ca ® 0p, €
VL(D(N)*) which in turn corresponds to (cq)-1gn, under (16).

If f = ady,, which is the map which sends ng to a, then - in the notation of the proof of
Lemma— f1 and f share this property, while f3 (and hence f;) sends ¢~ 'ng to a, because
on(c T ng) = ¢ lor(a)a ng = ng. Then f5 sends ¢ 'ng to a, because £(c 'ng) = ¢ 'ng.
Altogether this means, that ad,, is mapped to ¢r(a)d,, = cads, as claimed. O

Proof of Proposition[1.18 The functor D¢;s 1 (—) on crystalline Galois representations is a
®-functor and commutes with exterior powers, and the crystalline comparison isomorphism is
compatible with tensor products and exterior powers. The analogous facts hold for the functor
N(—) and hence for the functor D(—) (by base change). The case of the functor N(—) reduces,
by using the properties (N1) and (N2) in Lemma [1.12] (i), to the case of the functor Dpr(—).
Here the properties can easily be seen by the comparison isomorphism
Upon replacing T by its highest exterior power we may and do assume that the or-module
T has rank 1. In addition by twisting T if necessary with a power of xrr we may and do
assume that T is positive with s = 0, i.e., unramified by In this case it is clear that -
using the notation of Lemma iii. - the crystalline comparison isomorphism sends %y to
a ® to. Since the latter is also a basis of D(T") by the same Lemma, the proposition follows.
O

1.3 Non-negative Hodge-Tate weights

Now assume that for 7' in Rep?j‘j&an(G 1) the Hodge-Tate weights are all > 0 and set
N := N(T). By [SV15] Remark 3.2.i-ii. the map v, preserves AT. It follows that YDy (T)
maps A} -on(N) - and hence N by Remark .1(2) - into N. The following lemmata generalize

those of [Bl, Appendix A].

Lemma 1.25. For m > 1, there exists Qp, € or|[Z]] such that

o 1 ) = P+ W Qm(wir)
g Wi Wi .
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Proof. According to the paragraph after Remark 2.1 in [SV15] combined with Remark 3.2 ii.
n (loc. cit.) we have that

hMwrr) = WTTwL(wimT) = ¢L([Z%JT )e A

Obviously there exists @, € or[[Z]] such that

h(wrr) — h(0) = wrrQm(wrT).

Thus the claim follows from

[rr]™ _ (a+rrwrr)
h(0) = eL(h(WLr))wprmo0 = 9L O VL(A— ) jwpre0 = T D, + m
“rr aeLT) (a+rrwrr |wrT=0
,1 7TL] (wrr) \™ m—1
Z =T
aeLT a+LrWLT lwrT=0
[rr](wrT) _ _ _ :
because (a+LTwLT ) T = 7, for a = 0 and = 0 otherwise. O

Lemma 1.26. We have

Upy () (T Drr(T) + wipN(T)) € 7D (T) + wppnN(T)

and, for k =1
Vo) (L Drr(T) + wL(kH)N(T)) c 1. Drr(T) + wipN(T).

Proof. By Remark (2) we can write any x € N(T) in the form =z = > a;on(z;) with
a; € A} and z; € N(T). Therefore ¢p, (Wit Va) = Yvr(wie™Vag)z; by the pro-
jection formula. Since v preserves AJLr and is or-linear we conclude by Lemma that

wL(wL}k 1)al) belongs to mp AL + nglfA}:, whenever £ > 1, from which the second claim

follows as ¥p, () (7L Drr(T)) S 7. Drr(T) by op-linearity of ¢p, (). For k = 0 finally,
Y1 (wya;) belongs to wy AT, from which the first claim follows. O

Lemma 1.27. Ifk > 1 and x € DLT(T) satisfies Yp, () () —x € T Dpr(T) + W EN(T),
then x belongs to nr, Drr(T) + w EN(T).

Proof. Since Dyp(T)/mDrr(T) is a finitely generated (free) kr((wrr))-module there exists
an integer m > 0 such that v € 7, Dpp(T) + w7 N(T); let | denote the smallest among them.
Assume that [ > k. Then Lemma shows that

VYporr)(@) € 1L Dpr(T) + ng UN(T).

Hence ¢p, ,.(r)(z) — 2 would belong to 77 Drr(T) + w;lTN(T) but not to (mpDpr(T) +
wz;l_l)N(T)), a contradiction to our assumption. It follows that | < k, and we are done. [
Lemma 1.28. It holds Dyp(T)¥Prr™=' € w LN(T), i.e.,

Dy (T)¥Perm = = (w7 LN(T)) " Prr™ =",
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Proof. By induction on k > 1 we will show that Dpp(T)¢Prr™=! < 7k Dpp(T) + wiN(T),
i.e., writing z = TrEyk +ng € DLT(T)wDLT(T):1 the sequence ny will my-adically converge in
w; N (T) with limit .

In order to show the claim assume z € DLT(T)¢DLT(T>:1. As in the previous proof there
exists some minimal integer m > 0 such that x € 7, Dp7p(T) + w ' N(T). Then m = 1 and
we are done since otherwise Lemma implies that m can be decreased by 1. This proves
the claim for k£ = 1.

By our induction hypothesis we can write & € Dpp(T)"Prr™M=! a5 ¢ = 78y + n with
y € Dp(T) and n € w; 7. N(T). The equation Yp,.(ry(x) = x implies that ¥p, ( )(n) —n =
Wé(@bDLT(T) (y)—y). In the proof of Lemma we have seen that ¢p, () (n)—n € wLTN(T)
Note that 78 Dp(T) n w7 N(T) = mhwi 7 N(T) because AL/LL)_rll—vAz has no 7p-torsion.
Therefore ¥p, () (y) —y € wL%N(T), whence y, by Lemma belongs to 7 Drr(T) +

wr+N(T) so that we can write z = 7% (7Y +n') +n = 75 Yy + (7hn' +n) as desired. O

Set V:i=T®,, L
Lemma 1.29. If DCM&L(V)QD‘J=1 # 0, then V' has the trivial representation L as quotient, i.e.,

the co-invariants Vg, are non-trivial.

Proof. Let W = V* be the L-dual of V. Then, by [SV15l (51)] we have
(Vo )* = HY(L,W) = Deyis,,(W)?1= n (B @ W)L = Dipis 1 (W)¥7=1 2 0,

because (BJR ®r W)t = (Bgr @ W)CL 2 Dcris,r,(W) since the Hodge-Tate weights of W
are < 0. O

Lemma 1.30. If V' does not have any quotient isomorphic to the trivial representation L,
then Dyp(T)¥Per™=1 < N(T), i.e.,

DLT<T>¢DLT<T)=1 = N(T)PPirn=!
Proof. Because of Lemma it suffices to show that (leN(T))Q’bDLT(T)_l < N(T). Let
e1,...,eq be a basis of N : N(T) over A}. Then, by Remark [L.6 . (ii) there exist B;; =
D=0 ﬂiﬂwﬁT € Az such that e; = ZFI Bijen(ej). Now assume that wLTn = Z‘Ll oie; =
Zi,j O‘iﬁijSON(ej) belongs to (wZ%N)wDLT(T):l with o = 252_1 O‘i,ﬁwiT € wZ%Az By the
projection formula this implies, for 1 < j < d,
d

d
aj = @Z’L(Z @iflij) = wip Z a; 1fijo mod Ay

i=1 i=1

because ¥, (w; 1) = w; mod A} by Lemma whence

or(wrr)er(ay) Z ai—18ij0 mod wrrAjf.

=1
It follows from the definition of 3;; that
on(n) =Y on(wir)erla))en(e;) = D ai 180N (e)) Zaz —1;=n mod wrrN,
J VK

i.e., that Depis (V) = N/wLTN[%] (by and Lemma, contains an eigenvector for ¢,
with eigenvalue 1, if w;}n does not belong to N. Now the result follows from Lemma O

24



2 (¢r1,I'r)-modules over the Robba ring

2.1 Robba rings of character varieties
2.1.1 The additive case

Let L € K < C, be a complete intermediate extension and let G := oy, denote the additive
group oy, viewed as a locally L-analytic group. The group of K-valued locally analytic charac-
ters of G is denoted by G(K). It is shown in [ST2| §2 that there is a one dimensional smooth
connected rigid analytic group variety X over L which “represents the character group G”. We
have the rings O (X) € 0% (X) S O (X) of bounded by 1, of bounded, and of all K-valued
global holomorphic functions on X, respectively. We note that O (X)* = 04 (X)* by [BSX]
Lemma 2.3.

For any a € o, the map g — ag on G is locally L-analytic. This induces an action of
the multiplicative monoid or,\{0} on the topological vector space of locally analytic functions
C(G, K) given by f — a*(f)(g) := f(ag). Obviously, with x € G(K) also a*(y) is a
character in G(K). In this way we obtain actions of the ring oy on these groups. In fact,
this action on character groups comes from an or-action on the rigid character variety X (cf.
[BSX]). Moreover, from the action on X we derive a translation action by the multiplicative
monoid or\{0} on the Fréchet algebra O (X), which will be denoted by (a, F') — a.(F).
Note that this action respect the subrings (’)f(l(%) c 0% (X).

The continuous dual of the locally convex K-vector space C**(G, K) is the Fréchet algebra
D(G, K) of locally analytic distributions on G. The or\{0}-action on C**(G, K') dualizes into
an action on D(G, K) denoted by (a,A) — a(\) = Ao a*. By [ST2] Thm. 2.3 we have the
Fourier isomorphism

(24) D(G,K) = Ok (X)
A— Fx(x) = Mx) -

One easily checks that this isomorphism is or\{0}-equivariant. In the following we will denote
the endomorphism (77)s on both sides by ¢r. The Fourier isomorphism maps the Dirac
distribution &4, for any g € G, to the evaluation function evy(x) := x(g). Of course, these
functions are units in OF'(X).

Lemma 2.1. The endomorphism @, makes O (X) into a free module over itself of rank equal
to the cardinality of op/mror; a basis is given by the functions evy for g running over a fized
system of representatives for the cosets in or/mror.

Proof. This is most easily seen by using the Fourier isomorphism which reduces the claim
to the corresponding statement about the distribution algebra D(or, K). But here the ring
homomorphism ¢, visibly induces an isomorphism between D(or, K) and the subalgebra
D(rpor, K) of D(og, K). Let R € oy, denote a set of representatives for the cosets in or,/mror.
Then the Dirac distributions {04} 4er form a basis of D(or,, K) as a D(wpor, K)-module. [

Lemma 2.2. The o] -action on D(G, K) = Og(X) estends naturally to a (jointly) continuous
D(of , K)-module structure.

Proof. In a first step we consider the case K = L, so that K is spherically complete. By [ST1]
Cor. 3.4 it suffices to show that C**(G, K) as an o] -representation is locally analytic. This
means we have to establish that, for any f € C**(G, K), the orbit map a — a*(f) on o] is
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locally analytic. But this map is the image of the locally analytic function (a,g) — f(ag)
under the isomorphism C**(o; x G,K) = C"(o},C*"(G, K)) in [ST3| Lemma A.1.

Now let K be general. All tensor products in the following are understood to be formed
with the projective tensor product topology. By the universal property of the latter the jointly
continuous bilinear map D(o;, L) x Or(X) — Or(X) extends uniquely to a continuous linear
map D(o}, L)®,OL(X) — Or(X). This further extends to the right hand map in the sequence
of continuous K-linear maps

(K®LD(o}, L))®k (K®LOL(X)) = K& (D(of, L)®LOL(X)) > K&LOL(X) .

The left hand map is the obvious canonical one. We refer to [PGS| §10.6 for the basics on scalar
extensions of locally convex vector spaces. The same reasoning as in the proof of [BSX] Prop.
2.5.ii shows that K®O(X) = Ok (X). It remains to check that K& D(oy,L) = D(o}, K)
holds true as well. For any open subgroup U < o] we have D(o;,—) = (—BQEOE/U(SGD(U, —).

Hence it suffices to check that K®; D(U, L) = D(U, K) for one appropriate U. But o} contains
such a subgroup U which is isomorphic to the additive group oy, so that D(U, —) = D(op, —) =
O_(X). In this case we had established our claim already. O

The operator ¢y, has a distinguished K-linear continuous left inverse ¢2 which is defined
to be the dual of the map

C"(G,K) — C"(G, K)
-1 .
s (o) = {f (i's) g€ o

0 otherwise,

and then, via the Fourier transform, induces an operator ¥3 on O (X). One checks that for
Dirac distributions we have

57r—1 ing oL,
(25) ACHER ST .
0 otherwise.

Together with Lemma this implies the following.
Lemma 2.3. If Ry € oy, is a set of representatives for the nonzero cosets in o /mror then
ker(¢7) = @gen, vy -pL(Ok (X)) -
We also recall the resulting projection formula

U3 (oL (F1)Fy) = Fiopy (Fy) for any Fy, Fy € O (%).

*

In order to establish a formula for the composition ¢, o 1F we let X[rz] := ker(X 7L, %),
Then X[r|(C,) is the character group of the finite group or/mror. The points in X[71]|(C)p)
are defined over some finite extension K;/K. For any ¢ € X[r1](C,) we have the continuous
translation operator

OK1(%) - OK1(x)
Fr— ((F)(x) = F(xC) -
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Proposition 2.4. i. For any F € Ok, (X) we have

[or : TroL] - oL 0 YT (F) = Z I
Cex[rr](Cp)

. (O (X)) ={F e Or(X): F =F for any ¢ € X[r](Cp)}.

Proof. i. Since the functions ev, generate a dense subspace in Ok, (X) (|[ST1] Lemma 3.1 the
proof of which remains valid for general K by [PGS| Cor. 4.2.6 and Thm. 11.3.5) it suffices,
by the continuity of all operators involved, to consider any F' = ev,. We compute

Qlceve)(x) = D evy(x¢) = x(9) D <(9)
¢ R ¢

lor : mror] - x(g) if g€ mror,
otherwise

0
lor : mror] -evy(x) if g€ mror,
0 otherwise.

On the other hand

v _ ifgernro ev ifgenpo
X ( e ﬂ'ng 1 g L L7) g g LOL,
ev =
QDL(dJL( g)) L {O otherwise 0 otherwise.

ii. If (F = F for any ¢ € X[r1](C,) then ¢ (1F(F)) = F by i. On the other hand

(cer(F)(X) = e(F)(xQ)) = F(rr()7L(C) = F(7L(x)) = »r(F)(x) -
O

We have observed in the above proof that the functions evy, for g € G, generate a dense
subspace of O (X). Considering the topological decomposition

(26) Ox(X) = ¢1.(Ok (X)) ® O (X)¥1 "
F = o1 (F) + (F — (1 (F)))

we see, using , that the ev, for g € o, resp. the ev, for g € of , generate a dense subspace

of o1,(Ok (X)), resp. of Ok (X)¥2=0. In view of Lemmathe obvious formula a,(evy) = evyg
together with the fact, that the Dirac distributions d,, for a € o], generate a dense subspace
of D(of, K), then imply that the decomposition is D(o; , K)-invariant.

Lemma 2.5. (Mellin transform) The action of D(of,K) upon 61 € D(or,, K) combined with
the Fourier isomorphism induces the map

D(0}, K) =5 D(og, K)2=0 = O (%)¥2=0
A—> A1) = A(evy)

I

which is a topological isomorphism of D(o} , K)-modules.
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Proof. The disjoint decomposition into open sets or, = w01, U o] induces the linear topological
decomposition D(G,K) = ¢r(D(G, K))@® D(o; , K). The assertion follows by comparing this
with the decomposition ([26]). O]

In the following we use the isomorphism xrr : 't = of in order to identify the distribution
algebra D(I'z, K) with D(of, K). We then have obvious versions of Lemma and Lemma
2.5 for D(I'z, K).

Next we recall the construction of the Robba ring R (X) [BSX] §2.1. As a quasi-Stein
space X = | J,,»1 X has an admissible covering by an increasing sequence X; S ... € X, S ...
of affinoid subdomains X,,. The complements X\X,, are admissible open, and the Robba ring
is defined to be

Rr(X) :=lim OL(X\X,,) .
n

Since any affinoid subdomain of X must be contained in some X,, the Robba ring Ry (X) is
equal to lim Op(X\tf) where U runs through all affinoid subdomains of X. This shows that
the initial definition does not depend on the choice of the X,,. In the following we always will
take those X, which were defined in [BSX] after Remark 1.21. They satisfy:

(1) The system (X\X,)/c, is isomorphic to an decreasing system of one dimensional annuli
(IBSX] Prop. 1.20). This implies:

— Rr(X) is the increasing union of the rings O (X\X,,) and contains Or,(X);
— each Or(X\X,,) as well as Rp(X) are integral domains.

(2) With X each X\X,, is one dimensional and smooth.
(3) Each X¥\X,, is a quasi-Stein space ([BSX] Prop. 2.1). This implies:

— The Or(X\X,,) are naturally Fréchet algebras. We will therefore view R (X) as the
locally convex inductive limit of these Fréchet algebras.

(4) The action of the monoid or,\{0} on O (X) extends naturally to a continuous action on
Rp(X) (IBSX] Lemma 2.12). In fact, the of-action preserves each subring O (X\X,)
(|IBSX] Lemma 2.10).

To say more about the o) -action we need to go a bit more into the technicalities. The reason
behind the property (3) is that X\X,, = (J,cs X(s,5’) has an admissible covering by an
increasing sequence of affinoid subdomains X(s, s), which over C, become isomorphic to closed
annuli ([BSX] Prop. 1.20) and which are oj -invariant. In [BSX] Prop. 2.17 and paragraphs
after Lemma 2.18 it is shown that the induced o] -action on the Banach spaces O (X(s, s")) is
locally L-analytic. According to [ST1] Prop. 3.2 this o -action therefore extends to a separately
continuous action of the distribution algebra D(o;, L) first on Op(X(s,s’)) and then, by
passing to the projective limit, on Or(X¥\X,). These actions, in fact, are jointly continuous
since any separately continuous bilinear map between Fréchet spaces is jointly continuous.
Passing to the inductive limit (w.r.t. n) we finally obtain a separately continuous D(o; , L)-
action on R (X).
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2.1.2 The multiplicative case

It will be technically convenient to pick an open subgroup I' € I';, which is isomorphic to the
additive group or,. Then:

— T is a locally L-analytic subgroup of I';, with the same Lie algebra Lie(I') = Lie(I'y),
and the inclusion I' € T'f, gives rise to an inclusion of distribution algebras D(I', K') <
DT, K).

— I' is a free Zy-module of rank d.

Similarly as in the previous section we let I'z,(K) and I'(K) denote the group of K-valued
locally L-analytic characters of ', and I', respectively.

Remark 2.6. The restriction map f‘L(Cp) — f(Cp) is surjective.

Proof. Since C; is divisible and hence injective as an abelian group, any abstract homomor-
phism I' > CJ extends to a homomorphism I';, —» CJ. But the continuity as well as the local
L-analyticity of a homomorphism x : I', — C can be tested on its restriction x|I'. Observe

for this that the diagram

X
r—-c;

e

T —=CX
is commutative for any vy e I'f. O

As for G in the previous section we have character varieties for I';, and I" as well (cf. [ST2]
Thm. 2.3, Lemma 2.4, Cor. 3.7 and [Eme| Propositions 6.4.5 and 6.4.6):

- T (—) and f(—) are, in a natural way, represented by a rigid analytic group variety X*
and X[, respectively, over L. Note that X is isomorphic to X.

— The restriction map p : ¥* — X is a finite faithfully flat covering ([Eme] proof of
Prop. 6.4.5).

— X* and X[ are one dimensional quasi-Stein spaces.
— X[ is smooth, and Op(X[) is an integral domain.
— The Fourier transforms
D(T,L) 5 Op(x*)  and  D(T,L) 5 On(%))

sending a distribution p to the function F,(x) := u(x) are isomorphisms of Fréchet
algebras.

There are two sources for explicit elements in the distribution algebras D(I'z, L) and
D(T', L). First of all we have, for any group element v € I'z, resp. v € ', the Dirac distribution
0y in D(I'p,, L), resp. in D(I", L). As in the previous section the corresponding holomorphic
function Fj = ev, is the function of evaluation in ~.

29



Lemma 2.7. 1. Let v € I'r be any element not of finite order; then the zeros of the function
evy, —1 on X* are ezxactly the characters x of finite order such that x(v) = 1.

. For any 1 # v €T the zeros of the function evy —1 on X[ all have multiplicity one.

Proof. i. Obviously the zeros of ev., —1 are the characters x such that x(v) = 1. On the other
hand consider any locally L-analytic character x : I'y, — CJ. Its kernel H := ker(x) is a
closed locally L-analytic subgroup of I'. Hence its Lie algebra Lie(H) is an L-subspace of
Lie(I'r,) = L. We see that either Lie(H) = Lie(I'1,), in which case H is open in I';, and hence
X is a character of finite order, or Lie(H) = 0, in which case H is zero dimensional and hence
is a finite subgroup of I'z,. If x() = 1 then, by our assumption on =, the second case cannot
happen.

ii. (We will recall the concept of multiplicity further below.) Because of the isomorphism
X[ = X it suffices to prove the corresponding assertion in the additive case. Let 0 # g € or,
and let x € X(C,) be a character of finite order such that x(g) = 1. By [ST2] we have an
isomorphism between X,c, and the open unit disk B/c,. Let z € B(Cp) denote the image
of x under this isomorphism. By [ST2| Prop. 3.1 and formula (¢¢) on p. 458, the function
evy —1 corresponds under this isomorphism to the holomorphic function on B(C,) given by
the formal power series

th()(Z) = exp(9Qlogrr(2)) — 1,

where €2 # 0 is a certain period. By assumption we have Fou (z) = 0. On the other hand the
formal derivative of this power series is

4 Fyy(2) = 00011(2)(Fyy(2) +1)

Since grr(Z) is a unit in or[[Z]] we see that z is not a zero of this derivative. It follows that
z has multiplicity one as a zero of Fyy (Z). O

The other source comes from the Lie algebra Lie(I') = Lie(I'r). Using the derivative
dxpr : Lie(T') =, L of the locally L-analytic isomorphism xppr : I'p = o} we obtain the
element

V := dx;7(1) € Lie(Ty,) .

On the other hand there is the L-linear embedding ([ST1] §2)
Lie(T') — D(T', L)
£ [ o 0 flexpr(te)emo]
We therefore may and will view V always as a distribution on I' or I'f,.

Lemma 2.8. The zeros of the function Fy on X[ are precisely the characters of finite order
each with multiplicity one.

Proof. Once again because of the isomorphism X{* = X it suffices to prove the corresponding
assertion in the additive case. This is done in [BSX| Lemma 1.28. O

To recall from [BSX] §1.1 the concept of multiplicity used above and to explain a divisibility
criterion in these rings of holomorphic functions we let ) be any one dimensional smooth

30



rigid analytic quasi-Stein space over L such that Op(2)) is an integral domain. Under these
assumptions the local ring in a point y of the structure sheaf Oy is a discrete valuation ring.
Let m, denote its maximal ideal. The divisor div(f) of any nonzero function f € Or(9) is
defined to be the function div(f) : @) — Zx=¢ given by div(f)(y) = n if and only if the germ of
fin y lies in mZ\mZH. By Lemma 1.1 in (loc. cit.) for any affinoid subdomain 3 € 2) the set

(27) {x € 3|div(f) > 0} is finite.
Lemma 2.9. For any two nonzero functions fi1, fo € Op(2) we have fo € f10L() if and
only if div(f2) = div(f1).

Proof. We consider the principal ideal f10(2)). As a consequence of [BSX| Prop. 1.6 and
Prop. 1.4 we have

HOLA) = {f € OLD)\{0} : div(f) = div(f1)} v {0}
O

We now apply these results to exhibit a few more explicit elements in the distribution
algebra D(I", L), which will be used later on.

Lemma 2.10. For any 1 # v € I' the fraction % 1s a well defined element in the integral

domain D(T', L).

Proof. By the Fourier isomorphism we may equivalently establish that the fraction evfj Y
exists in Op (X[ ). But for this we only need to combine the Lemmas , and O

The next elements will only lie in the Robba ring of I'. First of all we observe that the
definition of the Robba ring Rz (X) in the previous section was completely formal and works
precisely the same way for any quasi-Stein space. Hence we have available the Robba rings
Rp(X[) and R (X*). Since the morphism p : X* — X[ is finite the preimage under p of any
affinoid subdomain in X is an affinoid subdomain in X*. The inclusion Or(X]) € Or(X*)
therefore extends to a natural homomorphism of rings

p* i RL(Xf) — RL(X) .
Remark 2.11. The homomorphism p* : Rp(X[) — Rp(X*) is injective.

Proof. As a finite map p has the property that the preimage p~'(4l) of an affinoid subdomain
Y < X7 is an affinoid subdomain in X* ([BGR] Prop. 9.4.4.1). Hence, if we fix an admissible
covering X = J,»; Xy by an increasing sequence of affinoid subdomains X); < X[, then
X% = Ups1 p 1(X)) again is an admissible covering by affinoid subdomains. It follows that
Rp(X*) =lim Op (X*\p~H(XX)), and therefore it suffices to show the injectivity of the maps
p*  OL(XP\XX) = On(X\p~1(X))). But this is clear since the map p : X*\p~1 (X)) —
XP\X) is surjective by Remark . O

Since X{ = X we have a list of properties for X{* which corresponds to the list (1) — (3)
in section There is an admissible covering X = J,»; X,; by an increasing sequence
X c...c Xy c...of affinoid subdomains X¢ with the following properties:
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(1) The system (X[ \X})/c, is isomorphic to an increasing system of one dimensional annuli.
This implies:

— Rr(X{) is the increasing union of the rings O (X \X,’) and contains Op(X[);
— Each Op(X[\X)) as well as Ry (X[) are integral domains.

(2) Each X{\X) is a one dimensional smooth quasi-Stein space.

In particular, the Op(X{\X}) are naturally Fréchet algebras, and we may view R (X[) as
their locally convex inductive limit. We also conclude that Lemma applies to each X[ \X.
We now fix a basis b = (b1,...,bq) of I' as a Z,-module.

Proposition 2.12. For any 1 < j < d the fraction

- 1 Fy
evbj -1 i%j €Vy, -1

is well defined in the Robba ring R (X ) and independent of j and henceforth just called =p.

Proof. The zeros of the fraction evf ¥— are precisely those finite order characters which are
7
Fy

nontrivial on b;. Hence the product [, jovy T still has a zero in any finite order character
which is nontrivial on b; for at least one ¢ # j.lon the other hand the zeros of ev;, —1 are those
finite order characters which are trivial on b; (and they have multiplicity one). Since only the
trivial character is trivial on all b1,...,bg we see that all zeros of evp, —1 with the exception
of the trivial character occur also as zeros of the product in the assertion. It follows that
the asserted fraction Zy ; exists in Or(X7\X)) provided n is large enough so that the trivial
character is a point in X. Since (Hle(evbi —1))Z; = (Fy)4 ! and R (X}) is integral, we
see the independence of j. O

2.1.3 Twisting

Consider any locally L-analytic group G and fix a locally L-analytic character y : G — L*.
Then multiplication by x is a K-linear topological isomorphism C**(G, K) XT> c"(G, K).
We denote the dual isomorphism by -

Tw? : D(G,K) => D(G,K) ,

. D . . . . . . . D
i.e., Twy (1) = p(x—), and call it the twist by x. For Dirac distributions we obtain Tw,’ (04) =

x(9)dg-

Suppose now that G is one of the groups or, or I' € 'y, 2 o] of the previous subsections,
and let X denote its character variety. Then x is an L-valued point z, € Xg(L). Using the
product structure of the variety Xo we similarly have the twist operator

ngic : Ok (Xg) = Ok(Xg) , fr— f(z—) .

As any rigid automorphism multiplication by a rational point respects the system of affi-
noid subdomains and hence the system of their complements. Hence TwX¢ extends straight-

forwardly to an automorphism TwX¢ : Ry (Xq) — Rx(Xq). The following properties are
straightforward to check:
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1. Under the Fourier isomorphism Twi) and T waG correspond to each other.
2. Twic o Twis = TwiC.,.

3. If a : G = Gy is an isomorphism between two of our groups then, for any z € Xg, (L),

the twist operators Twa,f (lz) and Tw; “? correspond to each other under the isomorphism

(6773 RK(%Gl) i) RK(%GQ)'

2.1.4 The LT-isomorphism

We write B for the open unit ball over L. The Lubin-Tate formal or-module gives B an or-
action via (a,z) — [a](z). If Ok (B) is the ring of power series in Z with coefficients in K
which converge on B(C,), then the above op-action on B induces an action of the monoid
or\{0} on Ok (B) by (a, F) — F o [a]. Similarly as before we let ¢, denote the action of 7.
Next we consider the continuous operator

tr: Og(B) — Ok(B)
fE)— > fly+irz) .

yeker([71])

Coleman has shown (cf. [SV15] §2]) that tr(Z*) € im(py) for any i > 0. Hence, since ¢, is a
homeomorphism onto its image, we have im(¢r) € im(¢r) and hence, since ¢y, is injective, we
may introduce the K-linear operator

Y : Og(B) — Ok (B) such that 7, 'tr = @1, 0 Y.

One easily checks that 17, is equivariant for the o -action and satisfies the projection formula

Yi(fren(f2)) = ¢¥r(fi)fz as well as ¢ o pp = ;L.

Furthermore, we fix a generator 7' of T as or-module and denote by Q = Q,, the corre-
sponding period. In the following we assume that 2 belongs to K. From [ST2, theorem 3.6]
we recall the LT-isomorphism

(28) K*: O(X) S Ok (B)

Fos [z F(io)],
where k(a) = 1+ Fy([a](2)) with 1 + F,,(Z) := exp (log;7(Z)) . It is an isomorphism of
topological rings which is equivariant with respect to the action by the monoid or\{0} (as a
consequence of [ST2, Prop. 3.1]). Moreover, Lemma [2.2| implies that the o -action on Ok (B)
extends to a jointly continuous D(o; , K)-module structure (by descent even for general K)

and that the LT-isomorphism is an isomorphism of D(o; , K)-modules.
By the construction of the LT-isomorphism we have

K*(evq) = exp(aflogr(2)) € oc, [[Z]] for any a € of,.
Hence Lemma [2.3) implies that

r*(ker(vF)) = ) exp(aQlog 7 (2))er(Ox (B))

a€Ryp

33



where Ry € o, denotes a set of representatives for the nonzero cosets in or,/mror,. Using that
logr(Z1 +11 Z2) = logr (Z1) + logr(Z2) we compute

tr{exp(aQdlogpr(Z)) = Z exp(aQtlogrr(y +rr Z))
yeker([nL])

( Z eXp(aQIOgLT(y)))eXp(aQIOgLT(Z))
yeker([71])

=( 2 ml@)exp(allogr(2)) -
yeker([71])

But the x, for y € ker(|nz]) are precisely the characters of the finite abelian group oy, /mr0L.
Hence X, cyer(pr, 1) fiy(@) = 0 for a € Ro. It follows that Kk*(ker(y7)) = ker(yr). We conclude

that under the LT-isomorphism ; corresponds to %w% using the fact that we also have a
decomposition

Ox(B) = ), expaQlog,r(2))er(Ox(B)).

aeor /Ty,

In the following we denote by
M: D, K) S O (B)YL="
the composite

D(Tp, K) = D(0}, K) = Ok (X)¥1=0 = O (B)¥2=0

where the first map is induced by the character xrr : I'p = of , the second one from is
induced by the Fourier isomorphism while the third one is the LT-isomorphism. By inserting
the definitions we obtain the explicit formula

M) (z) = A(kz o xrT) -
The construction of the above map 9 is related to the pairing

{,}:0xB) x C"(0r,K) > K
(F, f) > u(f), where ue D(or, K) is such that u(k,) = F(z),

in [ST2l lem. 4.6] by the following commutative diagram:

(A )= AF)

D(T;, K) <« cory, K) D) g
mtl l(XLT)*
Ok (B)¥L=0 X C (o}, K)
cl le:vtension by 0
O (B) X Cmop, Ky — L

Remark 2.13. For any F € Ok (B)Y2=0 and any f € C* (o, K) such that flo} = 0 we have
{F, [} =0.
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Proof. We have seen above that under the LT-isomorphism 17, corresponds, up to a nonzero
constant, to 1/)% and hence further under the Fourier isomorphism to E . It therefore suffices

to show that for any u € D(oL,K)wLDZO we have u(f) = 0. For this we define fi= flrp—) €

C(or, K) and note that (7.)/(f) = f. By the definition of PP we therefore obtain, under
our assumption on g, that u(f) = u(f) =7 (1) (f) = p(f = (7p)i(f)) = p(0) = 0. O

Lemma 2.14. For any F € Og(B)¥2= and n > 0 we have
ﬂ_n—i-l
E—) (O ) 2=0-
q
Proof. Note that (1 — ZEpr)F belongs to Ok (B)¥r=0. Let inc; € C(or, K) denote the

extension by zero of the inclusion o] < or, and let id : o — K be the identity function.
Using the above commutative diagram the assertion reduces to the equality

m((1 - %mmx’m Q71 -

n+1
(1= %L@L)Fa inci'} = Q"(1 - 7TLq

) (i F) 20

By Remark we may replace on the left hand side the function inc* by the function id".
Next we observe that  id"(z) = id"™!(x). Hence, by [ST2, Lem. 4.6(8)|, i.e., {F,2f(2)} =
{Q Y0 F, f} and induction, the left hand side is equal to

(1= 2 Fid®) = {278, (1 - “Epp) F),id")
q . q
= {Qin(l — @L)(aﬁlvF),ido} since Oy pr, = TLYLOny DY
n+1
=Q"(1- L) (O F)z=0 since id" is the trivial character of of,

n+1

—Q (1 - ”Lq )@ F) - since [71](0) = 0.

mv

O

In the course of the previous proof we have seen that, for F in O (B)¥2=Y and n > 0,
(29) MH(F)(xLr) = (e F)z=0 -
Lemma 2.15. For any F € Ox(B)¥2=% and n > 1 we have
M~ (log - F)(XLr) = nQ M (F)(xi7) -
Proof. First, using , observe that
Yr(logpy -F) = ¢r(r; erlogy) - F) = p o (logrr)yr(F) =0 .

Secondly note that iy log;p =1, i.e., &) log; = 0 for i > 2; also log;(0) = 0. Using
twice we have

M~ (log . F)(x}r) = Q" (0, (logr F))|z=o
_ 0" n i J
=0Q < 2 ( i ) (ainv logLT)(ainvF)>
1+j)=n \Z=O
= ann(é’&;lF)‘Zzo

= n 7 (F) ()
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O

For the rest of this section we assume not only that K contains €2 but also that the action
of G, on C, leaves K invariant.
The LT-isomorphism is a topological ring isomorphism

K®LO0(%) = Og(X) = Or(B) = K®;0L(B)

(see [BSX| Prop. 2.1.5 ii.] for the outer identities).
On both sides we have the obvious coefficientwise G'p-action induced by the Galois-action
on the tensor-factor K. We use the following notation:

e 0 € (G, acting coefficientwise on Ok (B) is denoted by: F' — 7 F; the corresponding fixed
ring is Ok (B)¢L = OL(B).

e The coefficientwise action on Ok (X) transfers to the twisted action on Ok (B) by [ST2

before Cor. 3.8] given as F +— “*F := °F o [r(oc~1)]; the corresponding fixed ring is
OK(B)GL’* = OL(%) = D(OL,L).

Remark 2.16. Note that the or\{0}-action and hence the D(oj , L)-module structure commute
with both Gp-actions. Moreover, 11 commutes with the G -actions as well.

Recall that using the notation from [ST2, Lem. 4.6, 1./2.] the function 1 + F,,(Z) =
exp (aQn/ logLT(Z)) corresponds to the Dirac distribution d§, of a € oy under the Fourier
isomorphism.

Lemma 2.17. Let o be in Gp, t' € T and a € or,. Then
(1) O'(Qt/) = QT(G’)t’ = Qt/T(O') and
(ii) Fuy = Fay o [7(0)] = Fm—(o)n’-

Proof. (i) The Galois equivariance of the pairing (, ) : T4 ®,, C, — C,, from (loc. cit. before
Prop. 3.1) with (¢, z) = Qpa implies that

O'(Qt/) = Qa’(t’) = QT(O’)t’

while the op-invariance of that pairing implies that the latter expression equals Qy7(0).
(i1) This is immediate from (i) and the definition of Fj, taking equation (3| into account. [

Proposition 2.18. (i) The LT-isomorphism restricts to an isomorphism
D(op, K)t = O (%X)°F =~ O (B)" = OL(B)
of D(o; , L)-modules.
(ii) The Mellin transform restricts to an isomorphism of D(o} , L)-modules
D(0},K)°t = O (%)C¥1=0 ~ O (B)¥2 =0,

Here the Gp-action on the distribution rings on the left hand sides is induced from the co-
efficientwise action on Ok (B) and Ok (B)¥2= via the LT-isomorphism and Mellin transform,
respectively.
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Proof. (i) and (ii) follow from passing to the fixed vectors with respect to the coefficientwise
G-action and Remark O

In order to express the D(o}, L)-module D(o}, K)%% in the above proposition more ex-
plicitly we describe the previous two actions on Ok (B) now on D(or, K):

e The coefficientwise G'z-action on D(or, K) = K®D(or, L), which corresponds to the
twisted action on O (B), will be written as A\ — 7.

e The Gp-action given by A — 7(0)«(?\) corresponds to the coefficientwise action on

Ox(B).

Note that for A € D(o7, K) we have 7(0)«(\) = d;(,)A, where the right hand side refers to the
product of A and the Dirac distribution ¢(, in the ring D(oy, K). Then we conclude that

D(o},K)9" = {Xe D(0} ,K)| "\ = 6,(y)—1A for all o € GL}.
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2.2  (¢r,I'r)-modules
2.2.1 The usual Robba ring

Let K be a complete field which contains L. We recall the definition of the Robba ring R = R
and construct various related rings. We let R := R;r{ = Ok (B) denote the Fréchet algebra
of all power series in the variable Z with coefficients in K which converge on the open unit
disk B over K. The Fréchet topology on R is given by the family of norms

|ZciZi|T := max |¢; |1 forO<r<1.
(2

120

In the commutative integral domain R* we have the multiplicative subset ZN = {Z7:jeN},
so that we may form the corresponding localization REN. Each norm | |, extends to this
localization R, by setting | >}, c;i Z, = max; |c;|rt.

The usual Robba ring R 2 R is constructed as follows. For any s > 0, resp. any 0 < r < s,
in p@ let Bo,s], resp. By, ), denote the affinoid disk of radius s, resp. the affinoid annulus of
inner radius r and outer radius s, over K. For I = [0, s] or [r, s] we denote by

RI .= Ox(B))

the affinoid algebra of B;. The Fréchet algebra RI™D := lim RI™s] is the algebra of
(infinite) Laurent series in the variable Z with coefficients in K which converge on the half-
open annulus B, 1) := Ur<s<1 B, s)- The Banach algebra RI95] is the completion of Rt with

respect to the norm | |s. The Banach algebra RI™sl is the completion of T\’,}N with respect to

the norm | |, 5 := max(] |, | |s). It follows that the Fréchet algebra RI™Y is the completion of
REN in the locally convex topology defined by the family of norms (| |, s)r<s<1. Finally, the

Robba ring is R = Uy, -1 RN,
1
Let 1 > s> r >p @ De. Then we have a surjective map
(30) Bprsp = Bpraso
20 [m](2)

according to [EX| proof of Lem. 2.6] Hence we obtain a map

(31) ol R, Rlrs]
which is isometric with respect to the supremum norm, i.e., |g0gq’sq](f)|[7,’s] = | f|[ra,sa] for

f e R[5 In particular, by taking first inverse and then direct limits we obtain a map

¢r, : R = R. We shall often omit the interval in gog’s] and just write ..

Similarly, we obtain a continuous I'z-action on R: According to (loc. cit.) we have a
bijective map

(32) Brr,s) = By,

for any v € I'r,, whence we obtain an isometry

(33) v Rl Rl
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with respect to the supremum norm, i.e., |’y(f)|[r75] = |f|[r,s] for f e Rl
Finally, we extend the operator ¥z, to R : For y € ker(|rr]) we have an isomorphism

(34) Bp.s) = By

of affinoid varieties, because |2 +r7 y| = |z +y| = |2]. Setting tr(f) := X cxer((r,) /(2 TLT V)
we become a norm decreasing linear map tr : RI"1 — R3] We claim that the image of tr
is contained in the (closed) image of the isometry gogq’sq], whence there is a norm decreasing
map

Yoo : RIT — RIS,

such that o, o oo = tr. Indeed, by continuity it suffices to show that tr(Z%) belongs to
the image for any i € Z. For i > 0, Coleman has shown that tr(Z%) = ¢ (Yoo (Z?)) with
Yoo (ZY) € op[[Z]] € RIF#Y, see [SV15] §2]. For i < 0, we calculate

e (Zcal[mL)(2) ' 2%) = or(ZY) > Fl(2) 2 (Z 4w y)
yeker([rp])

= or(2") > L (Z e v)THZ +Lr )
yeker([71])

= (2" > e 2)HZ +iry)
yeker([71])
= > (Z+wry) =tr(ZY),
yeker([m.])

whence the claim follows. We put wg,s] = %1/1001 : Rl — R which induces the
continuous operator ¢y : R — R by taking first inverse limits and then direct limits. By
definition of ¢r the operators qﬁg’s] and hence v satisfy the projection formula. We shall

often omit the interval in z/J[LT’S] and just write .

For the rest of this subsection we assume in addition that K contains 2. Following Colmez
we set 1)(i, Z) 1= Fyy (Z)+1 = exp(iQlog(Z)) for i € o, and for a fixed generator tg = (to,n)
of the Tate module of LT. Recall that we have the following decompositions of Banach spaces

(35) R = @ (RMNn(a, 2)

a€oy, mod 7w}

and hence

(36) R= @ ¢L(Rmla,2)

a€or, mod 7w}

of LF-spaces using the formula

(37) r= <%>”2s@m (n(—a, Z)r) na, Z).
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This can easily be reduced by induction on n to the case n = 1. Using the definition of ¢r and
the orthogonality relations for the character of or/mror, a — n(a,y), for fixed y € ker(|7]),
the formula follows and, moreover, defines a continuous inverse to the continuous map

(38) Z[or] ®rpo, RIS - RIS
a® f—apr(f).

Inductively, we obtain canonical isomorphisms

(39) Z[OL] ®7FEOL R[rqnvsq"] . R[r,s]
a® [ app(f)-

Moreover, immediately from the definitions we have

(40) wr(n(i, 2)) = n(rLi, Z)
(41) o(n(i, 2)) = n(xrr(0)i, Z)
(42) Yvr(n(i, 2)) = %n(é, Z), if i e mror, and 0 otherwise.

We now introduce ¢r-modules over R and extend the above maps and decompositions to
such modules.

Definition 2.19. A ¢ -module M over R is a finitely generated free R-module M equipped
with a semilinear endomorphism @p; such that the R-linear map

SO{/\lln : R@R,goL M i) M
f®m— fon(m)
15 bijective.
Technically important is the following fact (cf. [BSX| Prop. 2.4 for a more general case).

1
Proposition 2.20. Let M be a pr-module M over R. There ezists a radius ro > p (a=De
and a finitely generated free RI"0V -module My equipped with a semilinear continuous homo-
morphism

[r/,1)
O, : Mo —> R0 Y Rpirg1) Mo
. 1/ .
such that the induced RIo""V) linear map

lin . R[r(l)/q,l) M = R[r(l)/q,l) M
LM, - ®72[T0v1)7<pL 0o— ®R[T071) 0

18 an 1somorphism and such that

R ®pirgny Mo = M

with o1, ® Yum, and @y corresponding to each other.
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The continuity condition for the ¢yy,, of course, refers to the product topology on My =
(R[ro,l))d_

In the following we fix a ¢r-module M over R and a pair (rg, My) as in Prop. 2.20| For
any ro < 7 < s < 1 we then have the finitely generated free modules

MY = gD Qplre.ny Mo over R
and
Mlsl .= Rlrsl Orirn) MY over RIS

They satisfy
MY = 1im prlrs] and M = lim MY
— -

s>T 7

For I = [r,s], we equip M with the Banach norm | — |, given by the maximum norm
with respect to any fixed basis (the induced topology does not depend on the choice of basis)

which is submultiplicative with respect to scalar multiplication and the norm | — |7 on R'.

1/q s1/4]

Furthermore, base change with RIr over RI™™1) induces isomorphisms of Banach

spaces
ol = RIS @ Gl RIS @ g, MU Z s
and hence injective, continuous maps
g0[7“,8] sl et st
by restriction.
We define addtive, K-linear, continuous maps [ : M5l — A% a5 the composite

rq,sq —
(pry "

77ZJ[T,S] - pylrs] RIrs] ®R[Tq,sq]’ s M[Tquq]’

YL

where the last map sends f ® m to [™*](f)m. By construction, it satisfies the projection
formulas

(43) ol (fym) = pelelm) - and (gl o)) = el (gym!
for any f e RIS g e Rl and m e M3l m! € M5 as well as the formula

,(/}[T,s] o SD[T‘],sq] — % . idM[rq,sq] .

The decomposition combined with (iterates of) cpl[;’f] gives rise to decompositions

(44) MU ST = @ (b, 2)eh (M)

be(or/m})

of Banach spaces and

(45) M= @ nb 2)eL(M)

be(oL/ﬂ'E

of LF-spaces, again given by the formula

(46) m = <%)”2 orrtoar (n(—a, Z)ym) n(a, Z).
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2.2.2 The Robba ring of a group

In this subsection we assume that € is contained in K. Then we have the LT and Fourier
isomorphism of Fréchet algebras

RT = O (B) — Ok (X) — D(o1, K)

sending the variable Z to some element, say X, in D(or, K). By formally substituting Z by X
in R we define the ring extensions R’(or) of D(or, K), for ? an interval as before or nothing,
obtaining the following commutative diagram of Fréchet algebras

R’ —=>R(or)

Rt —= D(or, K).

We shall often take these isomorphisms as identifications.
Recall that L, = L(LT[r}]). We set

Py i= G(La/Ly) = ker (T, X5 0} (or/7)" ).

Let ng = 1 be minimal among n such that logp :1+7for, — wior and exp : 7for, — 1+ 7oy
are mutually inverse isomorphisms and consider the map

0:Tp — L, v~ log,(xer(v))

which induces an isomorphism ¢ : I';, — wfor, for all n > ng. We put I' := I',,;. The group
isomorphism /¢, := 7, "¢ : I';, = or, induces an isomorphism of Fréchet algebras

D(op,, K) => DTy, K)

sending the variable X to some element, say Y,,, in D(I'y, K). By formally substituting Z
by Y, in R we define the ring extensions R’ (') of D(I',, K), for ? an interval as before or
nothing, obtaining the following commutative diagram of Fréchet algebras

? ? Un) " o2
R? — =R (o) 2 RY(T,)

~

L) e

R* —= D(or, K) —= D(I'n, K).
for n = ng. Note that we have an isomorphism
R(I'n) = Rk (XF).
Moreover, for m > 0, the commutative diagram
1

n+mF
or, = Lntm



induces the commutative diagrams

-1

Kn m, %
(47) Ok (X) == D(o1, K) > D(Tp1n, K)
Lp?i (sz)* l (Ln+m,n)*
-1
Ok (X) ==D(or, K) —> D(I'n, K)
and
(48) n+m$%
(Ln+m n)* "L
as well as
m Loy tm % m
(49) R (Cpm) 2> RI
(Ln+7n,n)* j j@?
RI(T,) —* >R
For

e 3 commutative ring R,
e an abelian group G,
e a subgroup H € G of finite index with
e a given inclusion H € R*
we define the commutative ring
R xpy G := RQzm ZIG].

It is a special case of a crossed ring product (with trivial action) of R with respect to G/H.
As R-modules we have a decomposition

(50) RxyG= @ Rs(g),
geG/H

depending on the choice of a set theoretic section s : G/H — G of the natural projection
G — G/H satisfying s(e) = e. We have natural inclusions

R—>RxgGr—r®l, and G (RxgG)*,g—1®g.
The former one defines an R-linear trace map

TTR,G,H 'R NHGHR,
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which corresponds to #G/H times the projection prg g onto the trivial component (g = e)
with respect to the decomposition . In particular, prg g is independent of the choice of
the section s.

It follows from ([48)), and (49)), (35), that the inclusions R(Lpm) —=*, R(T,,)

and I'y, — R([',)* induce topological isomorphisms

and
(52) R (Cosm) %1, Do = RI(T),

when we endow the left hand sides with the product topology and maximum norm, respec-
tively. If we extend our definitions to 1 < n < ng by setting

RI(Fn) = RIQnO?n (Fno) Mg 'y

and
R(Iy) = R(T,) XDy, r,,

then we get commutative diagrams as above for all n = 1, m > 0. Finally, we define

(53) R(FL) = R(Fn) AT, FL.

2.2.3 Tobias Schmidt’s results adopted

The distribution algebra of locally L-analytic distributions of of, - being of L-analytic dimen-
sion one - should morally be a ring of certain power series in one variable. This is not literally
true, but we recall in this subsection that it holds for a certain completion.

Now we fix a Z,-basis hy = 1,...,hq of or, and set b; := h; — 1 and, for any multiindex
k = (ki,...,ks) € N&, b := H?Zl b;" € Zplor]. We write Dq, (G, K) for the algebra of
K-valued locally Qp-analytic distributions on a Q,-Lie group G. Any A € Dg,(or, K) has a
unique convergent expansion A = ZkeNg aib® with ay € K such that, for any 0 < r < 1, the
Ik|

keNd} is bounded. The completion with respect to the norm
0

set {axr

[[IA]» := sup |oye|r®

keNd
for 0 < r < 1 is denoted by
Dq, (o1, K) = { Z acb¥|ay € K and |ag|r*l = 0 as [k| — oo}
keNd
Similarly, we write D,(or, K) for the completion of D(or, K) with respect to the quotient
norm of ||A||,. We use analogous notation for groups isomorphic to or,.

If not otherwise specified, we denote by V ®x W the projective tensor product of locally
convex K-vector spaces V, W.

Lemma 2.21. Let

0—V w X —0

be a strict exact sequence of locally convex topological K -vector spaces with W metrizable and
X Haousdorff, then
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(i) the sequence of the associated Hausdorff completed spaces

A~ N

0—V w X0

1S again strict exact,

(ii) for a complete valued field extension F' of K the associated sequence of completed base
extension
0— FRKV

1S again strict exact.

(iii) If W is a K-Banach space, V a closed subspace with induced norm and X = W/V
endowed with the quotient norm, then in (i) the quotient norm coincides with the tensor
product norm on FOrX.

Proof. By [B-TVS| 1.17 §2] with W also V', X and all their completions are metrizable. Hence
the first statement follows from [B-TG| IX.26 Prop. 5|. For the second statement we first
obtain the exact sequence

00— F®rV

FRrW

FRrX—0

of metrizable locally convex spaces (|[PGS, Thm. 10.3.13|). The first non-trivial map is strict
by Thm. 10.3.8 in (loc. cit.). Regarding the strictness of the second map one easily checks
that FQxW /F®kV endowed with the quotient topology satisfies the universal property of
the projective tensor product F®gxX. Now apply (i). The third item is contained in |Gl §3,
n° 2, Thm. 1|, see also [vRl Thm. 4.28]. O

As a consequence we have a strict exact sequence

(54) 0—a Dg, (o1, K) D,(or, K)—0,

where @ = @ is the closure in Dy, (o1, K) of a := ker (Dg, (o, K) - D(or,, K)).

_ 1
L op#2 {pP"H p# 2

Wesettgzz{p ’ i
o p =2,

>
14, p=2. for m > 1.

and t,, :=

Lemma 2.22. There is an isometric identification of the K-Banach spaces

(55) Dyy(or, K) = {A = ax(61 — 1)F|ay € K, ag|e§ — 0 for k — o0},
k=0

where on the right hand side \ has norm supy, |ax|tf.

Proof. For K = L this follows from [Sc, Lem. 5.15] (applied first with G = or, and m = 1
and then using the group isomorphism o7 = poy, in order to transport the description from
Dy, (por, L) to D (or,L) In (loc. cit.) the author assumes for simplicity that p # 2. But
the cited result is based on [Scl, 5.6/9] which allows p = 2 upon using the radius vy =
1/4 < 272711). For arbitrary K, we recall from the proof of Lemma that D(op,K) =
K®pD(or, L) and similarly Dg,(or, K) = K& Dg, (oL, L). Moreover, by [BGR, 9.3.6] we
also have Dq, (oL, K) = K&)LD@MO(OL,L) with || = |[ee®zr] — | = || = ||so- Indeed, since
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to belongs to the value group, {ZkeNg axb¥|ayx € L and |ak|t‘0k‘ — 0 as |k| — oo} is visibly
isometric to the d-dimensional Tate algebra Z,,(L) over L (similarly for K) and Corollary 8
in §6.1.1 tells that we have an isometric isomorphism K®pZ, (L) = Z,(K).

We conclude that K@LDQP’YO(OL, L) is the completion of K&)LDQP (or, L) with respect to
| = ||e, and that K&z D(or, L) is a quotient of the latter. It follows from Lemma (and
(B4)) that Dy (o1, K) = K®r Dy, (o, L) holds isometrically, too. Since also the right hand
side of the claim is compatible with this base extension by the same reasoning [BGR] 9.3.6,
Cor. 8 in §6.1.1] as above, the Lemma follows.

An alternative geometric argument is the following. The Fourier isomorphism induces,
for any 7 € (0,0) n pQ, an isomorphism between D,(or, K) and the ring of rigid analytic
functions Ok (X(r)) on the affinoid subdomain X(r) in the character variety X (cf. [BSX]|
§1.2]). It sends the Dirac distribution 81 to the function evy (cf. §.1.1). Suppose now that

re (O,p_ril) A pQ. Then [BSX, Lem. 1.16] tells us that

Bio,r) — X(r)
y — character x,(g) := exp(gy)
is an isomorphism of affinoid varieties. The function evq corresponds to the function exp on

Bo,r)- But under our condition on r the function exp —1 is an automorphism of the disk Byg ;-
It follows that evy —1 is a global coordinate function on X(r). This means that

(56) Og(X(r) ={f= Z ag(evi —1)¥|ay, € K, |og|r* — 0 for k — o0}
k=0

with the spectral norm of f being given by supy, |ag|r*. By the Fourier transform this translates
into the assertion of our lemma. O

According to [Scl, Cor. 5.13, Lem. 5.15] one has

D(or, K) = projlim Dy, (or, K)
m
with D, (or, K) = Dy, (p™or, K) Xpme, o, Again this description transports to any I',,. Note
that T% = pime.

2.2.4 (¢,I')-modules

Any (¢r,T'1)-module M over the usual Robba ring R is, by definition, in particular an R-
module with a semilinear action of the group I'r. Our aim in this section is to show that
these two structures on M give rise to a module structure on M under the 'group’ Robba ring
R(I'1). We keep the assumptions and conventions of the previous subsection.

Definition 2.23. A (¢r,['p)-module M over R is a @r-module M (see Definition
equipped with a semilinear continuous action of I'r, which commutes with the endomorphism
onr- We shall write M(R) for the category of (¢r,T'1)-modules over R.

The continuity condition for the I'g-action on M, of course, refers to the product topology
on M =~ R4 Technically important is the following fact (cf. [BSX| Prop. 2.4 for a more general
case).
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Proposition 2.24. Let M be a (o1, T'r)-module over R. Then there exists a model (Mg, ro)
as in Proposition equipped with a semilinear continuous action of I'y, such that

R@R[TO,U My=M
respects the the ' -actions (acting diagonally on the left hand side).

In the following we fix a (¢, I')-module M over R and a pair (rg, Mp) as in Prop. For
any ro < r < s < 1, the finitely generated free modules M [1) and MI™s] are each equipped
with a semilinear continuous I'z-action, compatible with the identities

MY = Jim Ml and M = lim MY
— —
s>r T

Moreover, the I';-actions commutes with the 1)’-operators and the decompositions and
are I'-equivariant.

Definition 2.25. A (¢r,I'1)-module M over R is called L-analytic if the induced action
Lie(I'r,) — End(M) of the Lie algebra Lie(I'r) of I'y, is L-linear (and not just Qp-linear). We
shall write M (R) for the category of L-analytic (¢r,T1)-modules over R.

Assume henceforth that M is an L-analytic (pp,T)-module over R.

Proposition 2.26. The 'y -action on M extends uniquely to a separately continuous action of

the locally L-analytic distribution algebra D(T'p, K) of U1, with coefficients in K. If M I, N s
a homomorphism of L-analytic (¢r,'r)-modules, then f is D(I'r, K)-equivariant with regard
to this action.

Proof. First of all we observe that the Dirac distributions generate a dense L-subspace in
D(T'r,L) by [ST1] Lemma 3.1. Since 'z, = o] we have seen in the proof of Lemma [2.2| that
D(I',K) = K®D(I'r,L). Hence the Dirac distributions also generate a dense K-linear
subspace of D(I', K). Therefore the extended action is unique provided it exists.

Our assertion is easily reduced to the analogous statement concerning the Banach spaces
MY for a closed interval I = [r, s]. From [BSX] Prop. 2.16 and Prop. 2.17 we know that the
I'z-action on M is locally Qp-analytic. But since we assume M to be L-analytic it is actually
locally L-analytic (cf. [BSX] Addendum to Prop. 2.25 and the argument at the end of the
proof of Prop. 2.17).

For our purpose we show more generally the existence, for any K-Banach space W, of a
continuous K-linear map

[:C™(L, W) > Ly(D(Tr,, K), W)

satisfying I(f)(d4) = f(g). Note that this map, if it exists is unique by our initial observation.
Recall (cf. [pLG] §12) that the locally convex vector space C**(I'r,, W) is the locally convex
inductive limit of finite products of Banach spaces of the form B&®xW with a Banach space
B, and that its strong dual D(I'r, K) is the corresponding projective limit of the finite sums
of dual Banach spaces B’. We therefore may construct the map I as the inductive limit of
finite products of maps of the form

B®xW —> Ly(B', W)
Ty [{ = L(x)y] .
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Since B as a Banach space is barrelled this map is easily seen to be continuous (cf. the
argument in the proof of [NFA| Lemma 9.9).

Now suppose that W carries a locally L-analytic I'z-action (e.g., W = MT). For y € W let
py(g) := gy denote the orbit map in C**(I'z,, W). We then define

D(TL,K) x W — W
(1,9) = L(py) (1) -

Due to our initial observation the proof of [STI] Prop. 3.2, that the above is a separately
continuous module structure, remains valid even so K is not assumed to be spherically com-
plete. O

Recall that each M! bears a natural T'z-action. Now, for each n > 1, we will define a
different action of I', on M!™*] which is motivated by Lemma below and which is crucial
for analysing the structure of M¥¥=0 in the next subsection. To this end consider for each
v € Iy, the operator Hy,(7) on MI™s] defined by

(XLT(’V) —1
s

Hn(’y)(m) =n vZ)’Ym'

For simplicity we identify 'y, = oz. Forn = 1let I';, := 1+ n}or. Note that, since I';, acts
on R*, we may form the skew group ring R™[I',,], which due to the semi-linear action of I'f,
on M maps into the K-Banach algebra Endx (M) of continuous K-linear endomorphisms of
M, endowed with the operator norm. Hence we obtain the ring homomorphism

H, : K[l',] — RY[T,] — Endg (M)
v (" (v = 1), Z)7,
which we now shall extend to D(I',, K) below after some preparation.

Lemma 2.27. (i) We have

an(1, Z)er(m) = n(1, T)er (Hn(o)(m)),

1.€., the isomorphisms

are 'y, -equivariant with respect to the natural action on the right hand side and the action
via Hy, on the left hand side.

(ii) The map
Z[Fl] ®Z[Fn],Hn M[r,s] N M[Tl/qn71751/qn71]
y=1 .
LA U(T’ Z)ehi(vy)

is a bijection of Banach-spaces, where the left hand side is equipped with the mazimum
norm, and which is T'1-equivariant with respect to the Hy-action on the right hand side.
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(iii) If there is an R'(I',)-action on M! induced by H,, such that the corresponding map
n—1
RI(T,,) — Endx (M) is continuous, then the Hy-action induces an R (T'1)-action

n—1 n—1 n—1
on MT"" such that we obtain again a continuous map RT"" () — EndK(Mll/q ).

Proof. (i) Setting b := Jfr_'gl we calculate

on(l, Z)er(m) = on(1, Z)ef (om)
=n(1 +nb, Z)pf(om)
= 77(17 Z)"?(Wnl% Z)sz(am)
=n(L, Z2)¢f (n(b, Z)om) .
where we used the multiplicativity of n in the first variable in the third and in the last

equality.
(ii) follows from using the bijection 1 + mpor/1 + 7}or, = oL/szloL, v =1

L

n—1
(iii) Base change induces the R (I'1)-action on

/n—l
R (1) @prqr,ym, M = ZIT1] @,y BN (Th) ®prqryy.m, M
(57) ~ ZIT1] Qzyr, 1,1, ®M'

ri/a™ !

>~ M )

where we used and (ii). The continuity is easily checked by considering 'matrix entries’
which are build by composites of the original continuous map by other continuous transforma-
tions. Here we use that the identifications and are homeomorphisms when we endow
the left hand side with the maximum norm. O

There is a natural ring homomorphism R! — Endg(M') by assigning to f € R! the
multiplication- with- f-operator, which we denote by the same symbol f.

Remark 2.28. (i) We have sup,c,, |n(z,Z) — 1|1 <1 and |n(z, Z)|; = 1 for all x € o.
(i) In(pz, Z2) =1 < max{[n(z, 2) = 1[7, ;In(z, 2) = 11}(= In(=, 2) = 1I, if In(x, Z) =11 <
piril).
Git) 1f1r = [If]lr for all f € R,

Proof. Tt is known ([ST2]) that n(z, Z) = n(1,[2](Z)) belongs to 1 + Zoc,[[Z]], whence we
have, for any = € or, that |n(z,Z) — 1| < 1 from the definition of | — |7, and (i) follows
from the fact that the map o — R, x — |n(x,Z) — 1|1 is continuous with compact source.
Affirmation (ii) is a consequence of the expansion

npr, Z2) =1 = (n(z,2) -1+ 1)’ -1
p—1
— p k
= e 2) =+ 3 (1) (e 2) 1)
k=1
and | (Z) | =p~tfork=1,...,p— 1. (iii) follows from the submultiplicativity of | — |; plus
the fact that 1€ R!, which implies the statement on M =~ (RT)™. O
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The above Remark allows us to fix a natural number mg = mq(rg) such that for all m > my
we have that

(58) |n(x, Z) — 1|1 < vy, for all x € or, and |n(z, Z) — 1|1 < vo for all x € p™oy,
(59) relt <,
for any of the intervals I = [rg,r0], [ro,ré/ ] and [ré/ q,r(l)/ ?]. In the following let I always

denote one of those intervals.

Lemma 2.29. Let € > 0 arbitrary. Then there exists ny » 0 such that, for any n = ny, the
operator norm || — ||; on M! satisfies

(60) |y — 1|1 < € for all v e Ty,

Proof. We first proof the statement for the module M = R. For the convenience of the reader
we adopt the proof of [Ked, Lem. 5.2|. First note that for any fixed f € R! by continuity of
the action of I'f, there exists an open normal subgroup H of I'z, such that

(61) (v =D flr < elfls

holds for all v € H. So me may assume that the latter inequality holds for Z and Z~!
simultaneously. Using the twisted Leibniz rule

(v=Dgf) = (=) f +v(9) (v — ()

and induction we get for all powers Z%: Since the latter form an orthogonal basis, the
claim follows using that |v(g)|; = |g|; for any v € H by for the induction hypothesis. If
M~ @?:1 Re; and m = > fie;, we may assume that

(62) |(v = Deilprr < €leilp

holds for 1 < ¢ < d, and apply the same Leibniz rule to f;e; instead of gf, whence the result
follows, noting that |e;|p;r = 1 by the definition of the maximum norm and that |y(e;)|yr =
leilpsr =1 for any v € H and 1 <4 < d as a consequence of ((62).

Vo O

We fix n1 = ni(rg) = ng such that the Lemma holds for € = vy. Then, for any n > ny,m
my, the above H, extends to a continuous ring homomorphism

H, : Dg, ., (Tn, K) — Endg (M?),

d
> anli (D) Y an [ | Hallr (b)),

keNg k=0  i=1
Indeed, we have
_ E:Ll hi -1 &;1 hi -1 _
Ha( ) = () =Ly () =L ey -1
T, L
and since
5771 h;)—1 f;l h;) —1 _
e s S e ) R Y SR [
L T
6771 hl —1 fgl hl —1 -
macef{ln( LD 2) i P 2y ) - Dl <
L L

20



by (60),(58) and Remark (i), the above defining sum converges with respect to the op-
erator norm. Since M is assumed to be L-analytic, H, factorises over the desired ring homo-
morphism

H, : <D(Fn, K)c )Dtm (T, K) — Endy (M7)

by .
Theorem 2.30.

(i) Let I be any of the intervals
[0, 0] 9" or [ro, Té/q]l/qn for n = nj.

Then the Ti-action on M! via Hy extends uniquely to a continuous RI(Fl)—module
structure. Moreover, M'is a finitely generated free RY(T'1)-module; any RUoD pasis of
My is also a R (T'1)-basis of M. If M I Nisa homomorphism of L-analytic (pr,Tr)-
modules, then f1: M!T — NT is RI(I'1)-equivariant with regard to this action.

(ii) The T'i-action on M wvia Hy extends uniquely to a separately continuous R(I'1)-module
structure. Moreover, M is a finitely generated free R(T'1)-module; any RU0D pasis of
My is also a R(I'1)-basis of M. If M I N isa homomorphism of L-analytic (vr,I'1)-
modules, then f is R(T'1)-equivariant with regard to this action.

Proof. Part (i) will be proved in the next subsection, see Lemma [2.31] Since the intervals

. . n /a"

in (i) cover [ré/q ’ 1) the RI(T';)-module structures glue together to Rl (I} )-module
/a™ . . .

structures on Mo D for n = n1: Indeed, the operations are uniquely determined by the

Hj-rule everywhere and thus coincide on the intervals [ro, ro]l/ 7" for all n = n. By the same

reason these structures are compatible when varying the left boundary, whence taking direct
limits gives the desired results (ii). O

2.2.5 The proof of Theorem [2.30

Let I be either [rg,ro] or [ro,ré/q] and let eq,...,eq be a basis of our chosen model My. By
Lemma (iii) for the proof of Theorem [2.30)i) it suffices to show that for all n > ny there
is a R!(I",,)-module structure on M’ induced by H, such that the e; form a basis.

To achieve the module structure we will actually first show the existence of an a continuous
ring homomorphism

moe
qu (Fn-i-moe) - gndK(MI)v

which extends then by the universal property of cross products to a continuous ring homo-
morphism

RIT) = R (Tosmee) ¥, . T — Endge (M),

n+mge

as claimed. Here we use again the topological ring isomorphism . Therefore we have reduced
the proof of the Theorem to the following
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Lemma 2.31.

(i) The map Oy, : D(T'pimge, K) € D'y, K) Hn, Endy (M) extends to a continuous ring
homomorphism

R (T me) — Endic(M?),
If M I Nisa homomorphism of L-analytic (¢r,T'r)-modules, then f': M — NT is
RI (Trtmoe ) -equivariant with regard to this action.
(ii) MT is a free RI(T'y)-module of rank rkr M.
The diagram 47| extends to the commutative diagram

—1

Zn mpe,
(63) OK (}:)C—> Dto (OLa K) A’ bto (Fneroea K)
@Toel (”TOE)*i
1

O (X))~ Dy, (01, K) —> Dy, (T, K) — Endc(M7).
Now we set ¢, := £, (1) =1 € D(Tyymee; K) and

n+moe

Hn 3:(£n+moe,*)_1(z) = (én,*)_l(@?oe(z)) in D(Fn+m06)'

A i=Hp (pin) in SndK(M[)
1, will have the meaning of a variable in RIT (Tyitmge), it will act via H, on M. On the
! 1)—1
other hand, defining u,, by 8, = % =: 77", € 71, we set

Zn =[mp un]*(2) = [un]* (91" (2)) € Ok (%),

which will have the meaning of a variable of @Toe(R%moe). It acts as element of RY on M.
The strategy now consists of comparing the actions of u, and Z,.

Note that u induces an isometry z — [u,](2) on the open unit ball, in particular it induces
isometries [u,]* on Ok (X) with respect to all norms which are induced from | — |7 for some
interval I as above. E.g. we have

(64) | Znlr = |7 (2)Ir
for all intervals I. The element Z,, has an inverse Z, ! = [B,]*(Z7!) in Rk € RE..
Lemma 2.32. (i) There exist ng = ny such that for all n = ny we have that
120 = Anllr <12, < |92 ()i
for any of the intervals I = [ro, o], [*2, 0] and [7}, 2]
(ii) A\, has a (left and right) inverse \; ' in Endg (MT) and it holds || Z; Y=\ M| < |27 =

e (2) " r-
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Proof. Since Z € O (X) € Dy,(or, K) we can express it by Lemma as
Z = ap( —1)F

k=0

with finite norm € := ||Z||s, = Supgsq|aklth > 0 with respect to the variable n(1,2) —

ﬂ_moe
1. Since Dtm0€(0L7K) c RI by assumption 7 using the composite Dt0(0L7K) (7" )%
*
Drmoe(OL, K)cR! LN R! we have

Zn =Y ax(n(Bn, Z) — ¥ in RY,
k=0

Hn = 2 agey, in Dey(Tngmoe; K) & D (I, K)
k=0

and

1Z0 = Xallr = 11 Y cx{ (0Bn: 2) = 1F = (080, 2) = 1+ 0(Bus Z)en) } s

k=0
k
< supla[(1(81,2) — D = (15 2) = L+ 150, 2)cn)
=
C
< lenllt o ook
k>1
< lenllt g o = el
k=0 To

because for £ > 1 one easily checks
118 2) = 1)F = (1B, Z) = L+ 0B Z)en)" |1 < max [10(Ba, Z) = 1[5 lenl

< Jlenllreg™

using that the operator norm is submultiplicative as well as and remark [2.28(1).

There is some 0 < r < to such that e < 7o Z)7 P =121, for all T (note that the
latter norm is independent of n). Now choose ng = n sufficiently huge such that ||c,||r <7
for all I and n > ng, which is possible Lemma [2.29] Then,

llenllr

||Zn - >‘n||1 <
To

€< —e<|ZY;!
To

for all I and n = ny. Using this proves (i) because 1 = |Z, ' Z,|;1 < |Z,,'1|Zn|1-

By Remark (iii) and from (i) we have ||1 — Z; ' \u|l1 = 1|27 (Z — A\n)|lr < 1, whence
Sis0(1 = Z'A0)F converges in Endg (MT) and A\ := (3201 — Z, ' An)*) Z,! is the (left
and right) inverse of A\, = Z,(1 — (1 — Z;')\,)). Furthermore,

I =2 =] (Z (1- anm‘“) Z
k=1
<sup |1 — Z, "N 20 < 12710
k>1

This proves (ii). O
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Proof of Lemma [2.31} Inductively, we obtain - by expressing (\f)¥ —(Z+)¥ as Zle <];) (At —
ZENZE) ! - from (i) and (ii) of Lemma that

N N |Zn|];7 for k=0
-7
(65) A% n||I<{ <|Z;1|;k§|zn|l]€<|zﬁ|lv for k < 0.

for all k € Z. It follows that, if >, ., axp]°(2)" € RL(X) with a; € K, then Y, apAk
converges in Endi (M?7), because

a7 (Z)IF, for k=0
larll¢7(2) ¥, for k <.

goes to zero for k going to +oo. In other words, we have extended the continuous ring homo-

llaxAs 17 < max{l|ax(\y = ZP)|Ir, llaxZ ’fllz}<{

morphism O, to a continuous ring homomorphism
quo L end(MY), Z — .

.. . . . . moef
As by definition £,4mge,« extends to an continuous ring isomorphism R% ™ (Thgmge) =

moe . . .
RY T we have constructed a continuous ring homomorphism
quEI I
Ry (Tngmee) = End (M)

as claimed. Concerning functoriality observe that the maps f and f! are automatically contin-
uous by [BSX| Rem. 2.20] (with respect to the canonical topologies). Without loss of generality
we may assume that the estimates of Lemma hold for M and N simultaneously. By the
invariance under the distribution algebra and R-linearity of f, the map f! is compatible with
respect to the operators At of M! and N’. By continuity this extends to arbitrary elements
of RIV" (Tptmge)- (i) follows similarly as in [KPX]: Recall that (ex) denotes a Ri-basis of
M and consider the maps

O @RK = @D e (RE™) ®z, oy Zolor] = M, (fi) - Z frek,
k=1 k=1
P - 6_) R%{(Fn) = (—B R%HOSI(I‘n_g_mOe) ®Zp[1“n+moe] Zp[Fn] — MI Z
k=1 k=1 k=1

and . .
T: PRk =PRIy
k=1 k=1
which in each component is induced by
PP RE) = RE " (Taimoe)s Zn = An

on the first tensor factor and

K;; : Zplor] = Zp[Ty]
on the second tensor factor. Then we have from that

|®" 0 Y 0 ®~Y(m) —m|; < |m|y,

i.e.,

[ 0T od ! —id||; <1,

whence with ® and Y also ®’ is an isomorphism because ® oY o ®~! is invertible by the usual
argument using the geometric series. O
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2.2.6 The structure of M¥m=0

Now let M be a L-analytic (¢r,T')-module over R. We want to show that MY~ carries a
natural R(I'y)-action extending the action of D(I'y, K).

From and using formula and we have

(66) M0 = @ b Z)emu(M) = ZITL] ®zry) (1(1, Z)on (M)).

bE(OL/ﬂL)X

Theorem 2.33. The I'y, action on M extends to a unique separately continuous R(I'r)-action
on MYL=Y (with respect to the LEF-topology on R(I'r) and the subspace topology on MY¥L=0);
moreover the latter is a free R(T'p)-module of rank tkrM. If e1, ..., e, is a basis of M over

R, a R(T'L)-basis of MYL=0 is given by n(1, Z)pn(er),...,n(1, Z)pp(er). If M I Nisa

P, =0
homomorphism of L-analytic (pr,1'r)-modules, then M S N s R(T'1)-equivariant with
regard to this action.

Proof. By Lemma (i) we transfer the R(I'1)-action on M from Theorem [2.30[ii) to
(1, Z)pn (M). Note that the resulting action is separately continuous for the subspace topol-
ogy of n(1, Z)prr(M), because the map ¢r : M — M is a homeomorphism onto its image.
The latter is a consequence of the existence of the continuous operator 17, and the relation
Yo = % idps . Finally, because of and the R(I'1)-action extends to the asserted
R(T'1)-action. O

2.2.7 The Mellin transform and twists
We define the isomorphism
M:R(CL) = R0, A A(n(1, Z))

induced from Theorem [2.33] Moreover, let o_; € ', be the element with xrr(o-1) = —1.
Recall the twist operators T'w, from section 2.1.3]

Lemma 2.34. The diagram

(67) Ri(T) 2> RYE=O

1s commutative; in particular, the right hand vertical map is an tsomorphism.

Proof. The corresponding result for Ry (I'p) replaced by D(I'p, K) is implicitly given in
sections [2.1.3| and [2.1.4] see also [Co2l §1.2.4] for the relation Giny © v = X7(7)Y © Ciny
as operators on Rp. It follows by K-linearity and continuity that the relation of oper-
ators Oiny 0 A = Twy, . (A) © Oiny for all A € D(T'z, K). By continuity of the action of

Ri(T'r) = Rx(T'y) xr, I'r on R}/)(L:O it suffices to check the compatibility for the element
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Y, 1, where Y,, € D(T',,, K) has been defined at the beginning of section Using that
Tw,,, is multiplicative the claim follows from the relation

. 1 .
TwXLT (Yn 1)77(1> Z) = TwXLT (Yn) lﬁainv (YnYn 177(1’ Z))

_ 1 _
= Twyyr (Yn) 1TwXLT (Yn)ﬁain\’ (Yn 177(17 Z))
1
= — 0w (Y 10(1,2)).
G (Y, '0(1,2))

O

Moreover, we define 1y : R(I'r) — R(I'z) to be the map which is induced by sending
v €T, to its inverse 41, i.e., more precisely it is defined to be the usual involution on Z[I'f]
and the inversion on R(I'y,) satisfying

(68) R(Cpy) NHT

where the involution on R sends n(z, Z) to n(—z, Z).

Lemma 2.35. Let ny be as in Lemma[2.29. Then, for n = ny, the map M induces isomor-
phisms

R(Tn) = ¢E(R)n(1, 2) (< RV=)
of R(I'y,)-modules and
D(Tn, K) = ¢L(RT)0(1,2) (< (R*)")
of D(T'y,, K)-modules.

Proof. The first isomorphism follows from Lemma m (ii) by taking limits in combination
with Lemma [2.27] (i). Since all involved constructions respect the +-structures (in the sense
that D(T',, K) corresponds to the +-version of R(I',)) it induces the second isomorphism. []

In the next Remark we identify I" with an open subgroup of o} for simplicity.

Remark 2.36. If we assume that Q) belongs to K as in the next subsection, we can - via the
LT-isomorphism and %g - identify RL(%?’L) with the Robba ring R as in section E The

mage ENb of Zp s then

- (S

T (exp(log(by) 7% log r(2)) — 1)
and it follows from the proof of Proposition[2.19 that

75,
belongs to R with constant term (% [1; log(b;)) !, whence

~ 7'(2

= "L mod RE.
" Qlflegbyz K
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Proof. One checks that the isomorphism

(o)
D(Tyn, K) —— D(or, K) = Ok (X) = Ok (B)
sends a distribution g to the map g,(z) = u(exp(Qloi(TLf) log;r(2))). In particular, a Dirac

distribution J, is sent to exp(Q% log;(%)). Recall that the action of V as distribution

sends a locally L-analytic function f to — (%f(exp(—t)))hzo, whence V is sent to

v (e D oz (1) ) = - (o @E B g1 ) = Zogia(a)

S @
L dt Ly =0 7L

O

Now we are going to discuss a variant of Remark setting ©p := V= and tp7 =
logr(Z).

Remark 2.37. If we assume I' = ', and that ) belongs to K as in the next subsection, we
obtain for sufficiently large n

M(Oy) = 7 (&)n(1, Z)

with ;
LT
&= ——=—— mod tLTRJr.
Z | [;log(b;) K
Proof. Consider the the element
FX)=—— =1+ XQ(X
()= o= = L+ Xe)

with Q(X) € Qp[[X]] and let » > 0 be such that Q(X) converges on |X| < r. We shall proof
the claim within the Banach-algebra R for I = [0, 7] (which contains R }. and using that the
actions on both rings are compatible). We assume for the operator norm that ||6, — 1||; <

_ 1
min(p~ »=1,r) for all i (otherwise we enlarge n according to Lemma . From [BSX| Cor.
2.3.2, proof of Lem. 2.3.1] it follows that V = Loa(%,)

log(b;)
continuous liniear endomorphisms of Rﬂ( and

(69) exp(log(b;)V) = exp(log(dp,)) = o,

as operators in the Banach algebra A of

in A. Moreover,
1
(70) [ Tog(d,)l1 < min(p 57, 7)

1
for all 4, whence ||V||; < min(p~ 7=1,7)|log(b;)|. Then, as operators in A we have

\Y \Y

(71)  log(b:) ™" + VQ(log(b;)V) = log(b;) ™' F (log(b;) V) = exp(log®)V) =1~ 05 —1°

Hence
v o
O = [ [(exp(log(b;)V) — 1) - <1:[ log(bj)> - VotoshY)

o7




for some power series g € Ré( It follows that

—1
(72) M(Op) = <H log(bj)> + Qrr f(Z) |n(1, Z).
J
for some f(Z) € RL . Indeed, concerning the derived action we have
d
v01.2)) = (G ew@es(Otin)) = 0tirn(1.2)
1t=0

(cf. also [BSX| end of §2.3| for the fact that
(73) V acts as t1 70y O1 R;r(

) and
V(QtLT) = Qtrr.

Furthermore, we obtain inductively that
' i—1
Vin(1,2) = (H(Qtw + k)) n(1, Z)
k=0

for all i > 0. The convergence of f(Z) can be deduced using the operator norm ([70)).
On the other hand, according to [BE], Lem. 2.4.2] we have

Oun(1, Z) = g&’;L(Tz)gw)
2)

lies in the (R*)¥£=0, we conclude from

for some g(Z) € R};. Since the element Oyn(1,

77 oL(tor) _ mptter
T 9(2)) = (2 )wL(( )

that g(Z) belongs to (R%)¥2=0, whence it is of the form Zae OL/ﬂL) or(94.(Z))n(a, Z) for

some g, € R by the analogue of . ) for RE.. From Lemma we derive that, for some
a(Z) € R}, we have

0=1r(

Oun(1, Z) = ¢ (a(2))n(1, Z).

Since the decomposition in is direct, we conclude that g(Z) = ¢r(q1(Z))n(1,Z) and
tL(T)gpL(gl(Z)) = ¢} (a(2)), whence tpr divides ¢} (a(Z)Z). Since ¢} sends the zeroes of

trr, ie., the points in LT (7)) = |, LT[ 7rL] surjectively onto itself, we conclude by Lema.
that tLT divides also a(Z)Z in R}; and that there exists ¢(Z) € R;r( such that

(79 en) = ¢ (L)) 1. 2).

-1
Comparing with the first description gives the claim as ¢(0) = (]_[] 10g(bj)>
because evaluation at 0 is compatible with the embedding R}, © RL and “£(0) = 1 by

(-
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2.3 Pairings

In this section we discuss various pairings. The starting point is Serre-Duality on the open
unit disk which induces a (residue) pairing

{,}V:RxR->K,
see Proposition This induces a pairing
(75) <,>R([IL)xR(I'y) > K

for the Robba ring of I'z, which is actually already characterized by its restriction to R(I';,)
for any n and which can be seen to stem from Serre-duality on the character variety Xr, . It is

related to the additive pairing { , }' in two ways, firstly by using the "logarithm’ R(T';,) Lns, R
and secondly by a topological isomorphism (which is not a ring homomorphism) Y” : R(T,,) —
R by requiring 7 (Y"(A))n(1,Z) = X -n(1, Z) using Theorem and Lemma [2.35] cf. (91)).
While we take the first way as (ad hoc)-definition, the second interpretation stems from an
identity of certain residues, see Theorem which forms one main ingredient in the proof
of the abstract reciprocity formula below.

Based on the (generalized) residue pairings

{(,}: M xM— K,
with M := Homg (M, Q%) the pairing induces an Iwasawa pairing
{ Viw: MYE70 % MY1=1 & D(Ty, K).

for any (analytic) (¢r,T'r)-module M, which behaves well with twisting (cf. Lemma [2.65)).
Since, by construction and the comparison isomorphisms - the second main ingredient -

MU )2 R @1 Do (V) and M| % R @1 Do (V7 (1),

the pairing {, }1 is closely related to a pairing
[, 1: R0 @ Deris,t (VF(1)) ¥ RV @1 Deris, . (V(r 1)) = R(T'L)

induced from the natural pairing for D, 1, one gets an abstract form of a reciprocity formula
almost formally, see Theorem [2.74] As a consequence we shall later derive the adjointness of
Berger’s and Fourquaux’ big exponential map with our regulator map, see Theorem

2.3.1 The residuum pairing of the Robba ring

Let K be a complete field which contains 2 and L. We consider the residue pairing

(76) {,}:Rx Q%z — K, (g,w)+— Res(gw)

where

Res:Qp > K, Y a,Z'dZ — a_y
i
is the residuum map at Z.
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Lemma 2.38. The pairing { , } identifies R, resp. 0k, with the (strong) topological dual of
Q%z, resp. R.

Proof. This is a consequence of Serre duality. 0l

Setting M := Homg (M, Q%) =~ Homg (M, R)(xrr), for any finitely generated projective
R-module M, we obtain more generally the pairing

(77) {,}i={ lm:MxM—K, (g,f) — Res(g(f)),
which satisfies the following properties:

Lemma 2.39. (i) {, } identifies M and M with the (strong) topological duals of M and
M, respectively.

(i) {er(9), or(f)} = 7-{g, f} for all g € M and f € M,

(iil) {o(9),0(f)} = {g, f} forallge M, fe M, and 0 € ',

(iv) {¥r(9). f} = {9, oL(H)} and {1(9), f} = {9, ¥1(f)} for all g€ M and f € M,
Proof. i. Lemma [2.38] ii. - iv. [SV15] prop. 3.17, cor. 3.18, prop. 3.19]. O]

Proposition 2.40. The pairing {, }' : RxR — K, (f,9) — {f, gdlog;r}, induces topological
isomorphisms

Hompg ts(R, K) =R and Homg os(R/RY,K) =~ R™.
Proof. This is a consequence of Serre duality. O

Assume henceforth that M is an analytic (¢r,, 'z )-module over R.

Corollary 2.41. i. TheT'r-action on M extends continuously to a D(I'y, K)-module struc-
ture

i. The isomorphism M =~ Homp os(M, K) (induced by { , }) is D(T'1, K)-linear.
Proof. i. See proof of Prop. 6.5 in “mult-char-variety”. ii. This follows from Lemma [2.39]iii)

since I', generates a dense subspcae of D(I'z, K). O

Since T4, o ¢, = idjs we have a canonical decomposition M = (M) @ M¥L=0 By
Lemma we see that M¥2=0 is the exact orthogonal complement of oy (M), i.e., we obtain
a canonical isomorphism

(78) MYE=Y = Homp o1 (MV=0, K).

Lemma 2.42. The isomorphism is R(Cr)-equivariant, i.e., we have for all m € MYL=0,
me M¥YL=0 and \ e R(I'L) that
{vin,m} = {rin, ((A)m} .

Proof. Thisis clear for D(I'y,, K') by Cor. ii. It then follows for the localization D(I'r,, K)[uy; !,
where we use the notation and considerations from subsection [2.2.5] especially Lemma [2.31
and its proof. Since D(I'z, K)[u;;!] is dense in R(I',) the assertion now is a consequence of
the continuity property in Theorem [2.33] O
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2.3.2 The duality pairing <, > for the group Robba ring

We define res : R — K by sending A to Res(Adlogrr), and we write pry, »,, = prr,, r,, (and
similarly prr,m = prr,r,,) for the projection maps induced by . Consider the following
pairing

(79) <, >R x RTL) 2% R(Ty) S K,

where
(ﬁ )0Tesolng, % OPTL ng

0:R('r) =R(Tny) xr,, 'L
with ng as defined at the beginning of subsection [2.2.2]
Lemma 2.43. This definition does not depend on the choice of nyg.

Proof. For m =2 n = ng and k := m —n, we have commutative diagrams

(80)  R(Tn) r, 'L —== (R(Tm) xr,, Tn) »r, T ——— R(I'm) »r,, IL
pPrr.n prL,n\L pPrrL.m
R(») == R(I'm) 31, T~ R(Tp) == R(T'n)
gn,* (Zn,*obm,n)xgnl Zn,:kobm,'n, Km,*
=~ ‘ K e g o
R @iEOL/ﬂ‘IEOL 77(2’ Z)(pL (R) - QOL(;R’) R
(L )mres R (L )mres
(L)"res
K K K,

where prlg denotes the natural projection onto the component corresponding to the trivial
k

coset i = 0. Note that prf(\) = (%) @Rk (N) by formula (37). While the upper/middle

rectangles commute obviously by construction (using subsection §2.2.2)) , the left lower one

does, because
res (2ot ) = (?)kres«o’z%u)) - (ij)k (é)kmsw,’fu)) = res()

by Lemma [2.39] (ii) (with g = 1, f = ) for the second and (iv) (with g = X and f = 1) for the
third equation. By the same argument as for the last equation also the right lower rectangle
commutes. 0l

Remark 2.44. We rather can start with the identification

R(n) = ¢1(R),
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extending the isomorphism D(Ty,, K) LR D(n}or, K). Then, form =n = ng and k :== m—n,
we have the commutative diagram

and we may also describe the pairing as

pTL,nO

<. > R(0L) x R(IL) 75 R(1L) = R(Tg) #r,, T =% R(Lny) & @ (R) € R 25 K,

which obviously coincides with the one in the previous subsection (and, in particular, is inde-
pendent of the choice of ng).

The following properties follow immediately from the definition:
Lemma 2.45. We have for all f,\,p€ R(I'L) that
() <\ fu>=< fAp>,
(i) <A\ p>=<p,\>.

Remark 2.46. For an open subgroup U € 'y, denote by <, >y the restriction of <, > to
R(I'L) x R(TL). Then, for a pair U < U’ of open subgroups of T'r,, one immediately checks
the projection formula pry (v (x)y) = xpryr v(y), whence

(81) <wup @),y >r=<z,prouly) >u
for x € R(U), y € R(U') and the canonical inclusion R(U) SN R(U’).

The following proposition follows easily from Proposition [2.40, equation and its ana-
logue for the distribution algebra.

Proposition 2.47. The pairing <, >: R(T'r)xR(T') — K induces topological isomorphisms
HomK,CtS(R(FL), K) =~ R(FL) and HOmK7CtS(R(FL)/D(FL, K), K) jad D(FL, K)

Proposition 2.48. The map

(82) Hompr, (M=%, R(T'L))" =5 Hompg s (MY~ K) —> MYL=0
(78)
F— po F

is an isomorphism of R(T'r)-modules, where the superscript “.” on the left hand side indicates
that R(T'r) acts through the involution ¢.

Proof. According to Thm. m the R(I')-module M¥=0 is finitely generated free. Hence it
suffices to show that the map

HomR(FL)(R(FL)’ R(FL)) —_—> HomK,cts (R(FL), K)
Fr—opoF

is bijective. But this map is nothing else than the duality isomorphism in Prop. [2.47] O
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Remark 2.49 (Frobenius reciprocity). For an open subgroup U of ' the projection map
prr, v : R(TL) = R(U) induces an isomorphism

HOIDR(FL) (N, R(FL)) = HOIHR(U) (N, R(U))

for any R(T'p)-module N; the inverse sends f to the homomorphism x — deFL/U gf(g71z).

Twists One checks that the isomorphism

D(T, K) Y22%, Diop, K) = O (%) = Ok (B)

sends a distribution g to the map g,(z) = p(exp(Q,(—)logrr(2))). In particular, a Dirac
distribution d, is sent to exp(Q24y,(7y) logyr(2)).

Let 2z, € B(K) be the point which corresponds via the LT-isomorphism to the character
X :or — L™, a exp(n}a), i.e., satisfying

exp(rfa) = exp(af? logLT(ZX))

or
mp, = Qlogrr(2y)-

Lemma 2.50. We have the commutative diagram

LToFouriero(£y )

DIy, K) Ok (B)
TwXLT\L \L(ZXJFLTZ)*
D(Pn, K) LToFouriero(£y, ) OK (]B)

Proof. This follows from properties 1. and 3. in section together with the fact that the
LT-isomorphism & : X = By is an isomorphism of group varieties. O

Since, with respect to the maximal ideal my of o,
2y +rr Z=0+4+1p1 Z =7 mod mg
we can write
(83) Z' =z, —i—LTZ:aZ(l—l-g)

with € 1 + mg, 5 € z0r[[Z]].
Sending Z to z, +rr Z defines a continous K-linear ring automorphism 7 : R — R, which
in turn induces an automorphism of Q% sending f(Z)dZ to n(F)dn(Z).

Lemma 2.51. For all w e Q%z we have
Res(n(w)) = Res(w).

Proof. By the same reasoning as in the proof of [KPX| Lem. 2.1.19] this is reduced to the
statement and proof of [SV, Rem. 3.4 ii.]. O
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Lemma 2.52. n(dlog; 1) = dlog;
Proof.
dn(logr(Z)) = dlogpy (2 +11 Z)

= dlogpr(zy) + dlogrr(Z)
= dlogpr(Z)

From the definitions and Lemmata [2.50] 2.51] and [2.52 we conclude the following
Corollary 2.53. For all A\, u € R(I';)) we have

< TwXLT (/”L)vaXLT ()‘) >r, =< U, A >Ty, -

This extends to R(T'1) using the projection formula (81).

2.3.3 A residuum identity and an alternative description of <, >
Consider the continuous map
¢:R(Tp) — K,
A Res(M(o-1)My 1 (A))

where M, . : R(I') — Q% sends A to

XLT
(84) A-(n(1, Z2) @dlogrr) = (Twy, (A)n(1,2)) @dlogr .
Recall the definition from g from .

Theorem 2.54. We have
S=0
i.e., the following identity for the residue map holds

(%)HOR&S’ (Zno,* O PIL g ()\)dlogLT) = Res (77(—1, Z)\ - (77(1, Z)dlogLT)>

for all X e R(I'y).

Remark 2.55. Compare with [Ben, Prop. 2.2.1, 3.2.1] where also residue identities play a
crucial role in the proof of his reciprocity formula.

Proof. Due to Proposition there exists g € D(I'r, K) such that ¢(A) =< g, A > for all
A€ R(I'r), because ¢ sends D(I'y, K) to zero. We claim that

(85) Twy (9)=9

for all j € Z : By Corollary and Lemma below we have
<Tw (9),f>=<gTw(f)>
= ((Tw- (1)

=<(f)
=<g, f >
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for all fe R(I'L).
Now it follows from (85 combined with Lemma below that ¢ is constant (and equal
to evX%T(g)), ie, ¢(—) =g <1,— > . Finally, it follows from below that g = 1. O

Lemma 2.56. For all A € R(T'L) we have

o(Tw,i (A) = o(X).

XL

Proof. Using

ainv(mt(afl)S)jt(TwXLT (N)) = aiHV(f)ﬁ(Ufl))f)ﬁ(TwXLT (N) + E)ﬁ(afl)aiHV(m’t(TwXLT (M)
= (T wy,(0-1))M(Twy, . (A) + M(o—1)MUTwy 1 (Twy, 1 (N)))
= —M(0-1)M(Twy, - (A) + M(o—1) T Wy, (Twy,(A)))

and the fact that res o di,y, = 0 by [EX] Prop. 2.12| the case j = 1 follows directly from the
relations with p = 1, from which the general case is immediate. O

Lemma 2.57. Let Ae D(I',,C,) with ev s (\) = 0 for infinitely many j, then \ = 0.

LT

Proof. On the character variety the characters XJLT corresponds to points which converge to
the trivial character. It follows that A corresponds to the trivial function, since otherwise its
divisor of zeroes would have only finitely many zeroes in any disk with fixed radius strictly
smaller than 1 by , which would contradict the assumptions. O

Now fix a Z,-basis b = (by,...,bg) of I :=T'yy and set £*(b) := ¢f(b) := ¢~ ™0 1—[?:1 0b;) €
o} According to subsection we may define the operators

Y
Oy :=L*(b
=015
=  eg— O
Ep =L (b):bzvb

in R(T"). Let aug : D(I', K) —» K denote the augmentation map, induced by the trivial map
I' —» {1}

Lemma 2.58. The element Qé\b induces the augmentation map
(86) < OF,, — >p=aug : D(I,K) — K.
Moreover, we have

(87) S(QF) = 1 = 0(05,).

Proof. Since Eno,*(é\b) = [;LTTZQ% mod R} by Remark [2.36] one has for every A € D(T', K) by

definition

<EpA>r = ()" Res(lny o (Es\)g17d2)
1 1
= ﬁRes(Eﬁno,*(A)gLTdZ)
1
= ﬁaug(A%



where we use for the last equation that gr7(Z) has constant term 1 and the fact that the
augmentation map corresponds via Fourier theory and the LT-isomorphism to the ‘evaluation
at Z = 0’ map.
For the second claim one has by definition of ¢
S(QE,) = = QU* (b) Res(o1(M(1(Z3)))M(1)dlog 7)
= QU (b) Res(M(o 1) M Twy 1 (5p))dlog )

% —_ leg
= (*(b) Res(M(o_1) logLT(Z)éinvm(:b)m)

= 0*(b)Res(M(o_1)M(VE=y) lodglzqgfé))

71 logrr(Z) 0
e’ (Z11;4(b;))

= (*(b)m°Res(n(—1,Z)
P

d 10gLT
logr(2)

n(1, Z)dlog )

= (*(b)Res(M(o_1)

1,2)

1
L (Z11;4065))
= 0*(b)r}"Res(n(1 — 1, Z)QO

1
P, )

= (*(b)m}° Res(}° ( (0, )ZH 0 )legLT>)

Hé(bg) (qL)noR‘fS( dlogr)

where we use in the third equation, the fact that V acts on R as log;7(Z)diny in the fourth
equation, Remark for the fifth equation and finally for the last equation that grr(Z) has
constant term 1. The result follows because the delta distributions span a dense subspace in

DT, K). O

Corollary 2.59. The pairing <,> makes the following diagram commutative

(88) RULZ0 o (Qh)ermrml of S
.

<,>:R(T'p) x R(Cp)———————

<A > = {More(p), My, (M)}

(89) = Res(o_1M(u(1))My,r(A))

= Res(M(o—1¢())M(Twy 1 (N))dlogrr)

= Res(M(e(1))M(Twy - (0-12))d1og ).
Proof. By Theorem the definition of ¢ and of <, > we have

<y A> =<1, uA >
(90) — {M(o-1), My (V)
= {M(o—14(1)), My (M)}
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where we use Lemma for the last equation. O

Remark 2.60. For every n the pairing <, >r, induces topological isomorphisms
Homp cts(R(I'n), K) = R(I'y) and Homg 4s(R(T,)/D(Ty, K), K) = D(T'y, K).
Proof. We define topological isomorphisms T/, T : R(T';,) — R by requiring
P71 (X (N)n(=1,2) = 1(Mn(=1, 2) and @ (T(A)n(1, Z) = Twy,, (Mn(1, 2)

and we observe that they restrict to topological isomorphisms between D(T',,, K') and R}g by
Lemmata and [2.27] Then, by construction and (89)), we obtain a commutative diagram

(on) R . mme g e
TT’ TT l(,fL)”
<, >FHZR(Fn) x R(y)————— - - K

because res(pr(f)) = Lres(f) by Lemma W (ii) (with ¢ = 1, f = A). Hence, the claim
follows from Proposition O

Lemma 2.61. We have for all f,\,u€ R(T'y) that < A\, >= — < t(\),e(p) > .

Proof. Using , Lemma and Lemma we see that
< j A > = Res(M(Twy 1 (01 0)M(e(1))dlog 7 )
= —Res(M(0105(Tw, -1 (1 (N)))M(u(p2))d log 1)
= — < Tw 1 (), Ty () >
=—-< L()‘)vb(:u) >

2.3.4 The Iwasawa pairing for (¢r,['r)-modules over the Robba ring
Using Proposition we define an R(I'f)-t-sesquilinear pairing

{ ) }/Iw = { ) }/J\/[,Iw : M¢L=0 x MwL:O - 7?f(FL)
requiring the commutativity of the diagram

R(TL) x o MYL=0 s MY - K

[
Y
R(T'L) x R(T'L)

<, >

K,

in which the upper line sends (f, z,y) to {f(z),y}. Indeed, the property

{Xii, mYp, = {m, t(\)m}T,
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follows from the corresponding property for {,} by Lemma [2.42 while with regard to the
second one

)\{Th, m}llw = {)‘m’ m}IIw

we have for all f e R(I'L)

< f:{)‘mvm}llw > = {f : Am7m}
=< \f, {m,m}, >
=< va{m7m}/Iw >

by Lemma Note that the pairing {, };,, induces the isomorphism (82).
We set

C: _(q or —1)MYe=1 and C = (pr, — 1)MVE"wr
and we shall need the following
Lemma 2.62. For f € D(I'z, K) we have {f-(or—1)z, (FLor—1)y} =0 forallz € MYETRL
and y € MVL=1,
Proof. Straightforward calculation using Lemma above, cp. [KPX| Lem. 4.2.7]. O]

This Lemma combined with the second statement of Proposition implies that the
restriction of { , }}, to C x C, which by abuse of notation we denote by the same symbol, is
characterized by the commutativity of the diagram

¢ x ¢ xR(I.)/DTLK)—=K
|
|

\ <,>
DT, K) xR(I.)/DTL,K)—">K

in which the upper line sends (z,y, f) to {f(x), y}. In particular, it takes values in D(I'r, K).
Finally, we obtain a D(T'z, K)-t4-sesquilinear pairing { , }ry := { , }m o which by
definition fits into the following commutative diagram

{, I 1w : MYETE o« Mvr=t — -~ D(Tp, K)
wL—ll ’}lel
{ ; }I]WJw : é x C D(FL,K)

Altogether we obtain the following

Theorem 2.63. There is a D(I'p, K)-ty-sesquilinear pairing
(92) { Viw: MYE70 % MY2=1 & D(Ty, K).
It is characterized by the following property

(93) < f7 {m>m}]w >= {f ) (‘:DL - 1)77”6, (%@L - 1)m} fOT all f € R(FL)a m e M7 m € M.
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Remark 2.64. For any open subgroup U of I'p, we obtain similarly as in DU, K)-ty-
sesquilinear pairings
YRR« M=l
{, }Iw,U-M L x M —>D(U,K)

It follows immediately from the definitions, the projection formulae and Frobenius reci-

procity that
{, twu=pr vof, }Hw

If x : Iy, — o] is any continuous character with representation module W, = ort,
then, for any (¢r,I'r)-module M over R, we have the twisted (pr, 'z )-module M(x) where
M(x) :== M ®,, Wy as R-module, ¢ps,)(m @ w) := pp(m) @ w, and v|M(x)(m @ w) :=
M (m)E W, () = (7)1 M (m)@w for 7 & T I follows that Yy (m@w) = tas (m)Se
For the character xpr we take W, . =T = orn and W 1 =T* = opn* as representatlon

module, where T* denotes the or-dual with dual basis n* éf 7.
Consider the Rg-linear (but of course not Rx(I')-linear) map

twy : M — M(x), m—> m@ty.
Lemma 2.65. There is a commutative diagram

y -7 =L ) = {7}10
M=« M(d)e=t =22 DTy, C,)

T
X1 XL XLT
A (8}
Proof. We have for all f e Rg(T'),
] 7T j
< F{tw oy (), tw (M)} > = {f - (o = D @n®7) ,(?Lm —m®@n®’}
T ;
= {(Twy () (or = 1) @, (Tripr, — Dim @)
q
_ R (or — 1) (T, —
= (T, (1) (er =) . Cor — m)
=< Tw,— (f); {rm, m}re >

=<< f, TwXJLT({m, m}]w) >

where we used Corollary for the last equation. The second equation is clear for 6-
distributions and hence extends by the uniqueness result of Theorem cf. the proof of
Theorem 2.301 O

2.3.5 The abstract reciprocity formula

Compatibility of the Iwasawa pairing under comparison isomorphisms Let M, N
be (not necessarily étale) L-analytic (¢r,I'r)-modules over R. We extend the action of I'f,
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or, and 9y, to the R[tLlT -

[ﬁ] (and in the same way to N[ﬁ]) as follows:

’ym
,Yﬂ ome XE ()
E T gk 4k
trr Y trr
m) _
m wr(m 7k
pr(s—) = = 5 and
tir oLtir) trr
k
m b (m)
¢L(§g*)1= ‘L;E““
LT LT

Now we assume that there is an isomorphism
1 ~ 1
trr lrr

of (¢r,I'r)-modules over R[ﬁ]

Lemma 2.66. (i) (M[/-])¥2=0 = (MVr=0)[; L] := {ﬁmeMW:O, k > 0}.

trr
(ii) The (continuous) R(Tp)-action on MYL=9 extends to a (continuous with respect to
direct limit topology) action of R(T'L) on (M[ﬁ])mzo.

k
Proof. For (i) note that 0 = ¢ (7-) = %L(m) if and only if ¢ (m) = 0. For (ii) take for
LT LT
any f € R(I'r) the direct limit of the following commutative diagram

MYL=0 LT ppvp=0tLT _ o PT =0 PLT
| remo] gl
MYr=0 T ppgp=0tEr UL g ppp=0 LT
This defines a (separatedly continuous) action. O

Consider the composite map

(RI- 1@ M.RI;] ©r k)

¢: [—] ®r M = =~ Hompp 1 LT

trr

> Homp 1 (R[—] ®r N, R[ ] Qr Qr)

tLT

x 'R[i] Rr N
trr

where the second isomorphism is (¢~ 1)*.

Lemma 2.67. c¥2=0 and ¢¥2=0 are R(I'L)-equivariant.
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Lemma 2.68. The following diagram commutes on the vertical intersections

{7}/]\/1.114)

a0 : MU0 I R(Ty)

(R[] ®r M)¥L=0 « (R[-L]®@r M)¥L=0

{’},N ITw

N¥YL=0 x Nv=0 L R(T'L),
i.e., ifme M,meMneN,neN with () = n and ¢(m) = n, then

{m7 m}/]W,Iw = {h7 n}lN,Iw'

Proof. By definition of the Iwasawa pairings we have for all f € R(I'r)

</, {ﬁvn}lN,Iw > = {f "1, n}N

= {f - &(m), c(m

)In
= {&(f -m),c(m)}n
= Res(¢(f - m)(c(m))

)
= Res((( ) o C_l)(C(m))
= Res((f - m)(m))

= {f-m,m}u
=< f7 {mvm}{M,Iw >

whence the claim. Here we use the R(I'z)-equivariance of ¢ in the third equality. O

Now let D be any ¢r-module over L of finite dimension, say d, (with trivial I'z-action)
and consider the (¢r,T'z)-module N := R®r D over R (with diagonal actions) Since N =~ R?
as I'r-module, it is L-analytic. Moreover, we have N = Qf ® D* with D* = Hom(D, L)
being the dual ¢r-module.

Lemma 2.69. There is a commutative diagram

{}le

(% @ D*)VL=0 x  (R@p D)¥r=0 —"R(I')
f)JTXLT@idT; a_lfmm*@idTg

R(TL)®L D*  x R(TL) ®, D —R(T'y),

where the bottom line is the R(I'p)-linear extension of the canonical pairing between D* and
D, i.e., it maps (AR, n®d) to A\ul(d).
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Proof. Let ch and d; be a basis of D* and D, respectively, and x = Zj Aj -Jj and y = >, pti-d;.
Then, by definition of {,}},, we have for all A e R(I'y)

<A A, ®1d) (@), (1Mo 1, @) (9)}7,, >
- {(Asmm@d)( 2), (619 o 1, @id)(y))

{Z () - (01, Z)dlog 7 ®d;), D ealpi) - 1(=1, Z) @ di}

[

:Z{ i) - (n(1, Z)dlogr) @dj,m(—1,2) @ d;}
- ZRes( L Z)Wgm) - (11 Z)d o) )

XL Res( L Z)Wgm) - (11 Z)d o) )

Here, for the third equation we used property (iii) in Lemma On the other hand we can
pair the image >, ; Ajuid;(d;)) of (z,y) under the bottom pairing with A using the description

<A Z)\]Mz z Zd {Dﬁ 0— 1) mtXLT()‘A]’/“Li)}

:.7

XL Dites (1~ Z) W) - (1, Z) o) ).

whence comparing with the above gives the result using Proposition [2.47] O

Definition 2.70. An L-analytic (¢, I'r)-module M over Ry, is called étale, if it is semistable
and of slope 0. We write MR L) for the category of étale, analytic (r,T1)-modules over
Rr.

Crucial is the following

Theorem 2.71. There is an equivalence of categories

Rep%"(GL) - mamét(RL)

Vs DL(V).

Proof. Theorem D in [Bel6]. O

Recall the paragraph before Remark[A.24]in the Appendix for the definition of the subring
BT of R. It follows from the proof of [Be16 Thm. 10.1] that for V' € Rep{"(Gr) we have

Djlg(V) = R®pgt DY (V), where DT (V) belongs to imd(BE). From the theory of Wach modules
L

we actually know that Drpp(V) is even of finite height, if V' is crystallin in addition:

DY(V) = B} ®4+ N(T) = B ®g: N(V)
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for any Galois stable op-lattice T' € V. From the big diagram in section we thus obtain
the following diagram, in which the horizontal maps are equivalences of categories.

Br®g+—
M d@LIL:an Br gﬁet,cris B
o Bzr ~ ( L)

O®Bj{_l w ~ | Drr(—)
VLOD

JTr,0 ——— cris,an
Mod%F" ©° =" Rep] (Gp)

MODcris,L
’R@ol <
an,ét DT(V) an
M(R)*™ <—=—— Rep7"(GL)

Here 9M°<"5(By,) denotes the essential image of Rep§ ™" (G'1,) under Dyp(—) in 9 (By)
with B, := Az[Z-].

Now let T" be an or-lattice in an L-linear continuous representation of G, such that V*(1)
(and hence V(77 1)) is L-analytic and crystalline: Then it follows from [KR] and the discussion
above that

M .= DT (V(T_l)) =R Qr+ M(Dcris,L(V(T_l))) = R®Az N(T(T_l))
as well as

M = D!

g (V7 (1) = R®r+ M(Deris, . (VF(1))) = R @+ N(T™(1))

and the comparison isomorphism (20) induces isomorphisms

1 1 _
compy - M[E] ~ R[E] &L Dcm’s,L(V(T 1))

and

-1 1
compyy : M[E] R[E] ®L Deris, . (V*(1)).

12

Note that for ¢ = comp,; and D = D5 (V(771)) we have
(94) comp,; = (come%z ®r idpx)oé
using the identifications Q% =~ R(xrr) and
Deris,.(V*(1)) = D* ® Deyis,r.(L(XLT))-
We set b := compq (t;rdlog ) = é ®mn € Do := Depis 1. (L(XLT))-
Lemma 2.72. The following diagram commutes

compg,1 ®ridp*

O[] ® D* ——=R[7-]® D*® Dy

trr trr
v
Q
(QL ®p D*)¥r=0 RYL=0® D* @ Dy
meT@idD*T; m®idD*®DOT§

idR(FL)®LD* @b

R('y) ® D* ——=R(I') ®r D* ® Dy
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Proof. Observe, since on D* we have the identity throughout, that the commutativity of the
above diagram follows from the commutativity of

m B _
(95)  R(Ip) ———— (Qf)ve=0¢ Qp[-]vr=0
R(xrr)¥r=°
%@tLT >~ | COMPol,
Mb _
R(I'r) M RUL=0 g, Deris,t (L(xrT))
5 t17 T8 @id

R(IL) T R0 @ Deris 1 (L(xr1) > (R[] @1 Deris,n (Lxzr))) ¥+~

where the map %8 ®t17 : R ®1 Deris,r.(L(xrr)) = R(xL7T) sends f ® 71 —®1 to G f @
and the composme with the natural identification R(xr7r) = Q!, which sends n to dlogLT, is
the map R — Ql upon identifying R ®r, Deris, . (L(XLT)) Wlth R by sending f ® t —Qn
to f. The fact 1mphes the commutativity of the left lower corner while for the upper left
corner it follows from (67) and (84)

mXLT (>‘) = TwXLT (A) : 7](1’ Z)dIOgLT

ainv
= Twy,r ()‘) :

Q
ainv
= O (A-n(1,Z))dlogrr

n(1, Z)dlog

Finally, since (1, 2) @ b € R¥2=" ®p, Deris .(L(xz7)) is send up to 1(1, Z)dlog,, and down
to trrn(1, Z) ® b, the compatibility with compg is easily checked. O]

Now we introduce a pairing
[.1=1, ]Dcris,L(V(T_l)) AT XL Dcris,L(V*(l)) x RYET0 ®L DCTiS,L(V(Til)) - R(I'L)
by requiring that the following diagram becomes commutative

[.]

(96) RV D*®@Dy x RYL0®,D—>R(IL)
9ﬁ®idp*®DoT% 0—193?OL*®idT2
R()®r D*®Dg x  R(I'p)®L D ——R(I'L),

where the bottom line sends (A ® [ ® £b, u ®d) to Aupl(d).
Combining the Lemmata E and [2.72| we obtain for N = R ®r, Depis,r.(V (T 1)

Lemma 2.73. [_7 _]Da-is,L(V(T—l)) = {ﬁ(cornpﬂ712 L idD*)i (_)’ _}/N,Iw‘

Setting M’ := comp_l(R¢L:0®LDCTZ'S7L(V(T_1))) and M’ := comp_l(RW:O@LDCMS’L(V*(I)))

we obtain
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Theorem 2.74. For all x € M' n (M¥2=9) and y € M’ ~ (M¥2=0) it holds
\Y
{ﬁxvy}llw = [x,y],
1.e., the following diagram commutes on the vertical intersections

v
ﬁ{’}l]\/l,lw

M=o x M¥r=0 R(I'L)

(R[] ®@r M)¥=0

tLr

X

(R[] ®r M)¥=0

compyy | comp, |

(Rl ®r Deris . (VDD % (R[] ®L Deris,n(V(71)))¥+ =0

[’]D 's,L(V(T_l

— ~ — ~ _ cri )
’R}Z’L—O Rr, Dcris,L(V*(l)) X ’R}Z’L—O Rr Dcris,L(V(T 1)) - 7%(FL)
Proof. Combine Lemmata and using (94). O
Interpretation of the abstract reciprocity formula in terms of the D, -pairing
The canonical pairing Depis,.z(V*(1)) X Deris . (V(771)) = Deris L(L(xLT)) extends to a pair-
ing
= = _ [7]cris —
R¢’L—0 ®L Dcm’s,L(V*(l)) x Rw[‘_o ®L Dcris,L(V(T 1)) — R¢L_0 ®L Dcm’s,L(L(XLT))

by requiring that the following diagram is commutative (in which the lower one is induced by
multiplication within R(I'z) and the natural duality paring on Depis 1)
(97)
= = _ [7]c'r7ls —
R¢L—0 ®L Dcm’s,L(V*(l)) x RTﬂL—U ®L Dcris,L(V(T 1)) — R¢L_O ®L Dcm’s,L(L(XLT))
Tm@id TJﬂmOL*@id TEDT@id
R(CL) ®L Deris . (V*(1))  x R(CL) ®L Deris,n(V(771)) ——=R(TL) L Deris.n.(L{xLT))
Note that
comp ([I’, y] : 77(17 Z) ® (tZ’_%‘ ® 77)) = [I’, y]cris-
Hence using the diagram Theorem is also equivalent to
comp o My, . o {z, y} 7, = [comp(x), comp(y)]eris,

i.e., the ‘commutativity’ (whenever it makes sense) of the following diagram
(98)

wp =9 PR e
Dl (V¥ T x Dl (Vrm LT ] — = = = > R(Iy)
1 1 “ L i
Dl (V)L =[] x Dl (Vr=)PL =0 = — = = > R(Ip) — > RO 1YL =°
comp \L >~ comp \L -~ >~ i comp
Lleris
RYL=[EL I @L Depis, e (VF(1) X RYLTO[EL]®L Depis,t (V™) — — — = = — — > RVL=O[ ] @ Deris, L (L(xLT))
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Question: Can one extend the definition of [ , Jand {, } to (]\Z[é])wz0 X (M[é])mzo by
perhaps enlarging the target R(I'z) by an appropriate localisation, which reflects the inversion
of t;r somehow?

3 Application

3.1 The regulator map

Recall that we write 771 = XLTXc_ylc' Let T be in Repgzi;(GL) such that T'(77!) belongs to
Rep” (G ) with all Hodge-Tate weights in [0,7], and such that V := L ®,, T does not

or,f
have any quotient isomorphic to L(7). Then we define the regulator maps

Ly :HIlw(LOO/L7 T) - D(FL, (Cp) L Dcm’s,L(V(T_l)))
[’(\)/ :H]lw(Loo/L, T) — (RZ‘)¢'L:0 L Dcris,L(V(Til)),
Ly :H}y(Loo/L,T) = D(T'1,Cp) L Deris.(V)

as (part of) the composite

_ (1-IL
(Lo L, T) = Dyp(T(r )01 = N(T(r ) Pourcrein = L2 ey 1y =0
(99) — O¢L=O XL Dcm’s,L(V(T_l)) < (R%‘p)TﬂL:O ®L Dcris,L(V(T_l))

—1®)i _
28, DT, Cp) L Deris.r,(V(r 1)) = D(TL, Cp) @1 Deris..(V)

using [SV15, Thm. 5.13], Lemmal[l.30} the inclusion and where the last map sends u®d €
D(F[n Cp)@L Dcris7L(V(7-_1)) to n®d®d; € D(PL, Cp)®LDcm's,L(V(T_1))®LDcris,L(L(T))
D(TL, Cp) ®r Deris, (V). Note that D := Depis ,(L(1)) = D3 1 (L(7)) = Ld; with d;

trrtg, ® (7 @ne).
Alternatively, in order to stress that the regulator is essentially the map 1 — ¢, one can
rewrite this as

(100)
H}y(Leo/L,T) = Dy (V (7)) 2= = N(T(r) 2er =™ o NV (7)) Pert= ™ @, D
i) @E(N(V(T_l)))¢L=O ®L D — OwL:O ®L Dcris,L(V(T_l)) ®L Dc (REP)szo ®L Dcm’s,L(V)

e

—1 i
M) D(FL, (Cp) ®rL Dcris,L(V)

where the < in the first line sends n to n ® d; and the ¢y now acts diagonally. By construc-
tion, this regulator map Ly takes values in D(I'y,, K) ®;, Deyis, (V).

One significance of regulator maps is that it should interpolate (dual) Bloch-Kato expo-
nential maps. We shall prove such interpolation formulae in subsection by means of a
reciprocity formula.

3.1.1 The basic example

We are looking for a map

L:U®y T;: — D(FL, Cp) ®r Dcris,L(L(T))
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such that

Q1—m," . _, N
W 1 7{775 E(u ® an*)(XZT) ® (tLTl ®77® H) = CW(U & an® )
q

for all r,u, a. where CW denotes the diagonal map in

Theorem 3.1 (A special case of Kato’s explicit reciprocity law). For r > 1 the diagram

fim, of, @2 T8

n@idi
Hj(Leo/L, T2 (1))

cor l
*

HY(L, T2 (1))

,l(l—ﬂgr)m/)ew(—)dr "

DgR,L(‘/;r@)ir(l)) = Ld,,

commutes, i.e., the diagonal map sends u® an®~" to

—r
1—m; r

a(l = ")ripow (u)dr = amam 10g gu.n(Z)|z=0dr
with dy 1= 7t} ®—1 @ nve),
ri=trptg, ® (177" @ 1)
We set £L =L ®d; with L given as follows

® \V4 ,lz) =1 (1_%90)
L:URT; — or||wrr]]"*= ——

Using Lemmata [2.15] we obtain

(RE Vr=0 2B (Rt yor=0 20, DTy, C,)

* T - T T
Lu®an®)(xXir) = a9 (log (1 — ;ﬂo)aﬁw 10g gu) (X7)
_ _ m —
= aQ lrm (1 - ;Lmaimloggu)(xm

mv

= aT’Qir(l — %ﬂ'zfl)(arilamv log gu)\w:()

= ar) 7n(l - ?L)(amvlainv 10ggu)|w=0‘
By construction and Propostion the image of £ actually lies in the Gp-invariants:
LU ®Z T: i D(PL,K)GL ®L Dcm’s,L(L(T))'

We claim that

KA

: X & —RQTF 1 Lrr
(LLH OL") Qg Ty — Hpy(Lw/L, 01, (7)) — D(I'L, Cp) ®L Deris,n.(L(7))

n
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coincides with

for L = Q,), setting e, := t77 @ n®" € Deris ,(L(X}7)), 7 = 1:

U ® Tg@(r—l)

ven®r

(or[[wrr]] @ n®" )= (wifor[[wrr]] @ n®)¥="

(1-TEer)®id

or[fwrrll[2

A—T r

inv®t L

01/1:0

M~ ®id

D(Ty, K

id @tf

DL, K)

,C . U ®Z T; — D(FL,(CP) ®L Dcris,L(L(T))'
More generally, we have the following commutative diagram (cp. with [LVZ15, Appendix C]

— kTP

H}w(LY/Lv

i(l?%)@d

¢*(N(L(x1r))"™°

1970 @ 18— pluonr) Tou [l [21° @
it};T@tZ;
lo+l.—1®id
P=0

O T e o @

G
D(I'L,K)"F QL

[Z(IX’L‘T)

L ®e, D'z, K)°t ®r
id @7 1

“r@Ln D(I'z, K)“r

N(oL(xr)"™!

szo ®L Dcris,L (L(X7LT))

oL(TXLT)) N

.
1=

comp

m—1®id/

LLirxp @

Dcris,L(L(XzT))

Deris,.(L(XLT))

®r or(XLr)

where [; := t 70y — 1, Oy = dtL. We write Vi € Lie(T's) for the element in the Lie algebra
of I';, corresponding to 1 under the identification Lie(I'r) = L. Note that we have

(101)

0, (ML) — M=)

M (o f) = lim ==

= vLieaﬁ_1 (f)a

see [KR), Lem. 2.1.4] for the fact that Vi = t170iny as operators on O. By abuse of notation we
thus also write [; = Ve —i for the corresponding element in D(I',, K), compare [ST1], §2.3] for

the action of Lie(I',) on and its embedding into D(I'z, K). Moreover we set [7,» =[]

Note that &y, is invertible on O¥=C by [FX], Prop. 3.12]. Finally the map

comp : 9*(N(or.(x71)))* =" = O~ ®L Deris, (LX)

is .

3.2 Relation to Berger’s and Fourquaux’ big exponential map

Let V denote a L-analytic representation of Gy and take an integer h >

r—1
i=o li

1 such that

Fil*ths,L(V) = D¢ris,.(V) and such that Dm'SyL(V)WL:“Zh = 0 holds. Under these condi-
tions in [BE] a big exponential map a la Perrin-Riou

Qv - (OW:O ®r Dcris,L(V)) >
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is constructed as follows: According to [BE], Lem. 3.5.1] there is an exact sequence

T =rp" =2 1
0= @ th Derio, . (VI?* ™0 = (O @0y, Deri (V)71 25
k=0

h
0= @; Deris (V) 2> @ Deris . (V)/(L = 7501) Deris (V) = 0,
k=0

where, for f € O ®r Depis,r.(V), A(f) denotes the image of @Z:o(aiknv ® idDCm’L(V))(f)(O)
in @ Derian(V)/(1 = 78 01) Deris (V). Hence, if f € (OY2=0 @y Dpis (V)" there
exists ¥y € (O ®,, Dms’L(V))wLZ% such that f = (1 — ¢r)y. Setting V; := V — i for any
integer i, one observes that Vj 1 o ... 0o Vg annihilates Z;é t’ZDmS,L(V)@L:’TZk whence

Qun(f) :=Vp_10...0Vp(y) is well-defined and belongs under the comparison isomorphism
—_4q
to Dlig(V)wa”L by Proposition |1.13]
Note that (Od}L:O ®r Dcm’s,L(V))A=O = OY¥r=0 ®r Dcri&L(V) if Dcris,L(V)SﬂL:Wzk = 0 for
all 0 < k < h. If this does not hold for V itself, it does hold for V(x 7. for r sufficiently large
(with respect to the same h).
In the case L = Q, the above map specialises to the exponential map due to Perrin-Riou
and satisfies the following adjointness property with Loeffer’s and Zerbes’ regulator map, see
[ILVZ15, A.2.2|, where the upper pairing and notation are introduced:

DT, Qp) @, Hrw(Qp, V(1)) x D', Qp) @, Hrw(Qp, V) —= D(I',Qp)
TQV*(U,I Wlﬁvl

D(T, Qp) ®q, DcriS,Qp(V*(l)) x D(T, Qp) ®q, Dcri&(@p(v) — D(T, @p)

In fact this is a variant of Perrin-Riou’s reciprocity law comparing Qy,p, with Qyrs(qy -, -

For L # Q) the issue of L-analyticity requires that V*(1) is L-analytic for the construction
of Qyu(1)1-p, which then implies that V' is not L-analytic. Instead our regulator map is
available and the purpose of this subsection is to prove an analogue of the above adjointness
for arbitrary L.

Theorem 3.2 (Reciprocity formula/Adjointness of Big exponential and regulator map).
Assume that V*(1) is L-analytic with Fil™' Deyis ,(V*(1)) = Deris.n(V*(1)) and
Dc,ﬁis’L(V*(1))‘“:”;1 = DCM-S’L(V*(l))“"L=1 = 0. Then the following diagram commutes:

{7}I’LU

(102) DL (V)T D(V (7~ 1))ve=! D(I'.,C,)
TQV*(l),l QEQ/\L
O¥2=0 @, Depis.n (V*(1))  x O¥r=0@; Do 1 (V(r1)) s DTy, C,).

Note that the terms on the right hand side of the pairings are all defined over L!

Proof. This follows from the abstract reciprocity formula [2.74] (with M := DrTig(V(T_l))

as before) by construction. Indeed, assuming that z € OV1=Y @, Deris,,(V*(1)) and y €
D(V(r71))¥2=1 we have that (1="Lpr)y € M’ (M¥2=9) (see (09)) and comp ! ((1—¢r)z) €
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M for z € (O®y DC,.mL(V*(l)))wL:% such that z = (1 — ¢ )z. Moreover, comp 1((1 —
or)z) € M¥L=0 by Proposition as V*(1) is positive by assumption. Recall that comp~—!(Vx)

is an element in D;rig(V*(l))wL: again by Proposition |1.13] We thus obtain

{comp™ (V) y} 1 = {Veomp (1 — op)z), (1 - %my}’lw
= Q[(1 — ¢z, comp((1 — %my)].

By definition of the big exponential and regulator map the latter is equivalent to

{QV*(l),l(z)7 y}[w = [Z) Q‘C’?/ (y)]
O

We also could consider the following variant of the big exponential map (under the as-
sumptions of the theorem)

— 4
Quj, : D(T'1,Cp) ©p Deris,r (V*(1)) = DI (V)F 77

rig
by extending scalars from L to C, and composing the original one with Q" times
) * M&id +\¢L=0 ) *
D(FLa(Cp) AL Dcms,L(V (1)) B (R ) &L Dcms,L(V (1))

Corollary 3.3 (Reciprocity formula/Adjointness of Big exponential and regulator map). Un-
der the assumptions of the theorem the following diagram commutes:

{7}111}

(103) D (V1) « D(V (r~1))¥e=! D(T';,Cy)

Tnv*a)@ o_1Ly

(0]
D(T1,Cp) ®1 Deris 1 (V*(1)) % D(T'1,Cp) &1 Deris n(V(r ) Y D1, C,),

where [—, —]° = [MRid(-), oM @id(-)], i.e.,
(104) [)‘ ® CZ, 1% ® d]o ' 77(17 Z) ® (tZZI“ @ 77) = /\L*(:u) ’ 77(17 Z) & [dv d]crisa
where Deris.,(V*(1)) X Deris. . (V(771)) L derie, Deris,r.(L(xrT)) 15 the canonical pairing.

V(XJLT)7h+j(ai;1$ 1t 5n®) and

_ : j v . —J ,Qj
VioQup = Qupi1, whence we obtain Qy p(z) @n®7 = QV(XJLT)JZH(TIUXZJT ()@t 7n®7) and

Remark 3.4. By [BF, Cor. 58.5.4] we have Qyp(x) @ 7% = Q

VioQynp=Qypir.

3.2.1 Some homological algebra

Let X > Y bea morphism of cochain complexes. Its mapping cone cone(f) is defined as
4 d 0

X[1]@Y with differential Deome(f) = ( f)[<1[]1; i > (using column notation) and we define
Y

the mapping fibre of f as Fib(f) := cone(f)[—1]. Here the translation X[n] of a complex X is
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given by X[n]* := X*™ and dg([n] = (—1)”df;”. Alternatively, we may consider f as a double
cochain complex concentrated horizontally in degree 0 and 1 and form the total complex (as
in [SPl, Def. 18.3/tag 012Z]). Then the associated total complex coincides with Fib(—f).
For a complex (X*,dx) of topological L-vector spaces we define its L-dual ((X*)*, dxx)
to be the complex with
(X*)" := Homy, 4s(X L)

and
dx (f) = (—1)deg(f)71f odx.

By ((X*121V€)® d 4 naive) we call the naive version by dys.maive(f) := f o dx.
More generally, for two complexes (X*,dx) and (Y*,dy) of topological L-vector spaces
we define the complex Homj ., (X*®,Y*) by

Homz,cts (X.a Y.) = H HOHlL,gts(Xi, Yern)
€7

with differentials df = d o f + (—1)38()=1f o d. Note that the canonical isomorphism
Hom*(X*,Y*)[n] = Hom*(X*,Y"*[n])

does not involve any sign, i.e., it is given by the identity map in all degrees.
Also we recall that the tensor product of two complexes X* and Y* is given by

(Xo ®L Yo)l = @Xn ®L Yifn

and
d(z®y) =dr @y + (—1)98@z @ dy.

The adjunction morphism on the level of complexes
adj : Homj, . (X*®1Y"*, Z%) — Homj, ., (Y*,Hom} ., (X*,Z°))

sends u to (y — (z — (—1)des@ deeW)y (2 ®y))). It is well-defined and continuous with respect
to the projective tensor product topology and the strong topology for the Homs. Furthermore,
by definition we have the following commutative diagram

(105) X'QLY* = L[-2],

id @adj(u)l

eva

X*®r Homj ., (X*, L[-2]) —— L[-2]

where evy sends (z, f) to (—1)dea@)des(f) f(z).

Lemma 3.5. Let (C*,d*) be a complex in the category of locally convex topological L-vector
spaces.

(i) IfC consists of Fréchet spaces and h'(C*) is finite-dimensional over L, then d'~' is strict
and has closed tmage.

(ii) If d* is strict, then h~'(C*) = h*(C)*.
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Proof. (i) Apply the argument from [BW] § IX, Lem. 3.4| and use the open mapping theorem
[NFA| Prop. 8.8]. (i) If

A—>.p_ % ¢

forms part of the complex with B in degree ¢, one immediately obtains a map
ker(a*)/im(8*) — (ker(B)/im(a))",

where ker(3) carries the subspace topology and ker(3)/im(a) the quotient topology. Now use
the Hahn-Banach theorem [NFAL Cor. 9.4| for the strict maps B/ ker(f) < C (induced from
B) and ker() < B in order to show that this map is an isomorphism. O

Definition 3.6. A locally convex topological vector space is called an LF-space, if it is the
direct limit of a countable family of Fréchet spaces, the limit being formed in the category of
locally convex vector spaces.

Remark 3.7. (i) If V5 W is a continuous linear map of Hausdorff LF-spaces with finite
dimensional cokernel, then o is strict and has closed image by the same argument used in
(i) of the previous lemma. However, since a closed subspace of an LF-space need not be
an LF-space, we cannot achieve the same conclusion for complexes by this argument as
ker(d") may fail to be an LF-space, whence one cannot apply the open mapping theorem,
in general. But consider the following special situation. Assume that the complex C*
consists of LF-spaces and h'(C*) is finite-dimensional. If moreover C*t! = 0, i.e., C' =
ker(d?), then d*~! is strict and h'=*(C*) = h*=1(C)*.

(ii) Ifd® is not strict, the above proof still shows that we obtain a surjection h=*(C*) — hi(C)*.

However, for a special class of LF-spaces and under certain conditions we can say more
about how forming duals and cohomology interacts.

Lemma 3.8. Let (C*,d*) = li_n)lr(C° dy) be a complex in the category of locally convex topo-

YT
logical L-vector spaces arising as reqular inductive limit of complexes of Fréchet spaces, i.e.,

in each degree i the transition maps in the countable sequence (CL), are injective and for each
bounded subset B € C' there exists an v > 1 such that B is contained in C. and is bounded as
a subset of the Fréchet space Cl.. Then,

(i) we have topological 1somorphisms (C*)* = lim (C})*,

(ii) if, in addition, LiI_n}?O R((C2)*) = 0 for all i, we have a long evact sequence

= RA(C)*) —=lim, _ BI((CR)*) — AT (lim_ (C)*) —= hTFH((C*)*) — ..,

(iii) if, in addition to (ii), the differentials d? are strict, e.qg., if all h*(C?) have finite dimension

o1 o\ __ . .
over L, and @@(J(CT) = 0, we have isomorphisms

R'((C*)*) = lim ™' (CF)".

o

Proof. (i) is [PGS, Thm: 11.1.13] while (ii), (iii) follows from (i) and [I, Ch. 3, Prop. 1] applied
to the inverse system ((C?)*), combined with Lemma . O

T
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3.2.2 Koszul complexes

In this paragraph we restrict to the situation U = Zg and fix topological generators 7y, . ..y of
U and we set A := A(U). Furthermore, let M be any complete linearly topologized or-module
with a continuous U-action. Then by [Laz2, Thm. I1.2.2.6] this actions extends to continuous
A-action and one has Homy s(A, M) = Homy (A, M).

Consider the (homological) complexes K,(y;) := [A 22— A] concentrated in degrees 1
and 0 and define

d
K, :=K! = K.(7) == &) K.(%),

A
i=1
K*(M) :=K{ (M) := Hom}, (K., M) =~ Hom$ (K., A) @y M = K*(A) @ M,
K (M) :=K,®x M (homological complex),
K (M)*

=(K.®x M)* (the associated cohomological complex).

If we want to indicate the dependence on vy = (v1,...74) we also write K*(v, M) in-
stead of K*(M) and similarly for other notation; moreover, we shall use the notation v~ ! =
(v 'y ) and AP = (’yfn, . .’ygn) . Note that in each degree these complexes consists of
a direct sum of finitely many copies of M and will be equipped with the corresponding direct
product topology.

The complex K, will be identified with the exterior algebra complex A} A9 of the free
A-module with basis ey, ..., eq4, for which the differentials d, : A% A — /\?\_lAd with respect

to the standard basis e;,, .. ;, =€, A= Ae, 1 <iyp <.+ <ig < d, is given by the formula

q
1+ (s, — ~
q(@iy i Z (Vi 1)ai1,...,ik,...,iq'

Then the well-known selfduality (compare [Ei, Prop. 17.15] although the claim there is not
precisely the same) of the Koszul complex, i.e., the isomorphism of complexes

(106) K.(A)* = K*(A)[d]
can be explicitly described in degree —q as follows (by identifying /\jl\Ad =AegA---neqg=A):

LAY 27 Homy (A /A% A

€y, ig > sign(l, J)er

€51, coJd—q’

where ef,...e} denotes the dual basis of ey, ..., eq, the elements e]1 iy = e;-‘l A A e;‘d_q,
1 <j1 < <jag—q < d, form a (dual) basis of Homan ( /\A YA A), the indices J = (ji)r are
complementary to I = (in), in the following sense {i1,...,iq} U{j1,...,Ja—q} = {1,...,d} and
sign(I, J) denotes the sign of the permutation [i1,...,14, j1,...,Jd—q|- Indeed, the verification
that the induced diagram involving the differentials from cohomological degree —q to —q + 1

AGA? Hom, (AF 7A%, A)

dql i( (=14 ldd q+1

=1 Ad 7 Homy (A7 A, A)
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commutes, relies on the observation that

sign(Z, J)sign(1z, Ji) b = (=)7L

where I7 := (i1, ..., iAk, ..., 1q) denotes the sequence which results from I by omitting i, while
Jie = (J1s- -+ Ji=1,%k, Ji, - - - 1d—q) denotes the sequence which arises from J by inserting iy, at po-
sition [ with regard to the strict increasing ordering: The permutations [i1, ..., %q, j1,-- -, Jd—ql

and [ig, ... ,iAk, coslgy Jls ey Ji=1y ks JIs - - - 5 Jd—q]| differ visibly by ¢ — k41 — 1 transpositions.

Now we assume that M is any complete locally convex L-vector space with continuous U-
action such that its strong dual is again complete with continuous U-action. Then we obtain
isomorphisms of complexes

K* (v, M)* = Homj, ;,(Hom} (K.(7), A) @ M, L)
~ Hom} (Hom} (K. (y 1), A), Homy, s (M, L))
= o (How (16 (~1):). ) @4 Hom, (11 )
(107) ~ K. (v~',A)* ®x Homp, o5 (M, L)
= K'(V*I,A)[ | ®a M*
> Kyt M)

where in the second line we use the adjunction morphism; the isomorphism in the fourth line
being the biduality morphism (according to [Ne, (1.2.8)])

K.(\)* = Hom% (Hom$ (K., A), A)

T > (_1)ix**
with the usual biduality of modules

K.(A)" = Homp (Homu (K _;, A), A)
o (2 f o f2))

involves a sign, while the isomorphism in the third last line stems from together with
Lemma (i). Note that the isomorphism in the second last line does not involve any further
signs by [Nel (1.2.15)].

We finish this subsection by introducing restriction and corestriction maps concerning the
change of group for Koszul complexes. To this end let U; € U be the open subgroup generated
by fyfn, . .fygn. Then Hom} (—, M) applied to the tensor product of the diagrams

gives a map corU : Ky, (V") (M) — K (v)(M) which we call corestriction map and which is
compatible under ( - ) below with the corestriction map on cocylces (for appropriate choices
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of representatives in the definition of the latter). Using the diagram
A(U)
A(U)
instead, one obtains the restriction map resgl P K3 () (M) — Ky, (v?")(M), again compatible
under ([121]) with the restriction map on cocycles.

Pnfl
A(U)
ZZiol'Yfi
vi—1

AU) —

3.2.3 Continuous and analytic cohomology

For any profinite group G and topological abelian group M with continuous G-action we write
C* :=C*(G, M) for the continuous (inhomogeneous) cochain complex of G with coeflicients in
M and H*(G, M) := h*(C*(G, M)) for continuous group cohomology. Note that CO(G, M) =
M.

If G is moreover a L-analytic group and M = li_n)18 @T M5 with Banach spaces M a
LF space with a pro-L-analytic action of G, i.e., a locally analytic action on each M3l which
means that for all m € M[™] there exist an open L-analytic subgroup T, T in the notation
of subsection such that the orbit map of m restricted to I';, is a power series of the form
g(m) = Yoo £(9)*my for a sequence my, of elements in M3 with 7% m, converging to zero.
Following [Co2, §5] we write C3,, := Cg,,(G, M) for the locally L-analytic cochain complex
of G with coefficients in M and H}, (G, M) := h*(C;,(G, M)) for locally L-analytic group
cohomology. More precisely, if Maps;,.; _.,(G, M"*1) denotes the space of locally L-analytic
maps from G to M1 then

Cin(G. M) = lim lim Mapsioe,— on (G, M)

S T

is the space of locally L-analytic functions (locally with values in @T M) for some s and

such that the composite with the projection onto M%) is locally L-analytic for all r). Note
that again C%, (G, M) = M and that there are canonical homomorphisms

(108) Con(G, M) — C*(G,M),

(109) H; (G,M)— H*(G,M).

Let f be any continuous endomorphism of M which commutes with the G-action. We
define

(110) HO(f, M) := M/='  and  H'(f,M):= M,
as the kernel and cokernel of the map M SNy , respectively.
The endomorphism f induces an operator on C* or C3,, and we denote by T := Ty q(M)
and 79" := “g(M) the mapping fibre of C*(G, f) and C;,,(G, f), respectively.
Again there are canonical homomorphisms
(111) Fa(M) = Tpa(M),
(112) W (Tie(M)) — b*(Tya(M)).
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For 7 either empty or an, one of the corresponding double complex spectral sequences is
(113) 1By’ = H'(f, H}(G, M)) = h™(T")
It degenerates into the short exact sequences
0 — Hy (G, M)y — h(T}q(M)) — H3(G, M)’=" — 0.
In (loc. cit.) as well as in [BF| analytic cohomology is also defined for the semigroups

I'p x®and I', x ¥ with @ = {¢}|n = 0} and ¥ = {(gsz)"hL > 0}, if M denotes an
L-analytic (¢r,I'1)-module over the Robba ring R.

Remark 3.9. Any L-analytic (¢r,'r)-module M over the Robba ring R is a pro-L-analytic
I'z-module by the discussion at the end of the proof of [BSX, Prop. 2.25], whence it is also an
L-analytic T'p, x ®- and I', x V-module as ® and ¥ possess the discrete structure as L-analytic
manifolds.

Proposition 3.10. We have canonical isomorphisms

WA(TE (M) = Hp, (T x ©,M) = H}, (T x ¥, M) = hi( %a:;LIL(M)).

and an exact sequence
(114)
0 — Hap (Do, MYE77) — BT, r, (M) —> My, 2a)™" — Hin (Do, MYE77) — B3(TE r, (M) -

Proof. The isomorphism in the middle is [BE| cor. 2.2.3]. For the two outer isomorphism we
refer the reader to [Th, 3.7.6]. The exact sequence is the extension [Th, Thm. 5.1.5] of [BE|
Thm. 2.2.4]. 0

Note that, for U € U’, the restriction and corestriction homomorphisms C*(U’, M) ~=»

C*(U,M) and C*(U,M) = C*(U',M) induce maps on Tyuy(M) —> T;p(M) and
Tru (M) =5 Ty (M), respectively.

We write Ext:(A, B) for isomorphism classes of extensions of B by A in any abelian
category €. Furthermore, we denote by 9y (R) (MG (R), imTU(R) ) the category of all (étale,
overconvergent) (¢, U)-modules over R, respectively, and by RepTL(G ru) the category of
overconvergent representations of G u consisting of those representations V of G Lu such
that D(V) is an overconvergent (1, U)-module; see Definition [A.25] where also the notation
D(V)) is introduced.

Theorem 3.11. Let V be in Rep; (Gr) and U S T’ be any open subgroup.

(i) For D(V) the corresponding (¢r,T'1)-module over By, we have canonical isomorphisms
(115) h* = hiy s H(LG, V) — h* (T, u(D(V)))
which are functorial in V and compatible with restriction and corestriction.

(ii) If V is in addition overconvergent there are isomorphisms

(116) WO(To (D] (V) = VoL,
(117) W (Toy (DL (V) = HH(LY, V),

which are functorial in' V' and compatible with restriction and corestriction and where by
definition HTI(L%, V) c HYLY,V) classifies the overconvergent extensions of L by V.
In particular, these L-vector spaces have finite dimension.
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(iii) If V s in addition L-analytic, then we have

(118) H,, (LY, V) = hN(TEm (DL, (V)

where by definition H) (LY V) < H%(Lg,V) c HY(LY,V) classifies the L-analytic
extensions of L by V.

Proof. (i) is [Ku, Thm. 5.1.11.] or [KV, Thm. 5.1.11.]. The statement (iii) is [BE] prop. 2.2.1]
combined with Proposition while (ii) follows from [FX] (the reference literally only cov-
ers the case U = I'p, but the same arguments allow to extend the result to general U)
as follows: Firstly, by Lemma below one has an isomorphism hl(TpL,U(DIiQ(V))) ~

EXtéﬁU(RL)(RLv D! (V)). Then use the HN-filtration & la Kedlaya to see that any extension

rig
of étale (¢, U)-modules is étale again, whence

Extly, (r,) (Res D)ig(V)) = Extiya 1 (R, DYy (V)
and the latter group equals
1 i ~ 1 _ glrU
EXtDﬁB(RL)(RL7 D’I‘lg(v)) = EXtRepE(GL‘[T{)(L7 V) = H-‘- (LOO7 V)

by prop. 1.5 and 1.6 in (loc. cit.). For the claim in degree 0 one has to show that the inclusion
DY (V) c DL ,(V) induces an isomorphism on ¢y -invariants, which follows from Lemma |A.36
L]

Lemma 3.12. Let M be in My(R). Then we have a canonical isomorphism
W' (Top (M) = Extoy o, y(Re, M).

Proof. Starting with a class z = [(c1,—co)] in A} (T, v(M)) with ¢; € CY(M) and ¢y €
C°(M) = M (i.e., we work with inhomogeneous continuous cocycle) satisfying the cocycle
property

(119) ci(o1) = oci(1)+ci(o) for all o, 7€ U, and (pr—1)ci(7) = (1—1)¢p for all T e U,
we define an extension of (¢r,, U)-modules

00— M _EC RLH'O

with E. := M xRy as Rr-module, g(m,r) := (gm+gr-ci(g), gr) for g € U and ¢g.((m,r)) :=
(prr(m) + @r(r)co, pr(r)); note that this defines a (continuous) group-action by the first
identity in , while the U- and ¢p-action commute by the second identity in . If we
change the representatives (c1, —cg) by the coboundary induced by mg € M, then sending
(0,1) to (—myo, 1) induces an isomorphism of extensions from the first to the second one,
whence our map is well-defined.

Conversely, if E' is any such extension, choose a lift e € E of 1 € Ry, and define

ca(r):=(r—1)ee M, cy:=(pr—1e,

which evidently satisfy the cocycle conditions . Choosing another lift é leads to a cocylce
which differs from the previous one by the coboundary induced by € — e € M, whence the
inverse map is well-defined.

One easily verifies that these maps are mutually inverse to each other. O

87



Question 3.13. Can one show that hz(’ﬁ@bU(DT

Mg(V))) is finite-dimensional (and related to
H2(LY V) and that the groups hi(ﬁ,hU(DLg(V))) vanish for i = 37

Remark 3.14. By [FX, Thm. 0.2, Rem. 5.21] it follows that the inclusions
Han(L, V) € Hy (LG, V) € HY (L, V)
are in general strict. More precisely, the codimension for the left one equals ([LY : Qpl —
. G, u
1)dimg VL%,
Let us recall Tate’s local duality in this context.

Proposition 3.15 (Local Tate duality). Let V' be an object in Rep;(Gr), and K any finite
extension of L. Then the cup product and the local invariant map induce perfect pairings of
finite dimensional L-vector spaces

H'(K,V) x H*"/(K,Homg, (V,Qy(1))) — H*(K,Qy(1)) = Q,

and

HY(K,V) x H*(K,Hom(V, L(1))) — H*(K,L(1)) = L

where —(1) denotes the Galois twist by the cyclotomic character. In other words, there are

canonical isomorphisms ' '
HYK,V) =~ H* (K, V*(1))* .

Proof. This is well known. For lack of a reference (with proof) we sketch the second claim
(the first being proved similarly). Choose a Galois stable op-lattice TS V and denote by »» A
the kernel of multiplication by 77 on any or-module A. Observe that we have short exact
sequences

0— HY(K,T)/r"}

H(K,T/x"T)

w HHY(K,T) —0
L

for i > 0 and similarly for T replaced by T%(1) = Hom,, (T,0r(1)). By [SV15, Prop. 5.7]
(remember the normalisation given there!) the cup product induces isomorphism

HY(K,T/7%T) =~ Hom,, (H*"(K,T*(1)/7}T*(1)),0or/7})
such that we obtain altogether canonical maps
HY(K,T)/r} — Hom,, (H*~/(K,T*(1))/7},or/77) = Hom,, (H*~(K,T*(1)),0r)/7}.

Using that the cohomology groups are finitely generated or-modules and isomorphic to the
inverse limits of the corresponding cohomology groups with coefficients modulo 7} we see that
the inverse limit of the above maps induces a surjective map

HY(K,T) — Hom,, (H*~*(K,T*(1)),0r)

with finite kernel, whence the claim after tensoring with L over or using the isomorphism
HY(K,T)®,, L =~ H(K,V) and analogously for T*(1). O
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Now let W be a L-analytic representation of Gy, and set
H/IT(LoUm W*(l)) = H’%(Lgv W)*v

which, by local Tate duality and Theorem is a quotient of H'(LY, W*(1)). By definition,
the local Tate pairing induces a non-degenerate pairing

(120) < >Tate,Lt: Hi (LS, W) < Hi (LY, W*(1)) — H*(L, L(1)) = L.

/t

In order to compute this pairing more explicitly in certain situations we shall use Koszul-
complexes. For this we have to assume first that U is torsionfree. Following [CoNi, §4.2] we
obtain for any complete linearly topologised or-module M with continuous U-action a quasi-
isomorphism

(121) K3 (M) = (U, M)

which arises as follows: Let X, := X,(U) and Y, = Y,(U) denote the completed standard
complex [Laz2, V.1.2.1],i.e., X,, = ZI,[[U]]C;X”“)7 and the standard complex computing group
cohomology, i.e., Y;, = Z,[U]®" 1), Then, by [Laz2, Lem. V.1.1.5.1] we obtain a diagram of
complexes

(122) Y. (U) —5- Y (U x U) = Yo (U) @z, Yo (U)

. |

X (U) —=> X (U xU) = X, (U)®z,X.(U)

|

KV 2 KUV = KV&, KU,

which commutes up to homotopy (of filtered A-modules) . Here the maps A are induced by
the diagonal maps U — U x U, e.g., Z,[[U]] = Z,[[U x U] = Z,[[U]]®z,Z,[[U]]. The first

column induces a morphism
HomA(Kfj, M) - HomA,cts (XO (U)7 M) - HomZP[U],cts(YO(U)a M)v

which is (121)). The upper line induces as usual the cup product on continuous group coho-
mology
H™(U,M) x H*(U,N) =% H™™ (U, M ® N)

via

Homy, 17),ct5(Ye (U), M) x Homg, 17),cs(Ye (U), N) = Homy, (1182, [/],cts (Yo (U) @2z, Yo (U), M @ N)
A¥

= Homg, [],45(Ye (U), M @ N).

The lower line induces analogously the Koszul-product

K (M) x KiH(N) =5 K;7(M ® N).

By diagram (122)) both products are compatible with each other.
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Let f be any continuous endomorphism of M which commutes with the U-action; it induces
an operator on K*(M) and we denote by Ky /(M) := cone (K’(M) S, K'(M)) [—1] the
mapping fibre of K*(f). Then the quasi-isomorphism (121]) induces a quasi-isomorphism

~

(123) Kou(M) = Tou(M).

Remark 3.16. By a standard procedure cup products can be extended to hyper-cohomology
(defined via total complexes), we follow [Ne, (3.4.5.2)], but for the special case of a cone, see
also [Ni, Prop. 3.1]. In particular, we obtain compatible cup products Ui and Uy for K, (M)
and To (M), respectively.

Now we allow some arbitrary open subgroup U € I'y and let L' = LY. Note that we obtain
a decomposition U =~ A x U’ with a subgroup U’ =~ Zg of U and A the torsion subgroup of
U. By Lemma we obtain a canonical isomorphism

~

(124) Ko (M2) = T, (M).

Now let M be a finitely generated projective R-module M with continuous U-action. Then
M* = M is again a finitely generated projective R-module M with continuous U-action by
Lemma (i). Hence M as well as M* satisfies the assumptions of and we have
isomorphisms

K0 (M2)* = cone <K'(MA)* 2L e (MA)*)

1

(125) — cone <K°((MA)*)[d] LN K°((MA)*)[d]>

= Kox y(M¥)a)[d +1]
= Ky u(Ma)[d+1]
= Kw7U(MA)[d + 1]

The last isomorphism is induced by the canonical isomorphism M2 = MAa.
Now note that

(126) DL, (W)" = D, (W*(xzr))

for any L-analytic representation W by the fact that the functor D;fig respects inner homs,
(cp. [SV), Remark 5.6] for the analogous case Dpr). Hence the tautological pairing evy from
together with the above isomorphism induces the following pairing (see also the
lower pairing of diagram (172)):

(127)

Uk s B (K (D]

rig

(W)2)) x WM Ky (DL, (W (xer)?)d = 1)) ————— L

Remark 3.17. For U = U’ and M = D!

rig{W), on the level of cochains this pairing is given
as follows:

M@K (M) x K'(M)@®M — L,((z,y), (@) = {y, 2} —y(a"),
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where we again use that K41 (M) = KY(M)* and where { , } denotes the pairing (77). More
generally, we have the following diagram

(128)
(%) b,
1—¢ 1—¢p —d% )
Ko u(M) - 0 M K'(MyeM K- (M) K (M) ——
X X X
di! 0 )
v it <z b ) (L )
Ky u(M)[d—-1]: —— K=Y (M) ® K4“72(M) — M ® K= (M) ]\f
L L L
in degrees: 0 1 2

Recall that W = V*(1) is L-analytic and set M = Diig(W) as well as M = DIZQ(V( 1)) =

D! (W*(xrr)). We obtain a Fontaine-style, explicit map

rig
(129) pro s DL (V)= — b Ky, ur (M)[d = 1), m — [(m,0)],
where m = #% D sen 0m denotes the image of m under the map M — Ma = MA.

Remark 3.18. Let Uy € U an open subgroup with torsion subgroups Aq and A, respectively.
Assume that the torsionfree parts Uy and U’ are generated by ~% ,...’yg and vy1,...7q, Te-
spectively. Then, for M any complete locally convex L-vector space with continuous U-action,
the restriction and corestriction maps of Koszul-complexes from section extend by func-
toriality to the mapping fibre

Ul
corg1 i=cory; o Ky i (Naya,) K%U{(MAl) — (P’U/(MA)
U U’ A A
resg, 1= %U{(L) oresy : Kypr(M™) — K@,U{(M )
Here Npja, : M2 — M2 denotes the norm/trace map sending m to Z5€A/A1 om while
L: M2 — M2 s the inclusion. Taking duals as in (125) we also obtain
corg : (resU) [1—d]: Kw7Ui(MA1)—>Kw7U/(MA)
U A A
resg, 'z(corU) [1—d]: Ky (M )—>Kw’U{(M 1)
(co)restriction maps for the 1-Herr complezes.
Since inflation is compatible with restriction and corestriction one checks that the above

maps are compatible under the isomorphism with the usual maps in Galois cohomology.
Moreover, they define such maps on HT and H/Jr via [L17) and h' (K (D mg(W*(XLT))A[d—

1) = HA (L, W*(1)).
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By the discussion at the end of section the  restriction  map
K Ay 10 Aq ot Ay cory’! Ay oy

o (M=) — K, 1 (M) and corestriction map K,y (M=) —— Ky (M) in de-
NU’,UiONA/Al

gree 0 are given as inclusion M> — M?' and norm M M?A, respectively,

where

d p"—1

NU/7U{ = H Z ’}/Zk EA(U/)
1=1 k=0
. res¥, .
Hence, by duality the restriction map Ky y(M2)[d — 1]? SELEN Ky, (MA1)[d — 1) and
Uy
COFU

corestriction map Ky p,(MA1)[d — 12 —% Ky uy(M?)[d — 1]% are given by the norm
. (AADUNyr ) . . A Na/a .
YR SN Y P\ and projection map M B Dt M?A, respectively. Here
t denotes the involution of A(U) sending u to u~'. Note that the latter two descriptions

reSU ~
also hold for the first components of Ky y(M*)[d — 1] SIS Ky, (MA)[d — 1] and

Ui
COI‘U

Ky, (MAY)[d = 1] —% Ky (MA)[d — 1]}, respectively. Hence, we obtain

1

U U
cory! o pry, = pry and resy, o pry = pry, © Naja, © L(NU’,U{)-

Berger and Fourquaux in contrast define a different Fontaine-style map in [BF, Thm. 2.5.8|
for an L-analytic representation Z and N = Djig(Z )

(2)""778 — HL(U.DL(2)"770) = WN(T,, (V) = hH (K, 0(N2)),

1 .pt
(130) hly ,:D s

LY.z rig
y— [eo(y)] — [(co(y), =me)] = [(@(y), —mc)],
1L£,{,Z

Theorem 2.5.8 in (loc. cit.): m, is the unique element in Djig(Z)wL:0 such that

in which the cocycle h (y) is given in terms of the pair (cp(y), —m.) in the notation of

(131) (oL — Dep(y)(v) = (v — D)me

for all v € U and this pair defines the extension class in the sense of Lemma Here, the
first map is implicity given by Proposition 2.5.1 in (loc. cit.), the second one is the composite
from maps arising in Cor. 2.2.3, Thm. 2.2.4, of (loc. cit.) with the natural map from analytic
to continuous cohomology

HL,(U, D!, (2)""~70) - H: (U x 0, D}, (2)) = H, (U x ®, D}, (Z)) - H'(U x ®, D}, (2))

rig an rig an rig rig
combined with the interpretation of extension classes (see §1.4 in (loc. cit.) and Lemma [3.12),
while the last one is (the concrete image (é(y), —m.) will be of interest for us only in
the situation where A is trivial, when m. = m,).
According to [BE, Prop. 2.5.6, Rem. 2.5.7| this map also satisfies

U 1 1
(132) corg, o hL%Z = hLUw,Z‘

Since Dlig(V(T*l)))v ~ DI

hig(V*(1)) by (126, concerning the Iwasawa-pairing we have
the following
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Proposition 3.19. For a Gp-representation V. such that V*(1) is L-analytic the following
diagram is commutative

YK

WM (K o (DL, (VD) OG)™) % W Ky (DL, (V) ™)ld — 1) Lcc,
Thi,V*(l)(ng)OthJLT TWUOthZ% S
£ d) == — = {7} w
DE, (V=) e x DL (v(r 1ttt ™ D(T'L,Cp).

Proof. By Lemma [2.65] it suffices to show the case j = 0, i.e., the trivial character X¢ri.
Furthermore, it suffices to show the statement for any subgroup of the form I';, without any
p-torsion:

1
(133) ﬁeanvxtMu o {x’ y}]wyr'n = h}/n,v*(l) (x) UK,iﬁ p/rrn (y)

for z € Djig(V*(l))m:%?y € Djig(V(Tfl))dJL:l.
Indeed, by Remark [3.18] for every such n, we have the commutative diagram

W (Ko, (D], (VA1) x B (Eyr, (DL, (V)[d—1]) —% L

lCOI' TI‘GS

B (K (DL, (VH(D)2) % B (I (DL (V)2 — 1)) 5% L.

rig

Hence we obtain using ([132))

his vy (@) Ui pru(y) = (cor o by iy (2)) Uk pro(y)

= hy,, vy (@) Uiy (tes o pru(y))

= hp, ve)(@) Uiy (prr, (Na o Ny, )y),
where we use Remark for the last equality. On the other hand one easily checks that
eV, xiriv © PTUT, © NA 0 UNyr1,) = €vr ypiw = D(U,Cp) = Cp,
whence

evLaXtMu © {x7 y}lva = eeruXtriv opTUyrn (NA © L(NU/,Fn){x7 y}lw,U)
= VL, xiriw © PTUT, ({2, Na o UNyr 1,) Y} rw,0)
= €VUL,, xprin © {T Na o UNyr 1)y} 1w,

where we have used Remark for the last equation.
In order to prove (133 choose n = ny (see section [2.2.2]). As recalled in (130))) the map

Wy, veqy s Dig(VH) 7 = W (Ko, r,, (DL, (VF(1))))

is given by the cocycle hj V*(l)(:v) in terms of the pair (é&(x), —m.). Note that we have
7L0’

o~

me = Eb(SOL — 1).%'
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Indeed, by [BE, Thm. 2.5.8] we have cb(:):)(bf) = (b;C - l)é;ac for all j,k > 0, which together
with (131) and the uniqueness of m. (loc. cit.) implies the claim. On the other hand we have

the map (129)

DPro,, - D!

LoV )Yt = BN (K p,, (DL (Ve[ = 1),y — class of (y,0).

rig
Thus the pairing U, sends by construction (see diagram ((128))) the above classes to

o~

h},n,v*(l)(l‘) Uk P, () = 0(6(2)) + {=Ep(er — Dz, y}
= T
= {Zy(er — Dz, (?LVJL — Ly}
—< &, {z,v}rwr, >1,
1
= qaue({z, y}rur,)-

Here the second equality holds due to Lemma because the left hand side belongs to

DIig(V*(l))wLZO, the third one is while the last one comes from ({36). O

Proposition 3.20. For W an L-analytic representation we have a canonical commutative
diagram

Ukt B (Ko (DL, (W)2) % hN(Ey o (DL (W* (xpr)®)[d — 1) L
<,>Tate,L.4: HH (L', W) x H (L, W*(1)) ——————— H*(I/,L(1)) ——= L
<, >Tate,r: H (L', W) x HY L ,W*(1)) ———— H*(L/,L(1)) — L.

Moreover, the isomorphism a is compatible with the middle maps of the diagrams (172)) and
(1178)).

Proof. The lower square of pairings comes from Tate duality as in Prop. and . Its
commutativity holds by definition. In the upper square of pairings the left upper vertical
isomorphism b arises from combined with , while the middle vertical isomorphism
a is uniquely determined as adjoint of the latter because both pairings are non-degenerate: The

middle one by definition of H/lT while the upper one due to Corollary (ii) with W = V*(1).

Therefore one immediately checks that a~! o pr is induced by the cohomology of the middle
map going down in diagram in Appendix again with W = V*(1). By the same
reason, a~! o pr it is also induced by the cohomology of the middle map (going down) in
diagram (178) (being the same as the middle map (going from right to left) of diagram

[T79) upon identifying h! (K&)’U,(D(V(T_l))A)[d - 1]) and H'(L',V) by the isomorphism
described there). O

Combining the last two propositions we get the following result.
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Corollary 3.21. For a Gp-representation V such that V*(1) is L-analytic the following dia-
gram 1s commutative

j —q <’>Tate,L’ 1
HIIL VA 0dg) « HY(ILVOGH) 2821, L) 2 L e C,
ThlL/,V*(l)OthiT TpT‘L/OthZ% éevxZ%

DLW Dl vy b

D(I'y,,Cp).
With respect to evaluating at a character we have the following analogue of Corollary

Proposition 3.22. For a Gp-representation V' such that V*(1) is L-analytic the following
diagram is commutative

[7] cris

C,®r Dcm‘s,L(V*(l)(X%T)) x C,®r Dcris,L(V(Til)(ng“)) ——C, ®r Deris,n (L(xrr)) = Cp
T%XZ%(@%%W@]. TeUXJLT®t1T77®_j TQUXL%

(0]
D(T1,Cp) ®1 Deris.n (V*(1))  x  D(T'1.Cp) ®r Derio.p(V(r—1)) — 1 D('L,C,),

where, for the identification in the right upper corner we choose tzilp ®n as a basis.

Proof. Using Lemma below the statement is reduced to j = 0. Evaluation of (104) implies
the claim in this case. 0

Lemma 3.23. There is a commutative diagram

. . B . []°
DT, Cp) ®L Deris,. (VF(1)(xhr))  x D(T'r,Cp) ®L Deyis,. (V(r 1) (x,7) — D(T'1,,Cp)

Tw _; @t 5n®I Tw ; @, .n®7 Tw _;
T g g BT ot

[]°
D(I',,Cp).

D(FL7 (Cp) ®r Dcris,L(V*(l)) X D(FLa Cp) XL Dcris,L(V(T_l)) -
Proof. The claim follows immediately from (104)), the compatibility of the usual D,;s-pairing
with twists and the fact that Tw (Aes(p)) = Tw,; ()\)L*(wa_j (1)) holds. O

LT LT LT

3.2.4 The interpolation formula for the regulator map

In this subsection we are going to prove the interpolation property for Ly . First recall that
we introduced in section the notation Dyg 1/(V) := (Bar ®q, V)&, Since Bgg contains
the algebraic closure L of L we have the isomorphism

Bir®q, V = (Bir®qg, L)@V = || Bir®mrV
O'EGQP/GL

which sends b® v to (b ® v),. The tensor product in the factor By Qs V is formed with
respect to L acting on Bgr through o. With respect to the Gp-action the right hand side
decomposes according to the double cosets in G\Gq,/Gr. It follows, in particular, that
Di.(V) := (Byr ®1 V)" is a direct summand of Dyg (V) and we denote by prid the
corresponding projection. Similarly, tang ;q(V) := (BdR/B;R ®r, V)G is a direct summand
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of tany, (V) := (Bgr ®r V)9%. More generally, also the filtration D}, r..(V) decomposes into
direct summands.

According to [SV15, Appendix A| the dual Bloch-Kato exponential map is uniquely deter-
mined by the commutativity of the following diagram, in which all pairings are perfect:

<> Tate,L!

(134) Hl(L’,W) % Hl(L,,W*(l)) I

lexlﬁuw Texpyyw*(l) [

Dl (W) % tang (W*(1)) —= Dar(Qy(1) == I

Dar,y(W) % Dar(W*(1)) — Dar,(Qy(1)) = L.

In the Lubin-Tate setting we can also consider the dual of the identity component expy/ yy# (1) ia
of eXPr wx(1)

<> Tate,L’

(135) Hl(L/,W) X Hl(L/,W*(l)) I

lé}\(ﬁz,vW,id TQXPL’,W*(l),id [

Dy W) < tangsia(W* (1)) —= Dif (L) == 1/

pr

Dl (Wr™)) Dl (W*(1) —— Dify (L)) = L.

Upon noting that under the identifications Dgp 1/(Qp(1)) = L' and D&%L, (Qp(1))=L’ the
elements tq, ® 7eye and tpr ® 1 are sent to 1, one easily checks that, if W*(1) is L-analytic,
whence the inclusion tanp a(W*(1)) € tangy,(W*(1)) is an equality and expps yw#)iqa =
eXpL/7W*(1), it holds

(136) T,-10 eXpEQW = éYf)Z’,W,im

where Tr-1 : Dip 1/ (W) — D;%OL'(W(T&)) is the isomorphism, which sends b ® v to b% ®

t . .
vRN® 776%21; note that % € (Bj5)*, whence the filtration is preserved.

Now let W be an L-analytic, crystalline L-linear representation of Gp. Recall that n =
(nn)n denotes a fixed generator of T and that the map thJLT : Diig(W) — D;[ig(W(xiT))
has been defined before Lemma [2.65 For D5 twisting Depis. (W) 8, Dcm’s,L(W(X'iT))
maps d to d® e; with €; := t77. Q1% € Deyis, 1. (L(X77))-

If we assume, in addition, that

(1) W has Hodge Tate weights < 0, whence W*(1) has Hodge Tate weights > 1 and
D?lR’L(W*(l)) =0, and

-9
(i1) Deris. . (W*(xrr)7* "0 =0,
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then expp, w1y : Dar(W*(1)) < H'(L,W*(1)) is injective with image H}(L,W*(1)) =
H}(L, W*(1)) by our assumption (see [BKl Cor. 3.8.4]). We denote its inverse by

logy, w1y : Hi(L,W*(1)) > Dgp (W*(1))
and define
~ T,
logy, w1y : Hj(L,W*(1)) > Dgr (W*(1)) — Deris, . (W*(xz7))
where (by abuse of notation) we also write T,-1 : Dgr (W*(1)) — DQ%L(W*(XLT)) =

Deris ., (W*(xr7)) for the isomorphism, which sends b ®v to b% ®ven@n&.t. We obtain

cyc
the following commutative diagram, which defines the dual map logEW being inverse to expy

(up to factorisation over H'(L, VV)/H}(L7 W)):

<1>Tate,L

(137) HI(L,W)/H}(L,W) x H}(L,W*(l)) L
longT IOgL,W*(I)i

Dap,r.(W) x Dar,r(W*(1)) — Dgr,(Qp(1)) — L.

1

Similarly as above we obtain a commutative diagram more convenient for the Lubin-Tate
setting:

* <,>Ta e,L
(138) HY(L,W)/H}L,W)x H}(L, W*(1)) ‘ L
logf,w,idT lg/gL,W*(l)i
D (W) x  Difp  (W*(xer)) — D 1 (L(xer)) = L.

We write Evyy,, : Or ®r Depis,r. (W) — Ly, ®r Deris,r,(W) for the composite aDms,L(W) o p "
from the introduction of [BE], which actually sends f(Z) ®d to f(n,) ® ¢, "(d). By abuse of
notation we also use Evyy for the analogous map Og ®r, Deris,.(W) — K ®r Depis,r,(W).
For x € D(I'r,, K) ®r, Deris,r,(W) we denote by x(xiT) the image under the map D(I'z, K)®p,
Deris, (W) = K ®r, Deris . (W), A® d > A(xhp) ® d.

Lemma 3.24. Assume that Q is contained in K. Then there are commutative diagrams

i —pL&
D(FLa K) ®r Dcris,L(W % OK ®r Dcris,L(W} <MQI(OK ®r Dcris,L(W)

evtrivl \LEVW,O

iEVW’O

—id®
K ®r Dcris,L(W) K ®r Dcm’s,L(W} <7L‘DL K ®r Dcris,L(W)
and
i 1—pr®
D(T'1, K) @ Deris, (W) —2% > O @ Deris, (W) ——2222 O @1, Deris, 1. (W)
T e i l(g)—jcaej i(;’z)—-@ej

;L Oid 1l e® :
D(T'r, K) ®L Deris,. (W (X 1) B, 0k ®L Dcris,L(W(XJLT)} 0k @1 Deris, . (W(X71))-

In the latter we follow the (for j > 0) abusive notation &7 from [BE, Rem. 3.5.5.].
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Proof. For the upper diagram note that n9 = 0 and (d4 - n(1, Z))‘Z:0 = 1, from which the
claim follows for Dirac distributions, whence in general. For the right square we observe that
©1(9(Z))1z=0 = 9(0). Regarding the lower diagram we use and the relation i,y © @1, =
TrLYr © 0. [l

With this notation Berger’s and Fourquaux’ interpolation property reads as follows:

Theorem 3.25 (Berger-Fourquaux [BF, Thm. 3.5.3|). Let W be L-analytic and h > 1 such
_ —_4q
that FﬂihDC”'SvL(W) = DCT’iS,L(W)7 f € (Ow:o ®L DCTiS,L(W))Aio andy € (O ®L Dcris,L(W))wi L
with f = (1 —r)y. If h+7 =1, then
1 . p—
hL"’W(XJLT) (thJLT (QW,h(f))) -
(139)
4 -n : —J , ; .
(1) (b4 j —1)! XPL, W ) (q EVW(XJLT),n(ainvy@eJ)) ifn=1;
XPrLw(x,) (1- q_I@EI)EvW(XiT),o(ai;iy ®€j)), if n.=0.

If h+3 <0, then

® 1 _ B
5D} 1y (b vy (0, Qv (5))) =

XrT ‘
1 qanVW(XiT),n(ai;iy @ ej) ifn=1;
(_h_j)! (1 _q_lwzl)va(XiT)p(ai;z/y@ej)v ifn=0.

By abuse of notation we shall denote the base change K ®; — of the (dual) Bloch-Kato
exponential map by the same expression. Using Lemma we deduce the following interpo-
lation property for the modified big exponential map with € D(I'r, K) ®1, Deris,n. (W) : If
j =0, then

(140)

L) (P (B () =
(141 (37 ey (=0 er (1= e (2001 @) )
if j < 0, then
g 0, s =
1 ——1 (g —1, 1 -1 —j
(142) WQ logL,W(XiT) ((1 —q ¢ )1 — 1) (x(XLT) ® ej) )7

assuming in both cases that the operator 1 — ¢ is invertible on D s, L(W(XJiT)) and for
j < 0 also that the operator 1 — ¢ 1y, ' is invertible on Depis ,(W(x%)) (in order to grant
the existence of IOgL,W(X’LT))'

Recall that the generalized Iwasawa cohomology of T' € Rep,, (G 1) is defined by

H},y(Loo/L.T) := lim H* (K, T)
K

where K runs through the finite Galois extensions of L contained in L and the transition
maps in the projective system are the cohomological corestriction maps. For V := T ®,, L €
Repr(Gr) we define

Hiy(Leo/L, V) := Hf\(Leo /L, T) Qoy, L,
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which is independent of the choice of T. As usual we denote by cor : H} (Leo/L,T) —
H*(L',T) the projection map and analogously for rational coefficients. Similarly as in ((129)
we have a map

(143) pro : DV (r~ )Y~ = W Ky p(DV(r 1)) [d — 1)) = HY(L, V), m = [(m,0)].

m under the map M — Ma =~ M?. Note that under the assumptions of Lemma, for
V(7~1) there is a commutative diagram

(144) H} (Lo /L, T) —=> Dpr(T(r 1))¥=1— D, (V(r1))¥=!
HY L', V) =—=H\(L',V) HJ (L V),

where the right vertical map is induced by (129). Indeed, for the commutativity of the left
rectangle and the right rectangle we refer the reader to (A.58) and (179)), respectively. Let
Y, i denote the image of y under the map

LT

H}y (Lo, T) E HY (Lo /L T (1)) < HNL,T() — H (L. V (x3).

The following result generalizes [LVZ15, Thm. A.2.3] and [LZ, Thm. B.5] from the cyclotomic
case.

Theorem 3.26. Assume that V*(1) is L-analytic with Fil™' Depis 1.(V*(1)) = Deris £,(V*(1))
and Dcm’s,L(V*(l))%:WZl = Depis,p(V*(1))?2=1 = 0. Then it holds that for j =0

. . ) _ N T —
YLy () () =31 =77t 70 - T i Wi ) ®¢
=il =, e - L?jl )(ex ( )®e )
J: L %L q THY\FPLvigs)iaY J

and for j < —1:

QjLV(y)(XiT) = (_(l_i)jj), ((1 - Ty ‘PL ) 1(1 - %@L)I,C%L,V(XZ%),id(yxz%)> ®e;
—1)J 7rj+1

¢r) (10gL V(X7 1d( ) @ ej)

. +1
if the operators 1 — 7T217380517 1-— TFLTgJL or equivalently 1 — Wzlcpzl, 1— %QDL are invertible

on Deris . (V(771)) and Dcris,L(V(TflxiT)), respectively.
Proof. From the reciprocity formula in Corollary and Propositions we obtain

99



for € D(T', Cy) @1 Deris, L (V*(1)), y € D(V(r1)) "L and j > 0 using (I27)

[20czr) ® €. (~ 1YLy (4) (xtr) ® el
= [z,0 1Ly ()]’ (xz7)
= {QV*(l),l(x)ay}Iw(XZ;“)
=0< hi o th]I“T (QV*(l),l(m)) ’yXZ; >Tate
= QT < (1 exDy ey (= 2 (1= 00) ™ (@) ®€))yy g >Tute
= (_1)jQ_j]'[(1 - q_lwzl)(l - @L)_l(x(xz%) ® ej); éﬁsz,v(ngﬂ)_’id(yxz;)]cris
—j iy—7 - 1 —1y\— TL ~
= [m(XL%) ®eja (_1)JQ J]!(l - 71-[/1()01;1) 1(1 - ?SA’L)GXPZV(XZ;)M(yxz;)]ms
Here we used (141) in the fourth equation for the interpolation property of Qy(y;. The
fifth equation is the defining equation for the dual exponential map resulting from (135).
Furthermore, for the last equality we use that Wzlgozl is adjoint to ¢y, under the lower pairing.

The claim follows since the evaluation map is surjective and [ , ]¢ris is non-degenerated. Now
assume that j < 0:

[m(XZ’;“) ® €5, (_l)jLV(y)(XiT) ® e*j]cris
= [z,01Lv ()]’ (xz7)
= {Qve)1(2), ¥} rw(XLT)
=0< hi o th‘iT (QV*(l),l(x)) ,yxz% >Tate
— O—-j 1 -1 -1 -1 —j _
=07 < mbgzw(xh) ((1 —q ¢ )1 —er) (x(XL%r) ®€j> ),ZUX;JT >Tate
== ) - 0n) (TR ©0), 108y oy s (o e
(_1 _])I 9 ¥r YL XLT i) LV (x[3),id yXL% cris

J
T

_ Q7 1 s T ~
= [z(xz7) ®¢j, (—1— ) (1- 7TL190L1) - ?WL)IOgL,V(X;;),id(sz;)]cris

A Appendix

A.1 Perfect and imperfect (p.,I';)-modules and their cohomology
A.1.1 An analogue of Tate’s result

The aim of this section is to prove an analogue of Tate’s classical result [Tal Prop. 10| for the
tilt (CZ instead of C, itself and in the Lubin Tate situation instead of the cyclotomic one.

Proposition A.1. H"(H, Clb,) =0 for allm>1 and H < Hy, any closed subgroup.

Since the proof is formally very similar to that of loc. cit. or [BC|, Prop. 14.3.2.] we only
sketch the main ingredients. To this aim we fix H and write sometimes W for (Czb7 as well as
W = {z € W||z|, < I,%}

Lemma A.2. The Tate-Sen aziom (TS1) is satisfied for (CE) with regard to H, i.e., there etists
a real constant ¢ > 1 such that for all open subgroups Hi € Ho in H there exists a € ((C?,)H1
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with |af, < ¢ and Trp, m (@) = Xep, m, T(a) = 1. Moreover, for any sequence (Hm)m of
open subgroups Hp,+1 S H,, of H there exists a trace compatible system (ym,, )m of elements
YH,, € ((C;)Hm with |ym,, |, < ¢ and Try g, (ya,,) = 1.

Proof. Note that for a perfect field K (like ((C;)H ) of characteristic p complete for a multiplica-
tive norm with maximal ideal mg and a separable finite extension F' one has Trp /g (mp) = mg
because the trace pairing is non-degenerate . Fix some x € ((C?,)H with 0 < |z], < 1 and set
c = |ac|b_1 > 1. Then we find & in the maximal ideal of ((CZ))H1 with Trp g, (&) = = and
o := (Try, g, (@) ' satisfies the requirement as |17, (5‘)|b_1 < |ar:|b_1 =c.

For the second claim we successively choose elements &, in the maximal ideal of (C;)Hm
such that Tryg,(61) = = and Try, |1, (Gmi1) = G for all m > 1. Renormalization
Q= '@, gives the desired system. O

Remark A.3. Since H is also a closed subgroup of the absolute Galois group G of L it
possesses a countable fundamental system (Hp,)m of open neighbourhoods of the identity, as
for any n > 0 the local field L of characteristic 0 has only finitely many extensions of degree
smaller than n.

Proof. The latter statement reduces easily to finite Galois extensions L’ of L, which are known

to be solvable, i.e. L' has a series of at most n intermediate fields L € Ly < ... < L, = L'
such that each subextension is abelian. Now its known by class field theory that each local
field in characteristic 0 only has finitely many abelian extensions of a given degree. O

We write C™"(G, V') for the abelian group of continuous n-cochains of a profinite group
G with values in a topological abelian group V carrying a continuous G-action and &,y for
the usual differentials. In particular, we endow C"(H,W) with the maximum norm || — ||
and consider the subspace C"(H,W)% := Umran open C"(H/H'\W) < C"(H,W) of those
cochains with are even continuous with respect to the discrete topology of W.

Lemma A.4. (i) The completion of C*(H, W)% with respect to the mazimum norm equals
C"(H,W).

(ii) There exist ((CZ)H—linear continuous maps
o C"(H,W) — C" 1 (H,W)

Satisfying ||f - ainvO'an < C||ainvf||'

Proof. Since the space C"(H,W) is already complete we only have to show that an arbitrary
cochain f in it can be approximated by a Cauchy sequence f,, in C*(H,W)?. To this end
we observe that, given any m, the induced cochain H™ RS TN W /W, comes, for some
open normal subgroup H,,, from a cochain in C"(H/H,,, W /Wx,,), which in turn gives rise
to fm € C™(H,W)® when composing with any set theoretical section W/Ws,, -2 W of
the canonical projection W 2% W /Wxp,. Note that s, is automatically continuous, since
W /W=y, is discrete. By construction we have || f — fi,|| < ﬁ and (fm)m obviously is a Cauchy
sequence. This shows (i).

For (ii) recall from Lemma together with Remark the existence of a trace com-
patible system (yg/)g of elements yy: € ((CZ)H/ with |yg/|, < ¢ and Trg g (ya) = 1, where
H' runs over the open normal subgroups of H. Now we first define ((C;)H -linear maps

o™ CY(H, W) — C" Y (H, W)
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satisfying || f — Ginvo™ f|| < ¢||Ginv f]| and ||c™ f|| < || f|| by setting for f e C"(H/H',W)

o"(f) =ymw v f

(by considering yp+ as a —1-cochain), i.e.,

" () (1, shna) = (D)™ D (e hnam) () f(ha, o1, T).

TeH/H'

The inequality |lygr v f|| < ¢||f]| follows immediately from this description, see the proof
of [BC, Lem. 14.3.1.]. Upon noting that dinyyr' = Ty g (yur) = 1, the Leibniz rule for the
differential ¢;,y with respect to the cup-product then implies that

f - ainv(yH’ o f) =Yg Y ainvfa

hence

1f = v (yrr © I < ¢l Oy f]

by the previous inequality, see again loc. cit. In order to check that this map o™ is well
defined we assume that f arises also from a cochain in C"(H/H",W). Since we may make
the comparison within C"(H/(H' n H"),W) we can assume without loss of generality that
H" < H'. Then

(e O )iy hna) = (1" YT (e chn A7) () f(has - b1, T)
TeH/H"

=(=0" > A > T ) f(h, e B, T)

TeH/H' 'eH'/H"

= (=" >, (b)Y Tyan))f(hy e B, 7)
TeH/H' T'eH'/H"

= (=" > (. o) () f(bay o By, )
TeH/H'

= (yH/ (@ f)(hl, N hn—l)

using the trace compatibility in the fourth equality. Finally the inequality ||o™ f|| < ¢||f]| im-
plies that o™ is continuous on C"(H, W)? and therefore extends continuously to its completion
C"(H,W). O

The proof of Proposition is now an immediate consequence of Lemma [A.4ii).

A.1.2 The functors D, D and Df

Recall the definition of A, Ap, A}, E7”” and Rep,, ;(G) from section Let Rep,, (GL)
and Rep; (G) denote the category of finitely generated or-modules and finite dimensional L-
vector spaces, respectively, equipped with a continuous linear G'r-action. The following result
is established in [KR] Thm. 1.6. (see also [GALL Thm. 3.3.10]) and [SV15] Prop. 4.4 (ii)].

Theorem A.5. The functors

Tv+— D(T) := (A®,, T)HL and M— (A®a, M)<Pq®<ﬂM=1
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are ezacl quasi-inverse equivalences of categories belween Rep,,, (G1) and M (A L). Moreover,
for any T in Rep,, (GL) the natural map

(145) A®a, D(T) =5 A®,, T
is an isomorphism (compatible with the Gr-action and the Frobenius on both sides).

In the following we would like to establish a perfect version of the above and prove similar
properties for it. In the classical situation such versions have been studied by Kedlaya et al
using the unramified rings of Witt vectors W(R). In our Lubin-Tate situation we have to work
with ramified Witt vectors W (R) . Many results and their proofs transfer almost literally from
the classical setting. Often we will try to at least sketch the proofs for the convenience of the
reader, but when we just quote results from the classical situation, e.g. from [KLI]|, this usually
means that the transfer is purely formal.

We start defining A := W((CZ) r and

Al = {z = Z T an] € A T |2, |l == 0 for some r > 0}
nz=0

as well as D(T) := (A ®,, T)"t and D(T) := (AT ®,, T)H:

More generally, let K be any perfectoid field containing L. For 7 > 0 let W"(K”);, be the
set of z = 3% 7w [x,] € W(K”)y, such that |TL|"|zn]; tends to zero as n goes to oo. This is
a subring by [KLI, Prop. 5.1.2] on which the function

2] := sup{[w||znl;} = sup{g"[za]}
n n

is a complete multiplicative norm; it extends multiplicatively to W (&) [ —]. Furthermore,

WHK") :=J,-oW"(K®)L is a henselian discrete valuation ring by [Ked05 Lem. 2.1.12],
whose m-adic completion equals W (K”), since they coincide modulo 77. Then AT = W ((C?)) L,

and we write Ay, and ATL for W(L%) and WT(L%,), respectively. We set By, = AL[é],
B= A[%], BTL = ATL[%] and Bf = AT[%] for the corresponding fields of fractions.

Remark A.6. By the Az-Tate-Sen theorem [Ad] and since (Cb 1s the completion of an algebraic

closure Lb he have that ((CZ) = ((LZO) )" for any closed subgroup H < Hp, in particular
((Cb)HL = " . As completion of an algebraic extension of the perfect field LY, the field ((Cb)

is perfect, too. Moreover, we have AL = A, (AT)HL = AJr and analogously for the rings B

and BY. Tt also follows that A is the 71,-adic completion of a mazimal unramified extension of
Ap.

Lemma A.7. The rings A;, and A embed into A, and A, respectively.

Proof. The embedding A — Aj is explained in [GALL p. 94]. Moreover, A is the mp-
adic completion of the maximal unramified extension of Ay, inside A = W((Clb,) L (cf. [GALL
§3.1]). O

On A = W(CZ)L the weak topology is defined to be the product topology of the valuation
topologies on the components (C:Z. The induced topology on any subring R of it is also called
weak topology of R. If M is a finitely generated R-module, then we call the canonical topology
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of M (with respect to the weak topology of R) the quotient topology with respect to any
surjection R™ — M where the free module carries the product topology; this is independent
of any choices. We recall that a (¢r,I'r)-module M over R € {AL,AL,ATL} is a finitely
generated R-module M together with

— a I'z-action on M by semilinear automorphisms which is continuous for the weak topol-
ogy and

— a r-linear endomorphism ¢jys of M which commutes with the I'p-action.

We let M(R) denote the category of (¢r,'r)-modules M over R. Such a module M is called
étale if the linearized map

O R@Rpy, M —> M
f®m +— fon(m)

is bijective. We let 9t (R) denote the full subcategory of étale (or,I'r)-modules over R.

Definition A.8. Forx = By, EL,BTL we write ME(x) := ME(+\®,, L with +' = Ay, AL,AL
respectively, and call the objects étale (pr,T'p)-modules over x*.

Lemma A.9. Let G be a profinite group and R — S be a topological monomorphism of
topological or-algebras, for which there exists a system of open neighbourhoods of 0 consisting
of or-submodules. Consider a finitely generated R-module M, for which the canonical map
M — S ®gr M is injective (e.g. if S is faithfully flat over R or M is free, in addition), and
endow it with the canonical topology with respect to R. Assume that G acts continuously, or -
linearly and compatible on R and S as well as continuously and R-semilinearly on M. Then
the diagonal G-action on S @r M is continuous with regard to the canonical topology with
respect to S.

Proof. Imitate the proof of [GALL Lem. 3.1.11]. O
Proposition A.10. The canonical map
(146) AL@a, D(T) S D(T)

is an isomorphism and the functor D(—) : Rep,, (G1) — ME(AL) is ezact. Moreover, we
have a comparison isomorphism

(147) A®;, D(T) S A®,, T

Proof. The isomorphism @ implies formally the isomorphism @ after base change of
the comparison isomorphism @ Secondly, the isomorphism @ , resp. ([147), implies eas-
ily that D(T) is finitely generated, resp. étale. Thirdly, since the ring extension Aj/Ap is
faithfully flat as local extension of (discrete) valuation rings, the exactness of D follows from
that of D. Moreover, the isomorphism implies by Lemma that I';, acts continuously

on D(T), i.e., the functor D is well-defined. Thus we only have to prove that

AL ®a, (A®,, T)H 5 (A®,, T)H:

s an isomorphism. To this aim let us assume first that T is finite. Then we find an open normal
subgroup H <Hj, which acts trivially on 7. Application of the subsequent Lemma[A. 1T[to M =
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o _ . . < o Hp/H .
(A®,, T)" and G = Hp/H interprets the left hand side as (A ®a,; (A ®,, T') while

- Hp/H
the right hand side equals ((A Ro;, T)H) " Hence it suffices to establish the isomorphism

AL ®AL (A ®0L T)H = (A ®0L T)H'
By Lemma below this is reduced to showing that the canonical map
AL ®AL AH ®0L T i) AH ®0L T

is an isomorphism, which follows from Lemma below. Finally let T be arbitrary. Then
we have isomorphisms

AL ®a, D(T) = AL @, lim D(T/x}T)

112
pg

L ®a im D(T)/7; D(T)

n

12

*I5

AL ®a, D(T)/x}D(T)

12
=
p

1

L®a, D(T/7LT)

D(T/="T)

i

12

=12

= D(T)a

where we use for the second and fourth equation exactness of D, for the second last one the
case of finite 7" and for the first, third and last equation the elementary divisor theory for the
discrete valuation rings or, Ay and Ap, respectively. O

Lemma A.11. Let A — B be o flat extension of rings and M an A-module with an A-linear
action by a finite group G. Then B ®a M carries a B-linear G-action and we have

(B®a M)Y = B®s MC.
Proof. Apply the exact functor B ® 4 — to the exact sequence

0> MG M (gfl)geG

@gEG M,

which gives the desired description of (B®4 M)% . O

Lemma A.12. Let A be A, A}", AT or A and T be a finitely generated oy, -module with trivial
action by an open subgroup H € Hy,. Then (A®,, T)H = AH &o; T'. Moreover, AT gnd AH
are free Ar- and Ap-modules of finite rank, respectively.

Proof. Since T = @;_, or,/n} o, with n; € N U {00} we may assume that T' = or/7}or, for
some n € N u {o0}. We then we have to show that

(148) (A/rn A = AH frn AH

For n = oo there is nothing to prove.
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The case n = 1: First of all we have A/r A = A} /r A" = EJP. On the other hand,
by the Galois correspondence between unramified extensions and their residue extensions,
we have that (E77)f is the residue field of (A7) Hence the case n = 1 holds true for
A = A", After having finished all cases for A = A7" we will see at the end of the proof that
(AT)H = AH_ Therefore the case n = 1 for A = A will be settled, too.

For A = A we only need to observe that A/r A = W(C;)L/WLW((C;)L = C}b, and that
(C2)H is the residue field of (W(C)) )7 = W((C))H)..

For A = A we argue by the following commutative diagram

I

(CH == WI(C)")/mWT(Cy) )L (ADH jmp (AT

T |

A AT (A/m A —=— (AT /n AT

The case 1 < n < 0o: This follows by induction using the commutative diagram with exact
lines

0——= AHmp A T2 AH et gl o AH iy AT )

LT

0 — (A/r AT 5 (A AV o (Afm AP,
in which the outer vertical arrows are isomorphism by the case n = 1 and the induction

hypothesis.
Finally we can check, using the above equality (148)) for A = A" in the third equation:

H
AY = (m Az”/szzr)

n

= lim (A} /m A7)

= lim (A7) (AY)"
n
= (A7)
Note that (A7) is a finite unramified extension of A, and therefore is 77-adically complete.
We also see that Al is a free Ap-module of finite rank. Similarly, W((C;)f =~ (W(Ly,) )"
is a free W(L%,)-module of finite rank. O

Lemma A.13. For any open subgroup H of Hy, the canonical maps
W (L) ®a, AT S W((C) M),
W(L%)L ®i1 AHT S w(C)"),
are isomorphisms.

Proof. We begin with the first isomorphism. Since A is finitely generated free over Ay by
Lemma we have

pami—
n n

W(L,), ®a, AT = (lgn W?L(£20)L> ®a, AT ~lim (Wn(iZO)L ®a,, AH) .
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It therefore suffices to show the corresponding assertion for Witt vectors of finite length:
Wa(Ll)r @a, A /mE AT = Wi (L)L @a, AT = Wi((C)")1.

To this aim we first consider the case n = 1. From (148)) we know that A /r7AH = (E7)H.
Hence we need to check that

L', @, (BN 5 ()"

is an isomorphism. Since EF* "/ (being purely inseparable and normal) and (E7")H (being
separable) are linear dlSJOlnt extensions of Ej, their tensor product is equal to the composite

of fields Eperf (E7P)H (cf. [Cohl Thm. 5.5, p. 188]), which moreover has to have degree [Hy, : H]

over EF f Since the completion of the tensor product is L), ®g, (E3")H, we see that the

completion of the field EX/ (E5P)H is the composite of fields L, (E5P)H | which has degree

[Hy : H] over L. But Lb (BT < (C)H. By the Ax-Tate-Sen theorem (C2)™ has also

degree [Hy : H]| over LZO. Hence the two fields coincide, which establishes the case n = 1.
The commutative diagram

L), @a, AT —=— ()7

<Pgn®idl = = lso?

~ id p7*
Lgo ®4P(T7AL AT ((Cb)

shows that also the lower map is an isomorphism. Using that Verschiebung V' on Wn(((CZ)H )L

and W, (L%,) 1, is additive and satisfies the projection formula V™ (z) -y = V™(z - ey (y)) we
see that we obtain a commutative exact diagram

A Vr®id
O4)LE}O®‘PZIL’ALAH4®>WH+1( )L ®a, Al ——= W, (L)) ®a, AT —0

id g l canl > l

Wor (Cp)™) Wa(C))r,

0———(Cp)H

from which the claim follows by induction because the outer vertical maps are isomorphisms
by the above and the induction hypothesis. Here the first non-trivial horizontal morphisms
map onto the highest Witt vector component.

The second isomorphism is established as follows: We choose a subgroup N € H € Hyp,
which is open normal in Hj and obtain the extensions of henselian discrete valuation rings

Al = (AN = wi(c)™)r = (ADHY = W(C)V)s.
The corresponding extensions of their field of fractions
B} < E:= (A1) F:= (ANV[Z]

satisfy FH/N = E and FHL/N = BJr Hence F/E and F/BT are Galois extensions of degree

[H : N| and [Hp : NJ, respectively. It follows that E:/BTL is a finite extension of degree
[Hy : H]. The henselian condition then implies that (AT = WT((CE))H)L is free of rank
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[H : H] over ATL — WT(L)L. The m-adic completion (=) of the two rings therefore can be
obtained by the tensor product with A = W (L% ). This gives the wanted

W(L)L @z (AN = WI(LE), @51 (AN = WI(C)), = W(C)")r.

Proposition A.14. The sequences

(149) 0o —>AYL A0,
(150) 0—>0L—>A%—71>A—>0,
(151) 0o —» Al 7L AT 0.
are exact.

Proof. The first sequence is [SV15, (26), Rem. 5.1]. For the second sequence one proves by
induction the statement for finite length Witt vectors using that the Artin-Schreier equation
has a solution in (C]bj. Taking projective limits then gives the claim. For the third sequence only
the surjectivity has to be shown. This can be achieved by the same calculation as in the proof
of [KLII, Lem. 4.5.3] with R = C),. O

Pq®id —1
e

Lemma A.15. For any finite T in Rep,, (G1) the map A ®o, T A ®o, T has a

continuous set theoretical section.

Proof. Since T = @);_, or/m} or, for some natural numbers r,n; we may assume that 7' =

L —id
or/m}or, for some n and then we have to show that the surjective map Wn(CE;)L Fa e,
Wn(Cg,) 1, has a continuous set theoretical section. Thus me may neglect the additive structure

and identify source and target with X = ((C]bj)”. In order to determine the components of the
map ¢q —id =: f = (fo,..., fu—1) : X — X with respect to these coordinates we recall that
the addition in Witt rings is given by polynomials

Sj(Xo,...Xj,Yvo,...,ij) :X]’+}/]’ + terms in Xo,...,Xjfl,Yo,...,ijfl
while the additive inverse is given by
Ij(Xo,...Xj) = —Xj+ terms in XQ,...,Xj_l.

Indeed, the polynomials I; are defined by the property that ®;(lo,...,I;) = —®;(Xo,..., X;)
where the Witt polynomials have the form ®;(Xo,...,X;) = X + WLXiJ]71 R .
Modulo (Xo,...,X;_1) we derive that Wi[j(Xo,...,Xj) = —W%Xj and the claim follows.
Since ¢, acts componentwise rising the entries to their gth power, we conclude that

fj = Si(XE, ... X% Io(Xo), .., Ij( Xo, ... X))

Hence the Jacobi matrix of f at a point x € X looks like



i.e., is invertible in every point. As a polynomial map f is locally analytic. It therefore follows
from the inverse function theorem [pLG|, Prop. 6.4] that f restricts to a homeomorphism
f|Uo : Uy = Uy of open neighbourhoods of  and f(z), respectively. By the surjectivity of
f every x € X has an open neighbourhood U, and a continuous map s, : U, — X with
fosz =idjy,. But X is strictly paracompact by Remark 8.6 (i) in (loc. cit.), i.e., the covering
(Uy)s has a disjoint refinement. There the restrictions of the s, glue to a continuous section
of f. O

Corollary A.16. For T in Rep,, (GL), the nth cohomology groups of the complezes concen-
trated in degrees 0 and 1

(152) 0— D(T) —2—2~ D(T) —=0 and

(153) 0— D(T)

D(T)—0
are isomorphic to H"(Hp,T) for any n = 0.

Proof. Assume first that T is finite. For (153)) see [SV15, Lemma 5.2|. For (152)) we use Lemma
which says that the right hand map in the exact sequence

Pg®id —1

0—T A@OLT4>A®OLT—>O

has a continuous set theoretical section and thus gives rise to the long exact sequence of
continuous cohomology groups

(154) 0 — HO(HL,T) - D(T) 25 D(T) > H'(H.,T) > H*(HL,A®,, T) — ...

Using the comparison isomorphism and the subsequent Proposition we see that all
terms from the fifth on vanish.

For the general case (for D(T') as well as D(T")) we take inverse limits in the exact sequences
for the (T'/n7"T) and observe that H"(Hy,T) = lim H"(H,T/n7'T). This follows for n # 2
from [NSW.| Cor. 2.7.6]. For n = 2 we use [NSW| Thm. 2.7.5] and have to show that the
projective system (H'(Hp,T/77'T))y, is Mittag-Leffler. Since it is a quotient of the projective
system (D(T'/7*T'))m, it suffices for this to check that the latter system is Mittag-Leffler. But
due to the exactness of the functor D this latter system is equal to the projective system of
artinian A z-modules (D(T)/n*D(T'))y, and hence is Mittag-Leffler. We conclude by observing
that taking inverse limits of the system of sequences remains exact. The reasoning being
the same for D(T) and D(T) we consider only the former. Indeed, we split the 4-term exact
sequences into two short exact sequences of projective systems

0 — H(Hy,V/xpT) - D(T/x{'T) - (¢ = )D(T/x}'T) — 0
and
0— (¢ — )D(T/x{'T) — D(T/x}'T) — H'(Hy, T/7§'T) — 0.

Passing to the projective limits remains exact provided the left most projective systems have
vanishing @1. For the system HC(Hp,T/m'"'T) this is the case since it is Mittag-Leffler. The
system (p — 1)D(T/77'T) even has surjective transition maps since the system D(T/7*T)
has this property by the exactness of the functor D (cf. Prop. . O

109



Proposition A.17. H"(H, A/']I_?A) =0 for alln,m =1 and H < Hy, any closed subgroup.

Proof. For j < i the canonical projection Wi((C]bj) ~ A/t A — A/W]LA >~ W; ((Cg,) corresponds
to the projection ((Cjbo)i — ((C?))j and hence have set theoretical continuous sections. Using the

associated long exact cohomology sequence (after adding the kernel) allows to reduce the
statement to Proposition [A.T] O

For any commutative ring R with endomorphism ¢ we write ®(R) for the category of
¢-modules consisting of R-modules equipped with a semi-linear @-action. We write ®¢(R)
for the subcategory of étale ¢-modules, i.e., such that M is finitely generated over R and ¢
induces an R-linear isomorphism ¢*M — M. Finally, we denote by @jﬁt(R) the subcategory
consisting of finitely generated free R-modules.

For M, M3 € ®(R) the R-module Homp(M;, M>) has a natural structure as a ¢-module
satisfying

(155) PHomp(My,Ms) (@) (011, (M) = s, (a(m))
hence in particular

(156) Homp(My, M2)?='% = Homg gy (M1, Ms).
Note that with M;, My also Hompg (M, Ms) is étale.

Remark A.18. We recall from [KLI, §1.5] that the cohomology groups H;(M) of the complex

M =% M can be identified with the Yoneda extension groups Extfp(R)(R, M). Indeed, if
S := R[X; ] denotes the twisted polynomial ring satisfying Xr = p(r)X for all r € R, then
we can identify ®(R) with the category S-Mod of (left) S-modules by letting X act via @y on
X. Using the free resolution

(X—1)

0—3S S R—0
the result follows. Compare also with Lemma [3.12

Remark A.19. Note that ATL C Ay is a faithfully flat ring extension as both rings are discrete
valuation rings and the bigger one is the completion of the previous one.

Proposition A.20. Base extension induces

(i) an equivalence of categories . )
of(A]) o @ (Ay)

(ii) and an isomorphism of Yoneda extension groups

P

Ext! v (A], M) = Extya,) (AL, AL ®41 M)

(Al)

for all M € @?t(AE)
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Proof. For the first item we imitate the proof of [KLI, Thm. 8.5.3], see also [Ked13, Lem.
2.4.2/Thm. 2.4.5]: First we will show that for every M € ®%(AY) it holds that (AL @M)#= ¢
M= and hence equality. Applied to M := Hom g+ (My, M2) this implies that the base change
is fully faithful by the equation ([156]). We observe tLhat the analogue of [KLI, Lem. 3.2.6] holds
in our setting and that S in loc. cit. can be chosen to be a finite separable field extension
of the perfect field R = f,ZO Thus we may choose S in the analogue of [KLI, Prop. 7.3.6]
(with a = 1, ¢ = 0 and M being our M) as completion of a (possibly infinite) separable field
extension of R. This means in our situation that there exists a closed subgroup H < Hj, such
that (AHH ®1~UL M = @(AN e, for a basis e; invariant under . Now let v = 3 z;e; be an

arbitrary element in
AL ®A’]r: M < AH ®ATL M = AH ®(AT)H (AT)H ®A‘£ M = @AH&

with z; € A¥ and such that g{)(v) = v. The latter condition implies that z; € AHpq=id —
i.e., v belongs to (M &1 (ANHY A (M ®x1 AL) = M, because M is free and one has
L L

Ap n (AN = (AHHL = ATL To show essential surjectivity one proceeds literally as in the
proof of [KLI, Thm. 8.5.3] adapted to ramified Witt vectors. . )

For the second statement choose a quasi-inverse functor F' : @?t(AL) — (IJ?(ATL) with
F(Ap) = ATL Given an extension 0 — M E AL —0 over ®(Ap) with M €

@?(AL) first observe that E € CD?(AL), too. Indeed, A, 2% Ay is a flat ring extension,
whence ¢*E — F is an isomorphism, if the corresponding outer maps are. The analogous

statement holds over ATL Therefore the sequence 0— F(M) F(E) ATL —0
is exact by Remark [A.19] because its base extension - being isomorphic to the original extension
- is, by assumption. O

We denote by zm;t(ATL) and E)ﬁff(AL) the full subcategories of Dﬁét(AE) and IM(A,),
respectively, consisting of finitely generated free modules over the base ring.

Remark A.21. Let M be in EITI?(AL) and endow N := Ap ®xt M with the canonical
L

topology with respect to the weak topology of Ap. Then the induced subspace topology of M = N
coincides with the canonical topology with respect to the weak topology of ATL Indeed for free
modules this is obvious while for torsion modules this can be reduced by the elementary divisor
theory to the case M = ATL/WZATL x~ AL/’RJEAL. But the latter spaces are direct product factors

of AE and A, respectively, as topological spaces, from wich the claim easily follows.

Proposition A.22. For T' € Rep,, (Gr) and V € Rep(GL) we have natural isomorphisms

(157) A, ®4t DY (T) = D(T) and
(158) B/ ®p1 DY (V) =~ D(V),

as well as

(159) AT® Al DNT) =~ AT ®,, T and
(160) Bf ®pt D'(v)y=B'®,V,
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respectively. In particular, the functor DT (=) : Rep,, (G1) — Sﬁét(ATL) is exact.
Moreover, base extension induces equivalences of categories

MG (A]) o MF(AL),
and hence also an equivalence of categories
MBL) > M (B,).

Proof. Note that the base change functor is well-defined - regarding the continuity of the
I'p-action - by Lemma and Remark while DY is well-defined by Remark once
(157) will have been shown. We first show the equivalence of categories for free modules: By
Proposition we already have, for My, M € Z)ﬁ?t(ATL), an isomorphism

Homé(ATL)(Mth) > HOHl(I,(AL)(AL ®ATL M, AL ®ATL Mo).

Taking I'p-invariants gives that the base change functor in question is fully faithful.
In order to show that this base change functor is also essentially surjective, consider an
arbitrary N € Dﬁ‘;}t(A 1) Again by we know that there is a free étale p-module M over

ATL whose base change is isomorphic to N. By the fully faithfulness the I'z-action descends to
M. Since the weak topology of M is compatible with that of N by Remark this action
is again continuous.

To prepare for the proof of the isomorphism we first observe the following fact.
The isomorphism (147) implies that 7 and D(T) have the same elementary divisors, i.e.:
If7T =~ @®;_jor/my o1, as or-module (with n; € N U {c0}) then D(T) S ’{ZIAL/W?AL as
A -module.

We shall prove in several steps: First assume that T is finite. Then T is annihilated
by some 7. We have DY(T) = D(T) and ATL/WEATL = Ar/m} Ay so that there is nothing to
prove. Secondly we suppose that T is free and that DT(T) is free over A}E of the same rank
r :=r1k,, T'. On the other hand, as the functor Dt is always left exact, we obtain the injective
maps

DY(T)/m»DY(T) —» DY(T/=?T) = D(T/x}T).

for any n > 1. We observe that both sides are isomorphic to (ATL/WQATL)T = (AL/T}AL).
Hence the above injective maps are bijections. We deduce that

12

AL®, DN(T) DNT) /=, DY(T)

D(T/mT)

12
R

I

D(T)/xD(T)

112
U* 3

(T)

using that the above tensor product means wp-adic completion for finitely generated ATL—

modules.
Thirdly let T € Rep,, ;(GL) be arbitrary and M € M¥(A]) such that Ay ®;1 M =
’ L

ﬁ(T ) according the equivalence of categories. Without loss of generality we may treat this
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isomorphism as an equality. Similarly as in the proof of Proposition and with the same
notation one shows that (AT ® Al M)#=t = @!_, ore; for some appropriate ¢-invariant basis

el,... e, of Af ®xt M. Note that r = 1k,, T. Using ([147)), it follows that
L

T=(A®, T)"" = (A@z, D(T)*™ = (A@y M)*!

<

L

A@q=1ei = (—DoLei = (AT ®AT M)50=1.
=1

-
I
—

It shows that the comparison isomorphism ([147)) restricts to an injective map T < At @zt M,
L
which extends to a homomorphism AT ®, T 45 ATR Al M of free AT-modules of the same
L

rank r. Further base extension by A gives back the isomorphism ([47). Since A is faithfully
flat over AT the map a was an isomorphism already. By passing to Hp-invariants we obtain an
isomorphism D(T) = M and see that DT(T) is free of the same rank as 7. Hence the second
case applies and gives for free T and . Finally, let T" be just finitely generated
over or,. Write 0 » T, > T — Tiee — 0 with finite Tq, and free Tiee. We then have the
commutative exact diagram

0—Ap ®41 DY (Thn) — Ap ®a1 DYT)— AL ® 1 D' (Theo) — AL ®a1 HY(Hp, A" ®,, Thn)
L

|

0 D(Tﬁn) D(T) D(Tfree) 07

in which we use the first and third step for the vertical isomorphisms. In order to show that the
middle perpendicular arrow is an isomorphism it suffices to prove that H'(H,, AT®,, Tin) = 0.
But since T§, is annihilated by some 7} we have

AT ®0L Tan = A/WEA ®OL Thn = A/?TEA ®AL B(Tﬁn),

the last isomorphism by (I47). Thus it suffices to prove the vanishing of H'(H L, A/TA),
which is established in Proposition and finishes the proof of the isomorphism ((157)).

Note that this base change isomorphism implies the exactness of D' as D is exact by
Proposition and using that the base extension is faithfully flat by Remark [A.19]

For free T the statement (and hence ((160))) is already implicit in the above arguments
while for finite T" the statement coincides with . The general case follows from the previous
ones by exactness of DT and the five lemma as above.

O

Corollary A.23. For a T in Rep,, ;(GL) and V in Repr(GL), the nth cohomology group,
for any n =0, of the complexes concentrated in degrees 0 and 1

(161) 0— DHT) Lo DHT) —0 and

(162) 0— DNV)—"1o DHV) —>0 and

is isomorphic to H"(Hp,T) and H"(Hp, V), respectively.
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Proof. The integral result reduces, by (157)), Remark and Proposition to Corollary
Since inverting 77, is exact and commutes with taking cohomology [NSW| Prop. 2.7.11],
the second statement follows. O

1

s
Bf < Bf. For V e Rep; (G1) we define DI (V) := (BT @, V)L, The categories fmét(ATL) and
fmét(BTL) are defined analogously as in Definition .

Set AT:= AT~ A and Bf := AT[-L] as well as AJ]E := (AT, Note that BE = (BNHAr
L

Remark A.24. There is also the following more concrete description for ATL in terms of
Laurent series in wrr :

ATL = {F(wrr) € AL|F(Z) converges on p < |Z| < 1 for some pe (0,1)} € Ap.

Indeed this follows from the analogue of [ChColl, Lem. II.2.2] upon noting that the latter holds
with and without the integrality condition: "rvy(a,) +n = 0 for alln € Z” (for r € R\R) in
the notation of that article. In particular we obtain canonical embeddings A;r: c BTL — Rp,
of rings.

Definition A.25. V' in Rep.(GL) is called overconvergent, if dimg; DY(V) = dim, V. We
L
denote by RepTL(GL) < Rep; (GL) the full subcategory of overconvergent representations.

Remark A.26. We always have dimgs DY (V) < dimp V. If V € Rep.(G}) is overconvergent
L

then we have the natural isomorphism

(163) B ®pgt DI(V) S D(V).

Proof. Since By, and BTL are fields this is immediate from [FOL Thm. 2.13]. O]

Remark A.27. In [Bel6, §10] Berger uses the following condition to define overconvergence
of V: There exists a Bp-basis x1,...,z, of D(V) such that M := @], BTLxZ- is a (pr,T'L)-

module over BE. This then implies a natural isomorphism

(164) B, ®BTL M = D(V).

Lemma A.28. V in Rep; (G) is overconvergent if and only if V' satisfies the above condition
of Berger. In this case M = DY (V).

Proof. If V is overconvergent, we can take a basis within M := DY(V). Conversely let V'
satisfy Berger’s condition, i.e. we have the isomorphism (164). One easily checks by faithfully
flat descent that with D(V') also M is étale. By [EX| Prop. 1.5 (a)] we obtain the identity

=1
V= (BT ®pt M )90 induced from the comparison isomorphism
L
(165) B®L,V >2B®s, D(V);B@BL M.
We shall prove that M < DT(V) = (BY®;, V)#* as then M = D¥(V) by dimension reasons.
To this aim we may write a basis vy,...,v, of V over L as v; = Zcz-jmj with ¢;; € B'. Then

(165) implies that the matrix C' = (c;;) belongs to M,,(Bf) n GL,,(B) = GL,(B"). Thus M is
contained in BY @7 V and - as subspace of D(V) - also Hj-invariant, whence the claim. [
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Remark A.29. Note that the imperfect version of Proposition 15 not true: base change
Dﬁét(BD — IMM(By) is not essentially surjective in general, whence not an equivalence of
categories, by [FX|. By definition, ils essential image consists of overconvergent (pr,I'r)-
modules, i.e., whose corresponding Galois representations are overconvergent.

Lemma A.30. Assume that V € Rep(GL) is overconvergent. Then there is natural isomor-
phism 3 3
B! ®p1 DY(V) = DY(V).

Proof. By construction we have a natural map ]~3TL ®BTL DT (V) - D(V), whose base change
to BL
B ®g DI(V) > Br®g D'(V) = D(V)
L L
arises also as the base change of the isomorphism , whence is an isomorphism itself. Here
we have used the (base change of the) isomorphisms , . By faithfully flatness the

original map is an isomorphism, too. O

A.1.3 The perfect Robba ring

Again let K be any perfectoid field containing L and r > 0. For 0 < s < 7, let RI®"I(K) be

the completion of WT(Kb)L[%] with respect to the norm max{| |s,| |-}, and put

R (K) =

S

—_

=)

REE(K)

i

m
—~
s]

r]
equipped with the Fréchet topology. Let R(K) = lim _ R"(K), equipped with the locally

—r>0" " s N
convex direct limit topology (LF topology). We set R = R(C,) and Ry := R(Lw). As in
[KLI, Thm. 9.2.15] we have

RML =Ry

Similarly as in [KLI, Def. 4.3.1] for the cyclotomic situation one shows that the embedding
or[[Z]] — W(L"); from subsection extends to a I'- and ¢r-equivariant topological
monomorphism R; — 7~2L, see also [Wl Konstruktion 1.3.27] in the Lubin-Tate setting.

Let R be either Ry or Ry. A (pr,T'r)-module over R is a finitely generated free R-
module M equipped with commuting semilinear actions of s and I'p, such that the action
is continuous for the LF topology and such that the semi-linear map @p; : M — M induces
an isomorphism gp%}b : R®Rpy M = M. Such M is called étale, if there exists an étale
(¢r,T'p)-module N over ATL and ATL (see before Definition |A.8|), such that Ry, ®AL N =M

and 7~€L ®AT N =~ M, respectively.
L

By 9M(R) and M (R) we denote the category of (¢r,I'r)-modules and étale (¢r,Tp)-
modules over R, respectively.

We call the topologies on ATL and A, which make the inclusions ATL cATcR topological
embeddings, the LF-topologies.

Lemma A.31. For M € SDT?(ATL) the I'r-action s also conlinuous with respect to the canon-

- , - AT
ical topology with respect to the LF-topology of A .
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Proof. The proof in fact works in the following generality: Suppose that At s equipped with
an or-linear ring topology which induces the mp-adic topology on or. Consider on ATL the
corresponding induced topology. We claim that then the I'z-action on M is continuous with
respect to the corresponding canonical topology. By Proposition [A.40| we may choose T €
Rep,, ;(GL) such that M = ~ DY(T). Then we have a homeomorphlsm AT®,, T = AT® t M

with respect to the canonical topology by - as any R-module homomorphism of ﬁmtely
generated modules is continuous with respect to the canonical topology with regard to any
topological ring R). Since o, € Al is a topological embedding with respect to the mp-adic
and the given topology, respectively, Lemma implies that G, is acting continuously on

- - H
AT® at M, whence I'r, acts continuously on M = (AT ®4zt M ) " with respect to the induced
L

topology as subspace of the previous module. since all involved modules are free and hence
carry the product topologies and since AE c AT is a topological embedding, it is clear that
the latter topology of M coincides with its canonical topology. O

We define the functor
D}, (=) : Repy,(GL) — M(Ry)
Vi— (R®p V)

where the fact, that I'p acts continuously on the image with respect to the LF-topology can
be seen as follows, once we have shown the next lemma. Indeed, implies that for any
Gp-stable op-lattice T' of V' we also have an isomorphism Ry ®ATL [?T(T) N [)Iig. Now again
Lemma applies to conclude the claim.

Lemma A.32. The canonical map

(166) Ri®gr DI(V) S D, (V)
L

mg(

is an isomorphism and the functor Dilg( ) : Rep,(Gr) — M(Ry) is exact. Moreover, we
have a comparison tsomorphism

(167) R®z, D,,(V) S R®,, V.

Proof. The comparison isomorphism in the proof of (an analogue of) [KP, Thm. 2.13| implies
the comparison isomorphism

R®’R mg( );,ﬁ’@OLV

together with the identity V = (R ®r, ”g(V))S"LZI. On the other hand the comparison
isomorphism ({1 induces by base change an isomorphism

fz@BTL DI(V) S R®,, V.
Taking Hp-invariants gives the first claim. The exactness of the functor DIZ 4(—) follows from
the exactness of the functor DY(—) by Proposition [A.10| O

Let R be By, BTL, RL, BL, BTL, R and let correspondingly R™ be Ay, AE, ATL7 A;,
AE, AE We denote by ®(R)® the essential image of the base change functor R ®pint —
S (R — 4T (R) (sic!).
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Proposition A.33. Base change induces an equivalence of categories
B(B})" < B(R,)"
and an isomorphism of Yoneda extension groups

1 T ~ 1 B, B
Eth)(BTL)(BL,M) =~ EXt@(ﬁ{L)(RL?RL ®BE M)

for all M e ®(B).

Proof. The first claim is an analogue of [KLI, Thm. 8.5.6]. The second claim follows as in the
proof of Proposition using the fact that by Lemma 8.6.3 in loc. cit. any extension of
étale p-modules over Ry is again étale. Note that ﬁL/BTL is a faithfully flat ring extension,
BTL being a field. O

Corollary A.34. If V belongs to Repr(GL), the following complex concentrated in degrees 0
and 1 s acyclic
-1

(168) 0— D}, (V)/D}(V) -~

D}, (V)/D}(V) —0.

In particular, we have that the nth cohomology groups of the complex concentrated in degrees
0 and 1

At o1 Ay
0—D (V) Drig

rig

(V)—0
are isomorphic to H"(Hp, V') for n > 0.

Proof. Compare with [KLI, Thm. 8.6.4] and its proof (Note that the authors meant to cite
Theorem 8.5.12 (taking ¢=0, d=1) instead of Theorem 6.2.9 - a reference which just does
not exist within that book). Using the interpretation of the H@ as Hom- and Ext!-groups,
respectively, the assertion is immediate from Proposition[A.33] The last statement now follows

from Corollary O
Proposition A.35. Base extension gives rise to an equivalence of categories

M (B]) o M (Ry).
Proof. |EX| Prop. 1.6]. O]

Lemma A.36. (i) BTL C Ry are Bézout domains and the strong hypothesis in the sense
of |[Ked08, Hypothesis 1.4.1] holds, i.e., for any n x n maltriz A over ATL the map

(Rp/Bh ) 22225, (R, /BY )™ is bijective.
Proof. |[Ked08|, Prop. 1.2.6]. O

Proposition A.37. IfV belongs to RepTL(GL), the following complex concentrated in degrees
0 and 1 1s acyclic

(169) 0— D]

rig

(V)/D'(V) D}, (V)/DH(V) —0,
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where D!

g

(V):=Rp ®BTL DY (V). In particular, we have that the nth cohomology groups of

the complex concentrated in degrees 0 and 1

(V) —= D]

i
0—D rig

Tig (V) —0
are isomorphic to H{'(H, V) := H"(¢r,, DY(V)) forn =0, see (110)).

Proof. This follows from the strong hypothesis in Lemma[A.36]as the Frobenius endomorphism
on M € Smét(BTL) is of the form Ay, by definition. O

Lemma A.38. Base change induces a fully faithful embeddings @(ATL)ét c ®(AL) and
o(BH) c o(BL)%.

p=id
Proof. As in the proof of Proposition [A.20[this reduces to checking that (AL ® 4t M) c
L
M. By that proposition we know that

p=id

(AL N M)wiid - (AL @t M) c Al @1 M.

Since Ap N ATL = ATL within A, by definition, the claim follows for the integral version,
whence also for the other one my tensoring the integral embedding with L over oy. O

Remark A.39. Note that H)(Hy,V) = H(Hy,V) and Hy (Hr,V) € H'(Hp,V). For the
latter relation use the previous lemma, which implies that an extension which splits after base
change already splits itself, together with Corollary and Remark [A.18 In general the

inclusion for H' is strict as follows indirectly from [FX]. Indeed, otherwise the comples

(170) 0— D(V)/D'(V) —2= D(V)/D}(V) —0,

would be always acyclic, which would imply by the same observation as in Proposition
below together with Theorem (1) that H%(GL,V) = HY(Gp,V) in contrast to Remark

[F- 14}
A.1.4 The complete picture

Although formally we do not need them in this article we would also mention the following
equivalences of categories, for which we only sketch proofs or indicate analogue results whose
proofs can be transferred to our setting.

Proposition A.40. The following categories are equivalent:
(i) Repo,(GL),

(ii) M (AL),

(iii
i

(iv) m(Al).

)
)
) ME(AL) and
)

The equivalences from (ii) and (iv) to (iii) are induced by base change.
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Proof. This can be proved in the same way as in [Ked15, Thm. 2.3.5], although it seems to be
only a sketch. Another way is to check that the very detailed proof for the equivalence between
(i) and (ii) in [GAL] almost literally carries over to a proof for the equivalence between (i)
and (iii). Alternatively, this is a consequence of Proposition by [KLII, Thm. 5.4.6]. See
also [KI|. For the equivalence between (iii) and (iv) consider the 2-commutative diagram

galthfully flat base Changgﬁ

~

Rep,, (G1)

i):net(A

which is induced by the isomorphism (157)) and immediately implies (essential) surjectivity on
objects and morphisms while the faithfulness follows from faithfully flat base change. O

Corollary A.41. The following categories are equivalent:
(i) Repr(GL),

(ii) M (By),

(iii)

(iv)

The equivalences from (i1) and (iv) to (iii) are induced by base change.

M (By) and
me(Bl).

Proof. This follows from Propositions and by inverting 7. O

Proposition A.42. The categories in Corollary are - via base change from (iv) - also
equivalent to

(v) m*(Ry).

Proof. By definition base change is essentially surjective and it is well-defined - regarding the
continuity of the I'z-action - by Lemma and Lemma [A.9] Since for étale ¢r-modules
we know fully faithfulness already, taking I'p-invariants gives fully faithfulness for (pr,I'r)-
modules, too. O

Altogether we may visualize the relations between the various categories by the following
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diagram:

Sﬁét(ﬁL) fmét(BTL)

Rep§"(Gr) — Rep! (G1) Rep;,(G1)

Here all arrows represent functors which are fully faithful, i.e., embeddings of categorles
Arrows without label denote base change functors. Under them the functors D,D, D' Df Dm 7

and DIZ g are compatible. The arrows => represent equivalences of categories, while the arrows

—> represent embeddings which are not essentially surjective in general. We recall that the
quasi-inverse functors are given as follows

VM) =(B@s, M), V(M) = (B@g, M), Vi) = (B @y M),

rig g

Vi) =BT @gy M7=, V(M) = (R @, M)?2=" and V(M) = (R @, M)7+=".

A.2 Cup products and local Tate duality

The aim of this subsection is to discuss cup products and to prove Proposition We
fix some open subgroup U € I'p and let L' = LY. Note that we obtain a decomposition
U =~ A x U’ with a subgroup U’ =~ Zg of U and A the torsion subgroup of U.

Proposition A.43. If V belongs to Repr(Gyr), the canonical inclusions of Herr complexes

0 (DT(V)®) € K21 (D] (V)2),
s (D'(V)?) c K¢ ,U’(D( V)2) and
s (D(V)2) € K¢ y(D(V))

are quasi-isomorphisms and their cohomology groups are canonically isomorphic to H (L', V)
for all i = 0.
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Proof. Forming Koszul complexes with regard to U’ we obtain the following diagram of (dou-
ble) complexes with exact columns

in which the bottom line is an isomorphism of complexes by[A.16] as the action of A commutes
with . Hence, going over to total complexes gives an exact sequence

0= Ky (D(V)?) — Kg y(D(V)?) = K, (D(V)/D(V)?) -0,

in which K;yU((f)(V)/D(V))A) is acyclic. Thus we have shown the statement regarding the
last inclusion. The other two cases are dealt with similarly, now using and com-
bined with . It follows in particular that all six Koszul complexes in the statement are
quasi-isomorphic. Therefore it suffices for the second part of the assertion to show that the
cohomology groups of K;}U,(D(V)A) are isomorphic to H* (L', V).

To this aim let T' be a Gr-stable lattice of V. In [Ku, Thm. 5.1.11.], [KV] Thm. 5.1.11.] it
is shown that the cohomology groups of T, (D(T)) are canonically isomorphic to H'(L', T
for all ¢ > 0, whence the cohomology groups of 7o, i (D(T ))[%] are canonically isomorphic to

H(L',V) for all i > 0. For My = D(T) Lemma below establishes a quasi-isomorphism

Too (D@ = Kg (D))

which gives the last statement. O

Lemma A.44. Let My be a complete linearly topologised or-module M with continuous U-
action. Then there is a canonical quasi-isomorphism

1 1
Mo)[—] =~ K, (Mo[—]2).
Tow (M) = K2 (o[ -1%)
If My is an L-vector space, the inversion of mp, can be omitted on both sides.

Proof. Let Cn(U, My) < C*(U, Mp) denote the subcomplex of normalized cochains. Since A is
finite, [Th, Thm. 3.7.6] gives a canonical quasi-isomorphism:

C;L(Ua MO) = C;(A X Ula MO) = C;L(A7CT.Z(U,7 MO))
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Here we understand the above objects in the sense of hypercohomology as total complexes of
the obvious double complexes involved. After inverting 77 we may compute the right hand
side further as

) . 1 . . 1 =~ ) 1 ) 1
Ch(A,Ch U, Mo)[—] = Ch (A, CH(U", Mo)[—]) <= CR(U", Mo)[—]> = Ch(U", M§*)[—] -
T T TL TL
Here the middle quasi-isomorphism comes from the fact that a finite group has no cohomology
in characteristic zero. The right hand equality is due to the fact that A acts on the cochains
through its action on M. Altogether we obtain a natural quasi-isomorphism
. 1 ~ . ! A 1
Co(U, Mo)[—1 = Co(U", Mg ) [—1 -
L TL
By using [Thl Prop. 3.3.3] we may replace the normalized cochains again by general cochains
obtaining the left hand quasi-isomorphism in

1

L

€ (U My)[-] = € (U M) = Kip (M) -] = Ko OB (1)

The middle quasi-isomorphism is (121)). The claim follows by taking mapping fibres of the
attached map ¢ — 1 of complexes. O

Recall from [Nel (5.2.1)] the quasi isomorphism L[—2] < 752C*(Gr/, L(1)) which allows
to define a trace map
tre : C* (G, L(1)) — L[-2]

in the derived category D(L—Mod) as
C*(Gr, L(1)) — m2C* (G, L(1)) « L[-2].
Then local Tate duality is induced by the following pairing on cocycles

(171) CH (G VED) % CHGp, V) —E (G, L(1) —2% L] -2].

_As before let T' be a G-stable lattice of V. Setting Mo = D(T*(1)), M = D(V*(1)),
M, = DI (V*(1)), No = D(T), N = D(V), N\, = DI, (V) etc. we obtain the following
commutative diagram, in which we require for the two last lines that V*(1) is L-analytic,
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C* (G, V*(1)) x C* (G, V) 2 C* (L, L(1) - - "¢~ L[-2]
| | |
\‘Vz \Lz ] \‘Vz tr
T (Mo) [+ x 2 (No)[] 4 2o (Do M)[E] -7 - L[-2]
A A A
| = | = | =
K2 1 (MA) x K} 1 (N2) = K2y (D(L(1))2) ™ = L[-2]
v v K
K2 1 (M],))%) x K3 ((N] )2 ——— K¢ (D], (L(1)2) - “% L[-2]
K3 o (M],)™) x K (] )24 [-2] L[-2]
b c
K2 1 (M])2) x K2 ((M))2)* 2] L[~2]
K2 1 (M])%) x K3 (M) 1)) [d - 1] L[-2]
K3 (DL, (VF(1)2) < K3 (DL, (Ve )2 [d - 1] —— L[-2]

in which trace maps trr, tr, trz+ are defined by requiring that the first three rectangles

on the right hand side become commutative in the derived category. Moreover, --+ indicates
a map in the derived category while the usual arrows denote morphisms in the category of
complexes; in both cases ~ indicates quasi-isomorphisms. The pairings in the 2nd, 3rd and
4th line arise as in indicated in Remark The pairings in line 5 and 6 are the evaluation
ones evy according to (105]). The pairing Uk in line 7 is induced from the one in line 6 by
requiring commutativity. Since A interchanges well with respect to * and ~as its action is
semi-simple, the isomorphism restricts to an isomorphism

g1 Koo (M) ))2)*[=2] = K30 (M) ") 2)[d - 1].

Now we explain the remaining vertical maps. From line 1 to line 2 we have the quasi-
isomorphisms from [KV) Thm. 5.1.11.]. They are compatible with cup products by Lemma
below. The quasi-isomorphism between the 2nd and 3rd as well as 3rd and 4th lines are
those induced from Proposition and its proof. They involve , which is compatible
with products by Remark as well as the quasi-isomorphism [Th, Thm. 3.7.6] which is
compatible with cup products by [Thll, Theorem 11.16.] while the inclusion from normalized
to all cocycles is obviously compatible. The map adj is given as
adj(trf(f oUK)

rig

o 0 (V1) ——"5 s Homp, s (K3 (M,

), L[-2]) = K3 1 (M, )*[-2],
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where the first map uses the notation of while the second map is the canonical isomor-
phism which pulls the twist outside: by our sign conventions this is the identity in all degrees.
So commutativity between the 4th and 5th line follows by the same lemma. Moreover the
map b arises by base change, while ¢ = b*[—2] is the continuous L-dual of the corresponding
base change map, whence the commutativity between the 5th and 6th line is clear. Finally,
we use the identification (M:,L-g)v = Diig(V(T_l)) because the functor D;r,ig(—) is compatible
with forming inner homomorphisms. Altogether we have established the commutativity of the
diagram, which implies Proposition

Lemma A.45. (i) Cup products are compatible with inflation maps.

(ii) Let G be any profinite group and

0—A L B C—0

as well as
f/

0—>A—Y o B ' —0

two ezact sequences of continuous G-modules (with continuous set theoretic section).
Then there is a commutative diagram

C* (G, A) x c (G, A = C (G, AR A)
*i L’*i i(@u)*
C*(G, B) x C*(G,B") = C*'(G,B®B')

| J |

C*(G,B—-C) x C(G,B'->C(C")—=C*(G,(B—-C)® (B — ("),

in which the wvertical composites are the canonical maps C*(G,A) — C*(G,B — C),
C*'(G,A) - C*(G,B" - (") and C*(G,A® A’) - C*(G,(B — C)® (B" — (")) in the
sense of hyper-cohomology of [Nel, (3.4.5.2)], e.g. B — C is considered as complez in degrees
0 and 1 and C*(G,B — C) = Tot(C* (G, B) — C*(G, BC)).

Proof. The first item is immediately checked on cochains. For the second item we observe
that the upper rectangle commutes due to the compatibility of cup products with change
of coefficients, while the lower one commutes as the cup product for hyper-cohomology is
combined from the usual cup products up to sign, see [Ne, (3.4.5.2)]. Since we consider the
complex B — (' as concentrated in degrees 0 and 1 the middle cup product contributes with
the sign (—1)*? = 1 to the lower one. O

Proposition A.46. Let M be a pr-module over R = Ry (cf. and ¢ € K*. Then
M/ — c)(M) is finite-dimensional over K.

Proof. (The proof follows closely the proof of [KPX| Prop. 3.3.2] in the cyclotomic situation)
We set ¢ := ¢~ '¢ and show that M /(3. — 1)(M) is finite-dimensional over K.

1 1
Choose a model MoV of M with 1 > 7y > pGDe and put r = r(‘f. Recall that

3,1) Pe—1

for all 1 > s > r we have maps Ml 2, Mlsh (where strictly speaking we mean
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1. followed by the corresponding restriction). We first show that it suffices to prove that

coker (M [r1) L=l 6y [T’l)) has finite dimension over K. Indeed, given any m € M we have

m € MI5Y for some 1 > s > r. Then there exists k > 0 such that r > 57" > rg, whence wtlf(m)
belongs to M1 and represents the same class in M /(. — 1)(M) as m.

Choose a basis €, ...,e/, of M1 and take e; := p(e}) € MUV by the p-module
property the latter elements also form a basis of M"Y . Note that by base change these
two bases also give rise to bases in MY for 1 > s > r4, Thus we find a matrix F’ with
entries in RI™1 such that e; = 3, Fje} and we put I’ = (") with entries in R,
i.e., p(ej) = X Fije;. Similarly let G be a matrix with values in RI'1) < RI[") such that
e;- =Y. G;je; and hence e; = ¢ (3, Gije;) .

We identify M1 with (R[’”’l))n by sending (\;); to >, Aie; and endow it foreach r < s < 1
with the norm given by max; |\;|s. Note that then the "semi-linear” map . (followed by the
corresponding restriction) on (R[’"’l))n is given by the matrix G as follows from the projection

formula (43)):
Be(D3Aje) = D we(Nje (Y Gizen)) = D3 we(A)Gijei.

i

1
Moreover, the restriction of ¢ : M1 — MUY o > Rte; becomes the semi-linear map
(R)" — (R[r’l))n given by the matrix F.
Consider, for I any subset of the reals R, the K-linear map Py : RI") — R[T’l),z a; 7" —
DicZAl a;Z'. We then introduce K-linear operators Py and Qy, k = 0, on M"Y by

Pr((A)s) == (Pr(M))e,
¢ )
Q= P(—oo,—k) — %(p o P(k:,oo)al-e-v
cmr

Qr((N)i) = (P—eo,—k)(N)i)i — TF' (P(Pi,c0y(Ai))is

because P o) factorises through R™. Then the K-linear operator Wy := id —Pi_ 3 + (¥c —
1)Qy of MY satisfies

cTy, )
Uy =10 P(—oo,—k) + 790 © P(k,oo)a L.€.,

Ui((A)i) = G - (Ve(Peop—iy(M)))i + F - <”7L¢<P<k,@><xi>>>i,

whence its operator norm satisfies

cTy,
1Wk[s < max{[|G|s]voe © Pco—p)ls: THFHsHso © Pliooylls}-

—1
It is easy to check that, for 1 > s > g1, we have |[p o Py o0)]s < |Z|gq71)k = sl=Dk (using
the norm relation after (31)) and [[1bc 0 P _pyls < Cys*1=07") for some constant Cy > 0.
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E.g. for the latter we have for A = 3. a; 27" € RI™

| D) Ye(@iZh)s < sup laillpe(Z0)]s

ie—k i<—k
i
< sup |a;|Cssa

i<—k

< Cs sup |ai||Z|fgsi(q71_1)
i<—k

< CyfAlgsHO Y,
where we use that by continuity of 1. there exists C such that

[Ye(Z)]s < Cs|Z'| 1 = Cssé.

1
s4q
Thus we may and do choose k sufficiently big such that | ¥l < 3. Given mg € MV we

define inductively m;1 := Uy (m;). This sequence obviously converges to zero with respect to

1
the r-Gauss-norm. We shall show below that also for all s € (ra,1) the series (m;); tends to
zero with respect to the Gauss norm | [, i.e., by cofinality the sum m := )., m; converges
in M"Y for the Frechét-topology and satisfies

m—mg=1m— P[—k:,k] (m) + (djc - 1)Qk(m)a

i.e. P_j ) (m) represents the same class as mg in MY /(4h. — 1)(M). Since the image of
P[_j k) has finite dimension, the proposition follows, once we have shown the following

Claim: For all s € (r%, 1) we have

1\ —k k!
1 sS4 cTy, s
|wk<m>|s<max{2|m|s,cs|a|s( ) N G )

r

Indeed, we fix such s and may choose ¥’ > k such that

‘\I’k’Hs < % Then ¥y, = Uy — ). 0
Py —py— C’rTLgp o P x], whence the claim as for A € R

Sa

1\ —k
|9 o P[—k’,—k)()‘)|s < Cs (7‘) Al

AN
oo Praal < () W

by similar estimations as above. O
Remark A.47. This result answers the expectation from [BF, Remark 2.3.7.] positively.
Corollary A.48. Let V*(1) be L-analytic and M := D;[ig(V*(l)),

(i) The cohomology group hz(K;b’U,((M)A)[d —1]) s finite dimensional over L.

126



(ii) We have isomorphisms

hl(KqL,Uf(DLg(V(T”))A)[d —1])* = AN (K 1 (M)
=~ Hi(L',V*(1)),

and
hz(KqL,Uf(DLg(V(T”))A)[d —1])* = hY(KY 1 (M*))

= (V*(1))°v.

Proof. (i) Since h*(K73, ,((M)?)[d — 1]) is a quotient of (M /() — 1)(M))> by this
follows from the Proposition. (ii) We are in the situation of Remark (i) with regard to
C = KJ)’U,(DLQ(V(T_I))A)[d — 1] and @ = 2,3 in the notation of the remark. Indeed, for
h3(C) = C* = 0 by construction and C?> = 0 as well as h%(C) is finite by (i). Hence the
first isomorphism follows in both cases from using the reflexivity of M. The second

isomorphisms arise by Lemma, together with (117)) and (116)), respectively. O]

In accordance with diagram at the end of subsection we may visualize the relations
between the various Herr-complexes by the following diagram:

K (D, (V)A) e=—=—= K ;;/(D'(V)%) =—= K, ,,(D(V)?)
b
K2 (D], (V)2) === K}, 1, (D'(V)*) K (D(V)2)
» 4

Tan., (DL, (V) C* (G, V)

Here all arrows represent injective maps of complexes, among which the arrows => repre-
sent quasi-isomorphisms, while the arrows —> need not induce isomorphisms on cohomology,
in general. The interrupted arrow — —> means a map in the derived category while < — —>
means a quasi-isomorphism in the derived category. By Lemma we have a analogous
diagram for 7, 7(?(V)) with ? € {D, D, D', D, DI, DI

rig’ rig}’
Remark A.49. The image of
W (Tou (DL, (V) = (K (DL, (V)2) = RS /(DT (V)2)) = (T,u(DF(V)))

in H'(L', V) is independent of the composite (= path) in above diagram.
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We quickly discuss the analogues of some results of §1.6 in [ChCo2|. Consider the subring
A= Al[7]] = {z = X anZb € Apfve, (ax) = —q_il} € Ap. For z € A and each inter
n = 0, we define wy(r) to be the smallest integer k > 0 such that x € ZFA + 77T AL, Tt
satisfies wy (2 + y) < max{wy(z), w,(y)} and w,(zy) < wy(z) + w,(y) (since A is a ring) and
wp(e(7)) < qup(z) (use that % € A%, whence p(Z7F)A = Z79 A).

Set for n = 2,m > 0 the integers r(n) := (¢ — 1)¢" !, I(m,n) = m(qg—1)(¢" ' —1) =
m(r(n) — (¢ — 1)) and define A}" = {2 = 3, ar2* € Apfvr, (ax) + 5 — o0 for k > —o0},

By Remark we obtain that ATL = Uns2 A%n.

Lemma A.50. Let z =Y, axZ¥ € A and 1 > 0,n > 2. Then
(i) we have
) k+1
(173) wm(x) <1< vg, (ar) = min{m + 1, — 7} for k < —L.
q—
(i) x € ATL’” if and only if wy,(x) —l(m,n) goes to —oo when m runs to .

Item (ii) of the Lemma is an analogue of [ChCo2, Prop. III 2.1 (ii)] for AE’” instead of
ABgl {x =, a2 € ATL |Ur, (ar) + ( y = 0 forall k < 0}.

Proof. (i) follows from the fact that z € Z~'A if and only if vy, (ag) > — k” for k < —1. (ii)
Let M, N = M(q— 1) » 0 be arbitrary huge integers and assume first that x€E ATL". Then

(174) wm(z) — l(m,n) < =N
is equivalent to

k+1(m,n) — N

(175) Ur, (ar) = min{m + 1, — —

} for k < —l(m,n) + N.

by (i). To verify this relation for m sufficiently huge, we choose a ko € Z such that vy, (ar) +
(kn > N = 0 for all £ < kg. Now choose mo with —I(mg,n) < ko and fix m > myg. For

<

Z

fo) > m we obtain vy, (ar) = m + 1, because k < ko holds. For k with

<

k k+U{m,n)

176 k>— <0

(176) r(n)m < () 1

we obtain vy, (ag) = —W. Thus the above relation holds true.

Vice versa choose my such that - holds for all m > mg, and ﬁx
k < ko := —r(n)max{Mq" ! mg}. Let m; be the unlque integer satisfying r(n)M
r(n)my = r(n)M —k—r(n). In particular, we have m; +1+ -~ Ty = > M and k > (n)m Wthh
implies —W;#—i— wy = = M by - Moreover, it holds m; = mg and k < —l(ml, n)+N
(using k < r(n)M —r(n)m; = —l(m1,n) +¢"*N — (¢g—1)m; and m1 > (¢"' —1)M by our

assumption on k). Hence we can apply (175)) to conclude vy, (ax) + T(n) > M as desired. [
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The analogue of Lemma 6.2 in (loc. cit.) holds by the discussion in [SV15| after Remark

2.1. This can be used to show the analogue of Corollary 6.3, viz w,(¢(z)) < 1+ w"T(x). Now

fix a basis (e1,...,eq) of D(T) over Ay and denote by ® = (a;;) the matrix defined by
ej = Zle a;jp(e;). The proof of Lemma 6.4 then carries over to show that for z = ¢(y) —y
with z,y € D(T) we have

(177) wa(y) < max{w,(z), q% (wn(®) + 1)},

where w,, (®) = max;; wy(a;j) and wy,(a) = max; wy(a;) for a = Z?zl a;p(e;) with a; € Ap.

Lemma A.51. Let T € Rep,, (GL) such that V. = T ®,, L is overconvergent. Then the
canonical map DY(T) — D(T) induces an isomorphism DY(T)/(1) — 1)(DT(T)) = D(T)(+) —
D(D(T)).

Proof. We follow closely the proof of [Li, Lem. 3.6], but note that he claims the statement
for DLI(T) Choose a basis e, ...,eq of DT(T), which is free by Lemma ??. Since V is over-

convergent it is also a basis of D(T). Due to étaleness and since (ATL) NAT = (ATL)X also
o(e1),...,p(eq) is a basis of all these modules. Given z = (y) — y with € DT(T) and
y € D(T) there is an m > 0 such that all z;,a;; lie in AE’m for some m. Since ¢ > 2 it fol-

lows from the criterion in Lemma (i) combined with (177) that all y; belong to A%mﬂ,
whence y € DT(T). This shows injectivity. In order to show surjectivity we apply Nakayamas
Lemma with regard to the ring oy, upon recalling that D(T)/(¢) — 1) is of finite type over it.
Indeed, by left exactness of D we obtain DY(T) /7 DY (T) € DY (T/n;T) = D(T/x.T). Since
these are vector spaces over Ep, of the same dimension, they are equal, whence
(DNT)/(p=1))/(rr) = (DNT)/(x)) /(¥ = 1) = (D(T)/(x1)) /(¥ = 1) = (D(T) /(= 1)) /(7).
O

Corollary A.52. Under the assumption of Lemmafor V(1 1), the inclusion of complexes
K} p(D'(V(r1))%) € K3, 5(D(V(r1))?)
1S a quasi-isomorphism.

Proof. Use the automorphism ¢ — 1 of D(V(r—1))/DT(V(7—1)) and proceed as in the proof
of Proposition [A.43] O

Remark A.53. Instead of using Lemma (for crystalline, analytic representations) one
can probably show by the same techniques as in [ChC02, Prop. III.3.2(i1)] that for any over-
convergent representation V. we have DT(V)¥=! = D(V)¥=1,

The interest in the following diagram, the commutativity of which is shown before Lemma
stems from the discrepancy that the reciprocity law has been formulated and proved
in the setting of K1:)7U,(Dil-g(V(T’1))A)[d — 1] while the regulator map originally lives in the
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setting of KL7U,(D(V(T*1))A)[CZ —1]:

(178)  C*(Gr, V*(1))

1

K (M],)2)

C*(Gp,V)

I
el~

Y

UGL,

x K3, i (D(V(r=1)H)[d — 1]

<3 (DN V() [d ~ 1]

A o

(D]

g

|

(V(r)H)ld - 1]

tre

c* (L, L(1)) - % L[—2]
- L[-2]
- L[-2]
- L[-2]

which in turn induces the commutativity of the lower rectangle in the following diagram (the
upper rectangles commute obviously)

(179)
i —1\\=1
Dy, (V(r=1)¥
pry
1 .
nt (K
HY(L, V)

(Dl (V(=1))[d = 11) <— n* (K}

w?U,

]

DIV (7))

DV ()=t

pru

(DUV (1)) = 11) =2 1 (K3 5 (D (771))A)d — 1]

pr

cl|~

HY(L',V)

Here the vertical maps pry are defined as in (129)), a and pr are taken from Proposition
while the isomorphism ¢ stems from (185)). The map a is bijective under the assumption of

Lemma which extends to the map b by Corollary

A.3

Iwasawa cohomology and descent

In this subsection we recall a crucial observation from [Kul [KV], which is based on [Ne]
and generalizes [SV15, Thm. 5.13 |. As before let U be an open subgroup of I'y. We set
T := A(U) ®,, T with actions by A(U) := or[[U]] via left multiplication on the left factor
and by g € G/ given as A®t +— A\g~! ® g(t), where g denotes the image of g in U. We write
RY'1(Loo/L', T) for the continuous cochain complex C*(U, T) and recall that its cohomology
identifies with Hj, (Le/L',T) by [SV15, Lem. 5.8]. For any continuous endomorphism f of

M, we set Ty(M) :=[M EineN M], a complex concentrated in degree 0 and 1.

Themap p: T — o @) T =T, ¢t —» 1®t, and its dual ¢ :

TV(1) — TV(1) induce

on cohomology the corestriction and restriction map, respectively, and they are linked by the
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following commutative diagram

tre

(180) (G T)  x C(Gp,TY(1) —Lw (L, Lfor (1)) - S Loy [~2]

J{P* Z*T
YG tre

C* (G, T)  x C*(Gp,TV(1)) —==C*(L, Ljor(1)) - = = Ljor[-2]

By [FK| Prop. 1.6.5 (3)] (see also [Nel (8.4.8.1)]) we have a canonical isomorphism
(181) or, ®f ) RU(L',T) = RT(L', 01, @xu) T) = RT(L, T)

where we denote by RI'(L', —) the complex C*(Gp/, —) regarded as an object of the derived
category. Dually, by a version of Hochschild-Serre, there is a canonical isomorphism

(182) RHomy (or,, RU(L',TY(1))) = RI'(L', TV (1)).
It follows that the isomorphism
RTy(Lo/L',T) =~ RHom,, (RT(L', TV (1)), L/or)[~2]
induced by the upper line of induces an isomorphism
(183) o1 &y BT rw(Leo/L', T) = RHom,, (RHomy (or, RT(L', T (1)), L/or)[-2],

which is compatible with the lower cup product pairing in ([180)) via the canonical identifica-
tions (181)) and (182)).

Lemma A.54. There is a canonical isomorphism RT(L',TV(1)) = T,(D(TV(1))) in the
derived category.

Proof. See [KV, Thm. 5.1.11]. O

For the rest of this section we assume that U € 'y, is an open torsionfree subgroup.

Lemma A.55. Let T be in Rep,, (G) of finite length. Set A := A(U) and let y1,...,7q be
topological generators of U. Then we have a up to signs canonical isomorphism of complezes

Homj, (K. (7), To(D(T (1)) ¥ [-2] = tot (Ty(D(T(r~ 1) [~1] @a K. (yH)(A)%)
where —V denotes forming the Pontrjagin dual.

Proof. Upon noting that 7,(D(TV(1)))V[-2] = Ty(D(T(r1)))[—1] (canonically up to a
sign!) this is easily reduced to the following statement

Hom} (K. (), M)” = MY @y K.(7)(A)",
which can be proved in the same formal way as , and a consideration of signs. O
Remark A.56. For every M € 9M(AL) we have a canonical isomorphism
Hom} (KY, T,(M)) = K, (M)
up to the sign (—1)" in degree n and a non-canonical isomorphism
tot (Tp(M)[-1] ®r K (A)*) = Kyu(M)[d - 1]
(involving the self-duality of the Koszul complex). Here, the right hand sides are formed with

respect to the same sequence of topological generators as the left hand sides.
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Proof. By our conventions in section K, (M) is the total complex of the double complex

Hom®(K.(A)*, M) 1%, Hom® (Ko(A)®, M). A comparison with the total Hom-complex (with
the same sign rules as in secton [3.2.1]) shows the first claim. For the second statement we have

tot (Tp(M)[~1] @x K+(A)*) = tot (Ty(M) @ K+(A)*) [-1]
= tot (Ty (M @1 K.(A)")) [-1]
~ tot (T, (M @1 K*(A)[d])) [~1]
— tot (Ty (K 1]

*(M)[d))) [
= cone (K3 (M)[d] — Kg(M)[d]) [-2]
> Kyu(M)[d—1].

The first isomorphism involves a sign on 7;1(M ). The third isomorphisms stems from (106
while the last isomorphism again involves signs. O

Theorem A.57. There are canonical isomorphisms
(184) RU1(Leo/L,T) = Ty (D(T(171))) [-1]
(185) Kyu(D(T(r7H)[d — 1] = RI(L,T).

in the derived cateqory Dpe, (Ao, (T'1)) of perfect complezes and in the derived category D (o, —Mod)
of bounded below cochain complexes of or-modules, respectively.

Proof. The first isomorphism is [KV] Thm. 5.2.54 | while the second one follows from this and

as
R (Lo /L, T) &,y or = Ty (D(T(r™1))) [-1] &F Ka(A)*
= tot (Ty (D(T(r 1)) [-1] @ K.(A)*)
= Kyu(D(T(r~1))[d - 1].

by Remark O
By Lemma and Remark we see that, for 7" be in Rep,,, (G) of finite length,

(186) Ko u(D(TV(1))) = RHomy (o, To(D(TY (1)))))[2]
is dual to
(187) Ky u(D(T(r1)) = o, & ) To(D(T(r~ 1)) [-1],

such that the upper rectangle in the diagram (178)) commutes by (183)), taking inverse limits
and inverting 7p,.

Lemma A.58. Let T be in Rep,, (GL). Then the left rectangle in (143) is commutative.

Proof. (Sketch) By an obvious analogue of Remark it suffices to show the statement for
U=I,=z Zg. In this situation we have a homological spectral sequence

H; (U, Hp, (LOO/L T)) — H,'~ J(L’ T)

cts
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which is induced by (181)), see [Ne| (8.4.8.1)] for the statement and missing notation. We may
and do assume that T is of finite length. Then, on the one hand, the map H}, (Lo/L,T) <5
HY(L',T) is dual to H'(L',TV (1)) =% H'(Le,TV(1)), which sits in the five term exact
sequence of lower degrees associated with the Hochschild-Serre spectral sequence. As explained
just before this lemma the above homological spectral sequence arises by dualizing from the
latter. Hence cor shows up in the five term exact sequence of lower degrees associated with
this homological spectral sequence. On the other hand via the isomorphisms and
the latter spectral sequence is isomorphic to

Hiets(U,h (T (D(T(771)) [-1]) = b (K (D(T (1)) [d — 1])

and one checks by inspection that cor corresponds to pry. O

B  Weakly decompleting towers

Kedlaya and Liu’s developed in [KLII, §5] the concept of perfectoid towers and studied their
properties in an axiomatic way. The aim of this section is to show that the Lubin-Tate exten-
sions considered in this article form weakly decompleting, but not decompleting tower, proper-
ties which we will recall or refer to in the course of this section. Moreover, we have to show
that the axiomatic period rings coincide with those of Appendix A.

In the sense of Def. 5.1.1 in (loc. cit.) the sequence ¥ = (¥,, : (Lp,0r,,) = (Lnt1,0L,.1))neo
forms a finite étale tower over (L,or) or X := Spa(L, o), which is perfectoid as Lo is by
[GALL Prop. 1.4.12].

~ Therefore we can use the perfectoid correspondence [KLII, Thm. 3.3.8] to associate with
(Leo, 07 ) the pair
(Ru RY) = (£, 0, ).
Now we recall the variety of period rings, which Kedlaya and Liu attach to the tower, in our

notation, starting with . . . . .
Perfect period rings: Ay := Ay = W(L))r, Aj =W (%, )< Al = A} ={z =

o0

Yimomp[2i] € W(LL) 1| for i to oo :|m ||} — 0}, AL, i= U, Ay = Al
Imperfect period rings:

Recall the map © : W(o(bcp)L — 0c,, Do Telzi] — Zwixg, which extends to a map

O : ATI;S — G, for all s > 1; for arbitrary r > 0 and n > —log,r the composite AE}T L,

ATI}I 9, C, is well defined and continuous as it is easy to check. It is a homomorphism of
or-algebras by [GALL Lem. 1.4.18].

Following [KLIL, §5] we set AL" := {z € A&ﬂ@(goq_"(x)) € Ly foralln > —log,7},
ATI, = U0 ATI;T, its completion Ay := (ATI,)”TL'adIC7 and residue field Ry := Ay /(7)) =
(AL)/(x1) € Ry, Ry := Ry n R},
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Note that wrr = {[t(t)]} € A&; = W(Obix‘)L c ATI}T for all » > 0 (in the notation of
[GAL]). [GAL, Lem. 2.1.12| shows

Oy " (wrr)) = O{[pg " (W)I}) = lim [7}]p(2i4n) = 2n € Ln,

where t = (2,)n>1 is a fixed generator of the Tate module T of the formal Lubin-Tate group
and w = «(t) € W(O?CP)L is the reduction of wrp modulo 7y satisfying with Ep = k((w)).

Therefore wrr belongs to Ay, := Ag N A$ Then it is clear that first Aj-: = or||lwrr]] € ATI,

q—1

and by the continuity of © 0 ;" even AT < ATI, holds. Since w;% € A; ? by [St, Lem. 3.10]
(in analogy with [ChColl, Cor. I1.1.5]) and © o ¢, " is a ring homomorphism, it follows that

- I
wir€Ay ¢ and OL[[WLT]][ﬁ] c ATIJ.

Lemma B.1. We have R$ = Ez and Ry = Ep.

Proof. From the above it follows that E;, € Ry, whence E’ierf c Rﬁ,ﬂf c Rq, = f/boo the latter
being perfect. Since EL/ = 2 by [GALL Prop. 1.4.17] we conclude that

(188) Rﬁ,erf is dense in Ry.

By [KLIIL Lem. 5.2.2] have the inclusion

RE < {w € Ryl = (2,) with 7, € oz, /(1) for n >> 1} 2 EF = k[[w]]

where the equality (*) follows from work of Wintenberger as recalled in [GALL Prop. 1.4.29].
Since Ef € R{, by its construction in (loc. cit.), we conclude that Ry, = E;.

Since each element of Ry is of the form —% with a € Ry and m > 0 by [GAL] Lem. 1.4.6],
we conclude that Ry = Ej. O

Thus for each r > 0 such that wg% € AT’T, reduction modulo 7y induces a surjection
Ay — Ry. Recall that W is called weakly decompleting, if

(i) Rﬁ,erf is dense in Ry.
(ii) for some r > 0 we have a strict surjection ATI;T — Ry induced by the reduction modulo
nr, for the norms | — | defined by |z, := sup;{|7} ||z|}} for x = >3, 7} [2:], and | —|}.
We recall from [FE| Prop. 1.4.3.] or [KLI, Prop. 5.1.2 (a)] that | — |, is multiplicative.
Proposition B.2. The above tower V is weakly decompleting.

Proof. Since (188) gives (i), only (i7) is missing: Since wrr has [w] in degree zero of its
Teichmiiller series, we may and do choose 7 > 0 such that |wrr — [w]|» < |w|;. Then |wrr|, =
max{|wrr — [w]|, W[} = |w]|;. Consider the quotient norm |b]|7) = infaeAy’aEb mod laly.

Now let b =3, - a,w" € Ry = k((w)) with ap, # 0. Lift each a,, # 0 to a, € o] and set
an = 0 otherwise. Then, for the lift z := 3} _ “@,wi, of b we have by the multiplicativity of
| — | that

nzn

161177 <l = (Joorrl)™ = (wlp)™ = [b];.

Since, the other inequality |b|I < [|b]|™) giving by continuity is clear, the claim follows. O
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Proposition B.3. A; = Ay.

Proof. Both rings have the same reduction modulo 7y. And using that the latter element is
not a zero-divisor in any of these rings we conclude inductively, that Ay /7 A = Ag/m} Ay
for all n. Taking projective limits gives the result. O

Proposition B.4. AJ]E = ATD.

Proof. By [KLII, Lem. 5.2.10] we have that Al, = Al ~ R;. On the other hand Al =
(AT~ AL = ATL N A is contained in R by Remark , whence ATL c ATI, while the
inclusion ATI, cAfnAL = AE follows from Proposition . O

This interpretion allows to partly deduce results of Appendix A from the machinery of
§5.2-5 in (loc. cit.). In Definition 5.6.1 they define the property decompleting for a tower W,
which we are not going to recall here as it is rather technical. The cyclotomic tower over
Q, is of this kind for instance. If our ¥ would be decompleting, the machinery of (loc. cit.),
in particular Theorems 5.7.3/4, adapted to the Lubin-Tate setting would imply that all the
categories at the end of subsection are equivalent, which contradicts Remark [A.29]
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