
STURM’S OPERATOR ACTING ON VECTOR VALUED

K-TYPES

KATHRIN MAURISCHAT

Abstract. We define Sturm’s operator for vector valued Siegel modular
forms obtaining an explicit description of their holomorphic projection in
case of large absolute weight. However, for small absolute weight, Sturm’s
operator produces phantom terms in addition. This confirms our earlier
results for scalar Siegel modular forms.
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1. Introduction

Let G be the symplectic group of rank m. Sturm’s operator Stκ is defined
on (non-holomorphic) symplectic modular forms f of weight κ for a discrete
subgroup Γ ⊂ G by an integral operator on the coefficients of the Fourier
expansion f(Z) =

∑
T=T ′ a(T, Y )e2πi tr(TY ) for positive definite T

a(T, Y ) 7→ b(T ) = c(κ)−1

∫
Y >0

a(T, Y ) det(TY )κ−
m+1

2 e−2π tr(TY )dYinv

It is well-defined for scalar weight κ > m−1. Here c(κ) is a constant depending

only on weight and rank. The Fourier series Stκ(f)(Z) =
∑

T>0 b(T )e2πi tr(TZ)
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allows an interpretation as holomorphic cusp form Stκ(f) ∈ [Γ, κ]0, and indeed
is the holomorphic projection prhol(f) of f in case the weight κ is large, i.e.
greater than twice the rank of the symplectic group. This result by Sturm [9],
[10], and Panchishkin [1] relies on a generating system of Poincaré series pT ∈
[Γ, κ]0 for which the coefficients b(T ) are essentially given by the scalar product
〈pT , f〉 = b(T ). The same result holds true for weight κ = 2m in casem ≤ 2 ([5],
[6]). However, in case of weight κ = 3 and rank m = 2 we showed jointly with
R. Weissauer ([8]) that Sturm’s operator produces, along with the holomorphic
projection, a second term ph(f) ∈ [Γ, κ]0

Stκ(f) = prhol(f) + ph(f) .

This phantom term ph(f) = Stκ(∆
[m]
+ (h)) arises as the non-holomorphic Maass

shift of a holomorphic form h ∈ [Γ, κ − 2] of weight one (see section 4 for the

exact definition of ∆
[m]
+ . Later ([7]) we generalized this result to general rank

m > 2 and κ = m+ 1. However, the phenomenon of arising phantom terms in
case of small weight is rather non-understood.
Therefore, here we study the case of vector valued Siegel modular forms with
values in the space Vρ of an irreducible rational representation ρ of GL(m,C).
These modular forms for example play an important role for singular weights [3].

Consider the operator valued Poincaré series on the Siegel upper halfspace H

(1) pT (Z) =
∑

γ∈Γ∞\Γ

ρ(J(γ, Z))−1e2πi tr(Tγ·Z) .

Here for a matrix g = ( ∗ ∗C D ) ∈ G and Z ∈ H we use the J-factor J(g, Z) =
CZ + D. We may evaluate each single summand of these Poincaré series at
special vectors v ∈ Vρ to get vector valued series. Candidates for v are the
highest weight vector vρ or (if it exists) the spherical vector vK . Because of the
cocycle relation J(γ̃γ, Z) = J(γ̃, γZ)J(γ, Z) valid for all γ, γ̃ ∈ G, the series P
has the transformation property

ρ(J(γ̃, Z))−1pT (γ̃Z) = pT (Z) .

Assuming good convergency properties by proposition 3.1, pT (Z)v ∈ [Γ, ρ]0 is
a vector valued holomorphic cusp form with values in End(Vρ). Notice that it
doesn’t transform by Adρ, which would be more natural, but is not compatible
with its interpretation as an operator on Vρ.
For a valued non-holomorphic modular form of weight ρ with Fourier expansion

f(Z) =
∑
T=T ′

ρ(T
1
2 )a(T, T

1
2Y T

1
2 ) · e2πi tr(TX)

we define Sturm’s operator by

Stρ(f)(Z) =
∑
T>0

ρ(T
1
2 )b(T )e2πi tr(TZ) ,
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where the coefficients b(T ) are defined by the integral

b(T )′ = det(T )−
m+1

2

∫
Y >0

a(T, Y )′ρ(T
1
2 )C(ρ)−1ρ(Y )ρ(T−

1
2 )
e−2π tr(Y )dYinv

det(Y )
m+1

2

.

Here C(ρ) is an operator such that on holomorphic cuspforms f Sturm’s opera-
tor is the identity. In contrast to the constant c(κ) the scalar valued case, C(ρ)
must be placed carefully into the integral. In general it is known that the vector
valued Γ-integrals converge in case the absolute weight of ρ is large enough ([4]).
But it is not clear a priori that the operators are surjective outside a discrete
set of zeros and poles. Theoretically, the integrals are computable by using
the Littlewood-Richardson rule once the Γ-function for all tensor powers st⊗n

of the standard representation is known. But the latter involves non-trivial
combinatorics. We devote the second part of the paper to obtain some partial
results. We determine the Γ-integrals for alternating powers of the standard
representation in section 5.1. Further we obtain all Γ-functions for algebraic
representations of GL(2,C) by section 5.2. We include some remarks on Weyl’s
character formula for Γ-functions in section 5.3.
We say an irreducible representation ρ of GL(m,C) with dominant highest
weight l = (l1, . . . , ln), where l1 ≥ l2 ≥ · · · ≥ ln, has absolute weight κ = ln.
Like in the scalar weight case, for large absolute weight we obtain holomorphic
projection by Sturm’s operator:

Theorem 1.1. Let ρ be an irreducible representation of GL(m,C) of large
absolute weight κ > 2m. Assume C(ρ) is an isomorphism. Then Sturm’s
operator realizes the holomorphic projection operator.

Whereas, again for small absolute weight κ = m + 1 this is no longer true, as
we see by the following special case.

Theorem 1.2. For rank m = 2 let τ be the irreducible representation of
GL(2,C) of highest weight (k + 1, k) with k ≥ 1. Let h ∈ [Γ, τ ]0 be a non-
zero vector valued holomorphic cusp form of weight τ . Then the image of its

Maass shift ∆
[m]
+ (h) under Sturm’s operator

Stτ⊗det2
(
∆

[m]
+ (h)

)
is non-zero if and only if k = 1. In particular, in case of highest weight (4, 3)
Sturm’s operator Stρ does not realize holomorphic projection but produces phan-
tom terms.

Our results obtained so far are limited by the explicit computability of phantom
terms. Nevertheless, by [8], [7], and the above, the following interpretation
is at hand. A holomorphic cusp form of weight ρ generates a holomorphic
representation of the symplectic group G of minimal K-type ρ. In case of
absolute weight κ ≥ m + 1 this is a (limit of) discrete series representation.
Within the root lattice of spm and for the consistent choice of positive roots
e1 − e2, . . . , em−1 − em, 2em, those belong to the cone given by the δ-translate
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of the positive Weyl chamber. More precisely, a representation of minimal K-
type of highest weight (l1, . . . , lm) is situated by its Harish-Chandra parameter
(l1−1, l2−2, . . . , lm−m). Here δ = (m,m−1, . . . , 1) is half the sum of positive
roots. Whereas there are some holomorphic representations outside this cone,
for example those generated by h ∈ [Γ, 1]0. The wall orthogonal to all short
simple roots is given by (r−1, r−2, . . . , r−m) for r ≥ m+1. Here, [7] suggests
that Sturm’s operator realizes the holomorphic projection operator as long as
r > m+ 1, i.e. apart from the the apex δ of the cone belonging to the minimal
K-type (m + 1, . . . ,m + 1). In the case of rank two theorem 1.2 shows that
Sturm’s operator fails on the wall of the cone perpendicular to the long root.
This suggests the following expectation in general.

Conjecture 1.3. Sturm’s operator produces phantom terms on all the facets
of the cone not perpendicular to each of the short simple roots. The phantom
terms arise as Maass shifts of holomorphic cusp forms of small absolute weight.

The paper is organized as follows. In section 2 we study non-holomorphic
Poincaré series as functions on the symplectic group. This is the natural point
of view with respect to the Lie algebra action. Section 3 is devoted to the
interplay of functions on group level and on the Siegel half space. We define
the vector valued version of Sturm’s operator, and prove its coincidence with
the holomorphic projection in case of large weight. In section 4 we show the
occurrence of phantom terms. In section 5 we determine the vector valued
gamma functions Γ(ρ) as described above.

2. Poincaré series

2.1. Definition and convergency. For the irreducible algebraic representa-
tion (ρ, Vρ) we assume Vρ = CN , ρ : GL(m,C) → GL(N,C), to have the

properties ρ(x)′ = ρ(x′) and ρ(x̄) = ρ(x) for all x ∈ GL(m,C). This deter-
mines ρ uniquely. Here x′ denotes the transpose of the matrix x. Then v′ · w̄
defines the intrinsic scalar product on Vρ which is ρ(U(m))-invariant.

Proposition 2.1. Let ρ be the irreducible rational representation of GL(m,C)
of dominant highest weight (l1, l2, . . . , lm). Let κ = lm be its absolute weight.
Define the non-holomorphic Poincaré series

PT (g, s1, s2) =
∑

γ∈Γ∞\Γ

ρ(J(γg, i))−1 tr(T Im(γg·i))s1 det(Im(γg·i))s2e2πi tr(Tγg·i).

Applied to any vector v ∈ Vρ the Poincaré series converge absolutely and uni-
formly on compact sets in the sense that this holds for ||PT (g, s1, s2)v|| in the
domain{

(s1, s2) ∈ C2 | Re s2 > m− κ

2
and Re(ms2 + s1) > m2 −

∑
j lj

2

}
.

For fixed such (s1, s2) the function ||PT (g, s1, s2)v|| is bounded and belongs to
L2(Γ\G). In particular, in case the absolute weight κ > 2m is large, at the
critical point (s1, s2) = (0, 0) the Poincaré series converge absolutely.
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The most natural definition of Poincare series on G would be one in m complex
variables,

PT (g, s1, . . . , sm) =
∑

γ∈Γ∞\Γ

ρ(J(γg, i))−1
m∏
j=1

tr((TY )[j])sj · e2πi tr(Tγg·i) .

Here Y [j] denotes the j-th alternating power of Y , i.e. a matrix of size
(
m
j

)
with entries the (j × j)-minors of Y . The convergence of these series in
(s1, . . . , sm) follows from that of the above in (s̃1, s̃2) = (

∑
j<m j · sj , sm),

because tr(Y [q]) ≤ tr(Y )q. We include a notion of non-holomorphic Poincaré
series in order to give a clue how holomorphic continuation for small weights
may be obtained. However, the spectral theoretic strategy of applying ade-
quate Casimir operators to obtain the continuations by resolvents, is involved
because the higher derivatives belong to higher dimensional spaces.
For the proof of proposition 2.1 we use the following result.

Theorem 2.2. [6, theorem 4.3] The series

ST (g, k1, k2) =
∑

γ∈Γ∞\Γ

exp(2πi tr(Tγg · i)) tr(T Im(γg · i))k1 det(Im(γg · i))k2

converges absolutely and uniformly on compact sets in the cone{
(k1, k2) ∈ C | Re k2 > m and Re(k2 +

k1

m
) > m

}
.

For (k1, k2) fixed, it is absolutely bounded by a constant independent of τ and
belongs to L2(Γ\G).

Proof of proposition 2.1. For g ∈ G let Z = X + iY = g · i ∈ H. There exists

gZ =

(
Y

1
2 U

0 Y −
1
2

)
∈ G ,

where Y
1
2 is the symmetric positive definite square root of Y , such that gZ ·i = Z

and such that and g = gZk for some k in the maximal compact subgroup K

of G. Further, there exists k1 ∈ SO(m) such that D = k1Y
1
2k′1 is diagonal,

D = diag(d1, . . . , dm) for positive eigenvalues dj of Y
1
2 . We compute

ρ(J(g, i))−1 = ρ(J(gZ , i)J(k, i))−1 = ρ(J(k, i)−1)ρ(Y
1
2 ) = ρ(J(k, i)−1k′1)ρ(D)ρ(k1).

For computing the norm ||ρ(J(g, i))−1v|| for a vector v ∈ Vρ, unitary factors
ρ(k) for k ∈ U(m) don’t fall into account, so

||ρ(J(g, i))−1v|| ≤ ||ρ(D)|| · ||v|| .

We seize the operator norm ||ρ(D)||. The action of the diagonal matrix D on
Vρ is determined by the weights λ = (λ1, . . . , λm) of ρ. For the absolute weight
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κ ≥ 0 of ρ we have λj − κ ≥ 0, j = 1, . . . ,m, and there is j such that λj = κ.
If v is a normalized weight vector for λ, then

||ρ(D)v|| =

m∏
j=1

d
λj
j =

m∏
j=1

d
λj−κ
j · det(D)κ ≤ tr(Y )

1
2

∑
j(λj−κ) · det(Y )

κ
2 .

For dominant weights λ we have λ1 ≥ λ2 ≥ · · · ≥ λm = κ ≥ 0, and λ =
l−
∑

αi
niαi for some integers ni ≥ 0 and the simple roots αi of glm. Any other

weight is a conjugate of a dominant one under the Weyl group, which consists
of permutations of the coordinates. So for all weights λ of ρ we have

0 ≤
m∑
j=1

(λj − κ) ≤
m∑
j=1

(lj − κ) .

Accordingly, the operator norm is seized by

||ρ(D)|| ≤ tr(Y )
1
2

∑
j(lj−κ) · det(Y )

κ
2 .

So the absolute series of ST (g, s1+1
2

∑
j(lj−κ), s2+κ

2 ) in Theorem 2.2 dominates

||PT (g, s1, s2) · v||, and the claim follows from Theorem 2.2. �

2.2. Lie algebra action. We make sure that the Poincaré series transform
adequately under the action of the Lie algebra gC = spm,C. Following [6] we
choose the following basis of gC = p+ ⊕ p− ⊕ kC, where kC is the Lie algebra of
K given by the matrices satisfying(

A S
−S A

)
, A′ = −A , S′ = S ,

and

p± =

{(
X ±iX
±iX −X

)
, X ′ = X

}
.

Let ekl ∈Mm,m(C) be the elementary matrix having entries (ekl)ij = δikδjl and

let X(kl) = 1
2(ekl + elk). The elements

(E±)kl = (E±)lk

of p± are defined to be those corresponding to X = X(kl), 1 ≤ k, l ≤ m. Then
(E±)kl, 1 ≤ k ≤ l ≤ m form a basis of p±. A basis of kC is given by Bkl, for
1 ≤ k, l ≤ m, where Bkl corresponds to

Akl =
1

2
(ekl − elk) and Skl =

i

2
(ekl + elk) .

For abbreviation, let E± be the matrix having entries (E±)kl. Similarly, let
B = (Bkl)kl be the matrix with entries Bkl and let B∗ be its transpose having
entries B∗kl = Blk.
Let us recall some facts on derivatives. In order to compute the action of
gC on (ρ, Vρ)-valued functions, we must evaluate the total differential Dρ at
various places A. For A in GL(m,C) let us denote by mA the multiplication
in GL(m,C) by A from the left, mA(g) = Ag, respectively mρ(A)(G) = ρ(A)G
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in GL(Vρ). Then we can compute the differential of ρ ◦ mA = mρ(A) ◦ ρ in
1m = idGL(m,C) in two different ways.

D(ρ ◦mA) |1m = Dρ |mA(1m) ◦DmA |1m= Dρ |A ◦mA ,

respectively,

D(mρ(A) ◦ ρ) |1m = D(mρ(A)) |1m ◦Dρ |1m = mρ(A) ◦ dρ ,
where dρ is the differential of ρ at the identity, i.e. the corresponding Lie
algebra representation. It follows that

Dρ(A) = Dρ |A = mρ(A) ◦ dρ ◦m−1
A .

Accordingly, for a GL(m,C)-valued C∞-function A(t) we have

d

dt
ρ(A(t)) |t=0 = dρ

(
A(0)−1 d

dt
A(t) |t=0

)
◦ ρ(A(0)) .

We are specially interested in the actions Xρ(j(g, i)−1) for Lie algebra elements
X. For elements X of the real Lie algebra g = gR, this action is given by

Xρ(J(g, i)−1) =
d

dt
ρ(J(g exp(tX), i)−1) |t=0 .

For elements of the complex Lie algebra we obtain the action by putting to-
gether the actions of the real and the imaginary part. Recalling that the dif-
ferential of the inverse mapping f(g) = g−1 is given by Df(g) = −g−2, we
find

Xρ(J(g, i)−1) = −dρ
(
J(g, i)−1 ·XJ(g, i)

)
◦ ρ(J(g, i)−1) .

We often use the abbreviation J = J(g, i). Recalling the actions of the basis
elements,

BabJ(g, i) = J(g, i)eab ,

(E−)abJ(g, i) = 0 ,

(E+)abJ(g, i) = −2J−1J̄X(ab) ,

we obtain

Babρ(J(g, i)−1) = −dρ(eab) ◦ ρ(J(g, i)−1) ,(2)

(E−)abρ(J(g, i)−1) = 0 ,(3)

(E+)abρ(J(g, i)−1) = +2dρ(J−1J̄X(ab)) ◦ ρ(J(g, i)−1) .(4)

Here k = J(k̃, i) ∈ U(m) is the image of the K-component k̃ of g with respect

to the decomposition g = g̃z · k̃, where

g̃Z =

(
S U
0 S−T

)
with a lower triangular matrix S such that g · i = g̃Z · i = Z, i.e. SS′ = Y =
Im(g · i).
Now we give the action of the Lie algebra basis on the summands

HT (g, s1, s2) = ρ(J(g, i)−1)hT (g · i, s1, s2)
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of the ρ-valued Poincaré series. Here we abbreviate

hT (Z, s1, s2) = tr(TY ))s1 det(Y ))s2e2πi tr(TZ) .

Recalling the results of [6, Lemma 7.1], we obtain

BabHT (g, s1, s2) = −dρ(eab) ◦ ρ(J(g, i)−1) · hT (g · i, s1, s2) ,

(E−)abHT (g, s1, s2) = ρ(J(g, i)−1) · 2s1(k′S′TSk)ab · hT (g · i, s1 − 1, s2)

+ρ(J(g, i)−1) · 2s2(k′k)kl · hT (g · i, s1, s2) ,

and

(E+)abHT (g, s1, s2) = +dρ(J−1J̄2X(ab)) ◦ ρ(J−1) · hT (g · i, s1, s2)

+ρ(J−1) · (2s2(J−1J̄)ab − 8π(J̄Y TY J̄)ab) · hT (g · i, s1, s2)

+ρ(J−1) · 2s1(J̄Y TY J̄)ab · hT (g · i, s1 − 1, s2)
)
.

Notice that each component of J̄Y TY J̄ can be sized by tr(TY ), and that terms

in k ∈ U(m) only vary in compact sets. Also, dρ(eab) and dρ(X(ab)) are linear
transformations of Vρ. So the norm of each single term of the above can be
sized up to a global constant by the norm of HT (g, s1, s2). We conclude that
the Poincaré series allow termwise differentiations:

Proposition 2.3. The derivatives

XPT (g, s1, s2) =
∑

γ∈Γ∞\Γ

XHT (γg, s1, s2)

by elements X of the enveloping Lie algebra U(gC) have the same convergency
properties as the Poincaré series themselves.
In particular, in the case of large weight κ > 2m, the Poincaré series converge
in (s1, s2) = (0, 0), and vanish under the action of E−.

3. Functions on the Siegel upper halfspace

LetG = Sp(m,R) be the symplectic group of genusm. We identify the maximal
compact subgroup K (stabilizer of i) with the unitary group U(m) by

k =

(
C S
−S C

)
7→ J(k, i) = C − iS .

For abbreviation, let J(g) = J(g, i) for g ∈ G. Let C∞(H, Vρ) be the space of
C∞-functions on H with values in the space Vρ, and let C∞(G,Vρ) = C∞(G)⊗
Vρ. There is a monomorphism

C∞(H, Vρ) → C∞(G,Vρ)τ ,

f(Z) 7→ F (G) = ρ−1(J(g))F (gKi) .

The images have the following transformation property under K

F (gk) = ρ−1(J(gk))f(gkKi) = ρ−1(J(k))F (g) ,
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so they belong to C∞(G,Vρ)τ , the subspace of functions in C∞(G,Vρ) on which
the action of K by right translations is given by τ = ρ−1◦J , and the map above
implies an isomorphism

φ : C∞(H, Vρ) −̃→ C∞(G,Vρ)τ .

In particular, we have F (gZ) = ρ(Y 1/2)f(Z). Under φ the action of the anti-
holomorphic differential operator ∂Z̄ transforms to the action of E−.

Proposition 3.1. Let ρ be an irreducible representation of GL(m,C) of highest
weight l and absolute weight κ > 2m. The Poincaré series

pT (Z) =
∑

γ∈Γ∞\Γ

ρ(J(γ, Z))−1e2πi tr(TγZ)

converge absolutely and locally uniformly. They are square-integrable and holo-
morphic. In particular, they belong to the space [Γ, ρ]0 of holomorphic cusp-
forms.

Proof of proposition 3.1. Because pT (s1, s2) = φ−1(PT (s1, s2)), this is a direct
consequence of proposition 2.1 along with proposition 2.3. �

3.1. Petterson scalar product. For f, h ∈ [Γ, ρ]0 we define the Petterson
scalar product

〈f, h〉 :=

∫
F
f(Z)′ρ(ImZ)h(Z) dVinv ,

where

dVinv =
dX

det(Y )
m+1

2

dY

det(Y )
m+1

2

is the invariant measure on H. Here dX =
∏
i≤j dxij , and likewise dY . We

also fix the invariant measure

dYinv =
dY

det(Y )
m+1

2

on the space of positive definite matrices. Using the isomorphism φ, the Pet-
terson scalar product equals the L2-scalar product on group level if one uses
the normalization dVinvdk = dg for the Haar measures involved.

〈f, h〉 =

∫
F
f(Z)′ρ(ImZ)h(Z) dVinv

=

∫
F
F (g)′ρ(J(g))′ρ(ImZ)ρ(J(g))H(g) dVinv

=

∫
Γ\G

F (g)′H(g) dg

= 〈〈F,H〉〉L2(Γ\G) .

Here we used Z = g·i and the formula ImMZ = (CZ+D)′−1 Im(Z)(CZ +D)−1.
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3.2. Unfolding the Poincaré series. Let f be a (non-homomorphic) mod-
ular form of weight ρ. We have

〈f, PT v〉 =

∫
F
f(Z)′ρ(ImZ)

∑
γ∈Γ∞\Γ

ρ−1(J(γ, z))e−2πi tr(TγZ̄)v dVinv

=

∫
F

∑
γ∈Γ∞\Γ

f(γZ)′ρ−1(J(γ, Z))′ρ(ImZ)ρ−1(J(γ, Z))e−2πi tr(TγZ̄)v dVinv

=

∫
Γ\H

∑
γ∈Γ∞\Γ

f(γZ)′ρ(Im(γZ))e−2πi tr(TγZ̄)v dVinv

=

∫
Γ∞\H

f(Z)′ρ(ImZ)e−2πi tr(T Z̄)v dVinv .

More correctly, we must restrict to the case of forms of moderate growth, which
means that the above integral exists. Assuming f to have Fourier expansion

f(Z) =
∑
T̃

ρ(T̃
1
2 )a(T̃ , T̃

1
2Y T̃

1
2 )e2πi tr(T̃X) ,

(notice that the vector valued coefficients are well-defined because ρ(T̃
1
2 ) be-

longs to GL(Vρ) and a(T̃ , T̃
1
2Y T̃

1
2 ) belongs to Vρ) we calculate further

〈f, PT v〉 =

∫
Y >0

a(T, T
1
2Y T

1
2 )′ρ(T

1
2 )ρ(Y )ve−2π tr(TY ) dYinv

det(Y )
m+1

2

= det(T )
m+1

2

∫
Y >0

a(T, Y )′ρ(Y )ρ(T−
1
2 )ve−2π tr(Y ) dYinv

det(Y )
m+1

2

.

If f is assumed to be holomorphic, we may write for its Fourier expansion

f(Z) =
∑
T̃

ρ(T̃ 1/2)a(T̃ )e2πi tr(T̃Z) ,

where

a(T̃ ) = a(T̃ , T̃
1
2Y T̃

1
2 ) · e2π tr(T̃ Y )

is independent of Y . Then we obtain

〈f, PT v〉 = det(T )
m+1

2 a(T )′
∫
Y >0

ρ(Y )ρ(T−
1
2 )ve−4π tr(Y ) dYinv

det(Y )
m+1

2

.

3.3. Sturm’s operator. For Sturm’s operator to reproduce holomorphic cusp-
forms we must normalize it such that this last expression is a(T )′ · v. So we are
in due to calculate the integrals

Γ(ρ) =

∫
Y >0

ρ(Y )e−4π tr(Y ) dYinv

for varying ρ. For ρ of large enough absolute weight, this Gamma integral
is convergent and belongs to End(Vρ) ([4]). It allows analytic continuation
to smaller weights. We expect Γ(ρ) to be invertible in general apart from a
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discrete set of zeros and poles and prove this for a class of representations in
section 5.
For all ρ such that the following is well-defined as an element of GL(Vρ) let

C(ρ) =

∫
Y >0

ρ(Y )e−4π tr(Y ) dYinv

det(Y )
m+1

2

= (4π)(m+1)−
∑
j lj · Γ(ρ⊗ det−

m+1
2 ) .

Then define the normalized Sturm operator by

Stρ(f) =
∑
T>0

ρ(T
1
2 )b(T )e2πi tr(TZ) ,

where b(T ) is defined by

b(T )′ = det(T )−
m+1

2

∫
Y >0

a(T, Y )′ρ(T
1
2 )C(ρ)−1ρ(Y )ρ(T−

1
2 )
e−2π tr(Y )dYinv

det(Y )
m+1

2

.

Then, for holomorphic input f as above and v ∈ Vρ we obtain b(T ) = a(T ).
The unfolding process above proves theorem 1.1. The assumption that Γ(ρ ⊗
det−

m+1
2 ) is an automorphism is satisfied for example for alternating powers

ρ = st[q] detκ, κ > m− 1 (see proposition 5.2).

4. Phantom terms by Sturm’s operator

We will prove theorem 1.2. So fix rank m = 2. We test Sturm’s operator
in case of ρ being the representation of minimal K-type (κ + 1, κ). We show
that in analogy to the case of scalar weight κ the Maass shift of cusp forms
h ∈ [Γ, (κ− 1, κ− 2)]0 produce phantom terms if and only if κ = 3.
we have

C(ρ) = (4π)3−(2κ+1)(κ− 3

2
)Γ2(κ− 3

2
)12 .

Let c(ρ) be the scalar such that C(ρ) = c(ρ)12. Let k = κ−2 and let h ∈ [Γ, τ ]0
be a holomorphic cuspform for τ = (k + 1, k) with Fourier expansion

h(Z) =
∑
T>0

τ(T
1
2 )a(T )e2πi tr(TZ) .

Maass’ shift operator is given by (see [8, 5.1])

∆
[2]
+ h(Z) = (2i)2(τ ⊗ det−

1
2 )(Y −1) · det(∂Z)

(
(τ ⊗ det−

1
2 )(Y )h(Z)

)
.

The image of h under ∆
[2]
+ is a non-holomorphic form of weight τ ⊗ det2, i.e.

(k + 3, k + 2) = (κ + 1, κ). Hence (see [8]), its holomorphic projection is

zero prhol(∆
[2]
+ (h)) = 0. We show that Sturm’s operator Stτ⊗det2(∆

[2]
+ (h))

is non-zero if and only if k = 1. For to apply Maass’ operator to h it is

enough to apply it to e2πi tr(TZ). Here (τ ⊗ det−
1
2 )(Y ) = det(Y )k−

1
2Y . Let

f(Z) = det(Y )k−
1
2 e2πi tr(TZ) and g(Z) = Y . By [2, p. 211] we have

det(∂Z)(f · g) = det(∂Z)(f) · g + 2(∂Z(f) u ∂Z(g)) + f · det(∂Z)(g) .
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Here the last term is zero, because det(∂Z) is a differential operator of homoge-
neous degree two and g(Z) = Y is of degree one. For the first term we obtain
following [8, 5.2]

det(∂Z)(f(Z)) · Y = −1

4
k(k − 1

2
) det(Y )k−

3
2 e2πi tr(TZ) · Y

− i
2

(k − 1

2
)(2πi) tr(TY ) det(Y )k−

3
2 e2πi tr(TZ) · Y

+(2πi)2 det(Y )k−
1
2 det(T )e2πi tr(TZ) · Y .

For the second term we find

∂Z(f(Z)) = − i
2

(k− 1

2
) det(Y )k−

1
2 e2πi tr(TZ) ·Y −1 +2πidet(Y )k−

1
2 e2πi tr(TZ) ·T ,

and ∂Z(Yjk) = − i
2X

(jk). Here X(jk) = 1
2(ejk + ekj). So the second term

2(∂Z(f(Z)) u ∂Z(g(Z)) equals∑
j,k

(
−1

4
(k − 1

2
) det(Y )k−

3
2 e2πi tr(TZ)2(Y −1 uX(jk)) ·X(jk)

+ π det(Y )k−
1
2 e2πi tr(TZ) · 2(T uX(jk)) ·X(jk)

)
,

which by definition of u-multiplication ([2, p. 207]) is

−1

4
(k − 1

2
) det(Y )k−

3
2 e2πi tr(TZ) · Y + π det(Y )k−

1
2 e2πi tr(TZ) det(T ) · T−1 .

Altogether we obtain

∆
[2]
+ (e2πi tr(TZ)) = (k + 1)(k − 1

2
)

1

det(Y )
e2πi tr(TZ) · 12

− 4π(k − 1

2
)
tr(TY )

det(Y )
e2πi tr(TZ) · 12

+ (4π)2 det(T )e2πi tr(TZ) · 12

− 4π det(T )e2πi tr(TZ) · (TY )−1 .

The Fourier coefficients of

h̃(Z) = ∆
[2]
+ (h) =

∑
T>0

ρ(T
1
2 )a(T, T

1
2Y T

1
2 )e2πi tr(TX)

are given by ρ(T
1
2 )a(T, T

1
2Y T

1
2 ), which equal

e−2π tr(TY ) ·
((k − 1

2)(k + 1)

det(Y )
− 4π(k − 1

2
)
tr(TY )

det(Y )
+ (4π)2 det(T )

)
· τ(T

1
2 )a(T )

− e−2π tr(TY ) · 4π det(T ) · Y −1T−1τ(T
1
2 )a(T ) ,
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respectively a(T, Y ) given by

e−2π tr(Y ) ·

(
(k − 1

2)(k + 1)

det(Y )
− 4π(k − 1

2
)

tr(Y )

det(Y )
+ (4π)2

)
· ρ(T−

1
2 )a(T )

−e−2π tr(Y ) · 4π · Y −1a(T ) .

Accordingly, for to compute Sturm’s operator we evaluate the sum of the fol-

lowing terms up to the factor det(T )−
1
2 c(ρ)−1 · a(T )′. First,

(k − 1

2
)(k + 1)

∫
Y >0

Y det(Y )k+2+s− 5
2 e−4π tr(Y ) dYinv·

which by Proposition 5.2 equals

(5) (k − 1

2
)(k + 1)(4π)−2(s+k)(s+ k − 1

2
)Γ2(s+ k − 1

2
)12 .

Second,

−4π(k − 1

2
)

∫
Y >0

Y tr(Y ) det(Y )k+2+s− 5
2 e−4π tr(Y ) dYinv

which by Lemma 5.5 equals

(6) − 2(k − 1

2
)(4π)−2(s+k)(s+ k − 1

2
)(s+ k)Γ2(s+ k − 1

2
)12 .

Third,

(4π)2

∫
Y >0

Y det(Y )k+2+s− 3
2 e−4π tr(Y ) dYinv

which by Proposition 5.2 equals

(7) (4π)−2(s+k)(s+ k +
1

2
)Γ2(s+ k +

1

2
)12 .

And

(8) 4π ·
∫
Y >0

12 det(Y )k+2+s− 3
2 e−4π tr(Y ) dYinv = (4π)−2(s+k)Γ2(s+ k+

1

2
)12 .

According to (5)–(8), Sturm’s operator applied to ∆
[2]
+ h(Z) is given in terms of

coefficients by the limit lims→0 b(T, s), where

b(T, s) = det(T )−
3
2 c(ρ)−1(4π)−2(s+k) s2 − s

2

(s+ k − 1)
Γ2(s+ k +

1

2
)a(T ) .

Here we used the identity (s+k− 1
2)Γ2(s+k− 1

2) = (s+k−1)−1Γ2(s+k+ 1
2).

The limit

lim
s→0

b(T, s) = (4π)2 det(T )−
3
2 · lim

s→0

s2 − s
2

s+ k − 1
· a(T )

is zero in all cases k > 1, and equals

b(T ) = −(4π)2

2
det(T )−

3
2 · a(T )
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in case k = 1. So Sturm’s operator applied to ∆
[2]
+ h(Z) is non-zero exactly in

case ρ = (κ+1, κ) with κ = 3, which is the minimal K-type of the holomorphic
discrete series representation of Harish-Chandra parameter (4, 3) − (1, 2) =
(3, 1).

5. Gamma integrals

For an irreducible finite dimensional representation ρ of GL(m,C) of absolute
weight κ we are interested in the End(Vρ)-valued integral

Γ(ρ) =

∫
Y >0

ρ(Y )e− tr(Y )dYinv .

Introducing a factor det(Y )s the integral

Γ(ρ⊗ dets) =

∫
Y >0

ρ(Y ) det(Y )se− tr(Y )dYinv

exists for Re s+κ > m−1
2 ([4]). We denote by Γ(ρ) its meromorphic continuation

to s = 0. Let

Γm(s) = π
m(m−1)

4

m−1∏
ν=0

Γ(s− ν

2
)

denote the classical Gamma function of level m which for Re s > m−1
2 is given

by the integral

Γm(s) =

∫
Y >0

det(Y )se− tr(Y )dYinv .

In particular we have Γ(dets) = Γm(s). An important property of the operator
integrals is their SO(m)-equivariance.

Lemma 5.1. The integral Γ(ρ) is invariant under orthogonal transformations

Γ(ρ) = ρ(k′)Γ(ρ)ρ(k) ,

for all k ∈ SO(m,R) ⊂ U(m).

Proof of Lemma 5.1. For k ∈ SO(m) we have

Γ(ρ⊗dets) =

∫
Y >0

ρ(k′Y k) dets(k′Y k)e− tr(k′Y k) dYinv = ρ(k′)Γm(ρ⊗dets)ρ(k).

By the uniqueness of meromorphic continuation, this also holds for Γ(ρ). �

5.1. Alternating powers.

Proposition 5.2. For q = 1, . . . ,m, let st[q] be the q-th alternating power of
the standard representation of GL(m,C), i.e. the irreducible representation of
highest weight (1, . . . , 1, 0, . . . , 0), where the number of ones is q. Define the

polynomial C[q](x) = x(x+ 1
2) · · · (x+ q−1

2 ). The automorphism-valued function

Γ(st[q]⊗dets) =

∫
Y >0

Y [q] det(Y )se− tr(Y )dYinv = (−1)qC[q](−s)Γm(s) · idst[q]
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is holomorphic on Re s > m−1
2 and has meromorphic continuation to the com-

plex plane, the pole behavior being that of the scalar function C[q](−s)Γm(s).

Proof of Proposition 5.2. For a symmetric positive definite matrix T it holds

(9)

∫
Y >0

det(Y )se− tr(TY )dYinv = det(T )−sΓm(s) .

Differentiating both sides by ∂
[q]
T we obtain ([2, p. 210, p. 213])

(−1)q
∫
Y >0

Y [q] det(Y )se− tr(TY )dYinv = C[q](−s)T−[q] det(T )−sΓm(s) .

Evaluating at T = 1m yields∫
Y >0

Y [q] det(Y )se− tr(Y )dYinv = (−1)qC[q](−s)Γm(s) · idst[q] . �

By substitution s′ = s − κ, Proposition 5.2 determines Γ(ρ) for the represen-

tations ρ = st[q]⊗detκ. The computation for general ρ may be obtained by
chasing Young tableaux, but for rank m > 2 we don’t obtain an instructive
general formula. This combinatorial aspect becomes visible in the formulas for
m = 2 by the involved triangle numbers an,m defined in Proposition 5.3.

5.2. Rank two. For a general formula for Γ(ρ⊗det−s) for the irreducible rep-
resentations ρ of GL(2,C) of highest weights (r, 0), we need some preparations.

Proposition 5.3. Define the following triangle numbers an,m for n,m ∈ N0.
Let an,0 = 1 for all n ∈ N0, and let a0,m = 0 for all m > 0. For n,m > 0 define
by recursion

an,m =
(
n− 2(m− 1)

)
· an−1,m−1 + an−1,m .

The triangle numbers have the following properties.

(i) an,1 = 1
2n(n+ 1).

(ii) an,2 = 1
8n(n+ 1)(n− 1)(n− 2).

(iii) an,m = 0 for all m > bn+1
2 c (Gauss brackets).

(iv) a2ν−1,ν = a2(ν−1),ν−1.

We will be specially interested in the numbers a2ν−1,ν , for which we give an
explicit formula in Proposition 5.7.

Proof of proposition 5.3. Obviously, a1,1 = a0,0 + a0,1 = 1. Assuming an−1,1 =
1
2n(n− 1), we obtain property (i) for n by induction and the recursion formula

an,1 = n · an−1,0 + an−1,1 =
1

2
n(n+ 1) .

Property (iii) holds for n = 0 by definition, and by induction the right hand
side of the recursion formula is zero for all m > bn2 c+ 1. So the single case left
to check is that of even n = 2k and m = k + 1. But here the recursion yields
a2k,k+1 = (2k − 2k)a2k−1,k + a2k−1,k+1 = 0. Property (ii) is also obtained by
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induction using (i) and (iii). For property (iv) notice that by (iii) an−1,n+1
2

= 0

for odd n, so the recursion formula yields an,n+1
2

= an−1,n−1
2

. �

Lemma 5.4. Let T be a symmetric two-by-two matrix variable and denote by

∂ij =
1+δij

2 ∂Tij the normalized partial derivatives. For all n > 0 the derivatives

of the function det(T )−s are given by

∂
(n)
jj (det(T )−s) = (−1)nTnii det(T )−(s+n)

n−1∏
l=0

(s+ l) ,

for {i, j} = {1, 2}, and

∂
(n)
12 (det(T )−s) =

n−1∑
k=0

2−kan−1,k det(T )−(s+n−k)Tn−2k
12 ·

n−k−1∏
l=0

(s+ l) ,

where the numbers an,m are defined in Proposition 5.3. Further,

∂
(n1)
11 ∂

(n2)
22 (det(T )−s) =

min{n1,n2}∑
k=0

k!

(
n1

k

)(
n2

k

)
(−1)n1+n2+kTn2−k

11 Tn1−k
22 ×

× det(T )−(s+n1+n2−k) ·
n1+n2−k−1∏

l=0

(s+ l) .

Proof of lemma 5.4. Iterating ∂jj(det(T )−s) = −sTii det(T )−(s+1) we obtain

∂
(n)
jj (det(T )−s) = (−1)nTnii det(T )−(s+n)

n−1∏
l=0

(s+ l) .

Then for ∂
(n1)
11 ∂

(n2)
22 (det(T )−s) we obtain

∂
(n1)
11

(
(−1)n2Tn2

11 det(T )−(s+n2)
n2−1∏
l=0

(s+ l)

)

= (−1)n2

n2−1∏
l=0

(s+ l)

n1∑
k=0

(
n1

k

)
∂

(k)
11 (Tn2

11 ) · ∂(n1−k)
11 (det(T )−(s+n2))

=

min{n1,n2}∑
k=0

(
n1

k

)
n2!

(n2 − k)!
(−1)n1+n2+kTn2−k

11 Tn1−k
22 ×

× det(T )−(s+n1+n2−k)
n1+n2−k−1∏

l=0

(s+ l) .

Further, ∂12(det(T )−s) = sT12 det(T )−(s+1) as well as

∂
(2)
12 (det(T )−s) = s(s+ 1)T 2

12 det(T )−(s+2) +
1

2
s det(T )−(s+1)
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satisfy the claimed formula. Then ∂
(n+1)
12 is given by induction

∂12

(
n−1∑
k=0

2−kan−1,k det(T )−(s+n−k)Tn−2k
12

n−k−1∏
l=0

(s+ l)

)

=
n−1∑
k=0

2−kan−1,k · (s+ n− k) · det(T )−(s+n+1−k)Tn+1−2k
12

n−k−1∏
l=0

(s+ l)

+

n−1∑
k=0

2−kan−1,k ·
1

2
(n− 2k) · det(T )−(s+n−k)T

n+1−2(k+1)
12

n−k−1∏
l=0

(s+ l)

=

n∑
k=0

2−kan,k det(T )−(s+n+1−k)Tn+1−2k
12

n+1−k−1∏
l=0

(s+ l) ,

where we have used the product rule and the recursion formula defining the
numbers an,k (see proposition 5.3) as well as the fact an,n = 0 for n ≥ 2. �

Lemma 5.5. Let n1, n2, n3 ≥ 0 be integers. The integral∫
Y >0

Y n1
11 Y

n2
22 Y

n3
12 det(Y )se− tr(Y )dYinv

is a holomorphic function on Re s > 1
2 . For odd n3 it is zero, while for even n3

it is given by

Γ2(s) · 2−
n3
2 an3−1,

n3
2
·

min{n1,n2}∑
k=0

(−1)k
(
n1

k

)(
n2

k

)
k! ·
n1+n2+

n3
2
−k−1∏

l=0

(s+ l) .

Here we put a−1,0 = 1. In particular, the integral has meromorphic continuation
to the complex plane, the poles being at most simple and included in those of
Γ2(s).

Proof of lemma 5.5. Starting with the identity∫
Y >0

det(Y )se− tr(TY )dYinv = det(T )−sΓ2(s)

for Re s > 1
2 , which holds for all positive definite T , we differentiate both sides

by ∂
(n1)
11 ∂

(n2)
22 ∂

(n3)
12 to determine

∫
Y >0 Y

n1
11 Y

n2
22 Y

n3
12 det(Y )se− tr(TY )dYinv by

Γ2(s) · (−1)n1+n2+n3∂
(n1)
11 ∂

(n2)
22 ∂

(n3)
12 (det(T )−s) .

Evaluating at T = 12, we obtain a formula for the integral in question by

Γ2(s) · (−1)n1+n2+n3∂
(n1)
11 ∂

(n2)
22 ∂

(n3)
12 (det(T )−s) |T=12 .
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Lemma 5.4 determines the derivative

∂
(n1)
11 ∂

(n2)
22 ∂

(n3)
12 (det(T )−s) =

min{n1,n2}∑
k=0

n3−1∑
k3=0

(−1)n1+n2−k2−k3
(
n1

k

)(
n2

k

)
k!×

× Tn1−k
11 Tn2−k

22 Tn3−2k3
12 · det(T )−(s+n1+n2+n3−k−k3)×

×
n1+n2+n3−k−k3−1∏

l=0

(s+ l) .

Evaluating at T = 12, the factor Tn3−2k3
12 is zero apart from the case n3 = 2k3.

In this case the formula reduces to the claimed one, whereas it is zero for
odd n3. �

Consider the explicit realization of the representation ρ = ρr of GL2(C) of
highest weight (r, 0) on the space Pr of homogeneous polynomials of degree r
in the variable z = (z1, z2),

ρr(g)
(
P (z)

)
= P (z · g)

for P ∈ Pr. We determine Γ2(ρr⊗dets) by its action on the K = SO(2)-weight
spaces. For k = 0, 1, . . . , r the polynomial

Vk(z) = (z1 − iz2)r−k(z1 + iz2)k

is a K-eigenfunction of weight −r + 2k. We find

Vk(z) =
r∑

ν=0

zr−ν1 zν2 i
ν

min{r−k,ν}∑
j=0

(−1)j
(
r − k
j

)(
k

ν − j

)
,

whereas

ρr(Y )Vk(z) =
[
(Y11 − iY12)z1 + (Y22 + iY12)(−iz2)

]r−k[
(Y11 + iY12)z1 + (Y22 − iY12)iz2

]k
=

r∑
ν=0

zr−ν1 zν2 i
ν · Pk(ν, Y ) ,

with

Pk(ν, Y ) =

min{r−k,ν}∑
j=0

(−1)j
(
r − k
j

)(
k

ν − j

)
(Y11 − iY12)r−k−j

× (Y11 + iY12)k+j−ν(Y22 + iY12)j(Y22 − iY12)ν−j .

By lemma 5.1, Γ2(ρr ⊗ dets) commutes with K, so acts by scalars on the 1-
dimensional K-eigenspaces. Defining

ck(ν) =

min{r−k,ν}∑
j=0

(
r − k
j

)(
k

ν − j

)
(−1)j
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the integral

(10) Γ(r, k, s) =
1

ck(ν)

∫
Y
Pk(ν, Y ) det(Y )se− tr(Y ) dYinv

is the Γ(ρr ⊗ dets)-eigenvalue of Vk(z), which in particular is independent of ν.

Proposition 5.6. For k = 0, 1, . . . , r we have the functional equation

Γ(r, k, s) = Γ(r, r − k, s) .

For k = 0, 1, . . . , b r2c the function Γ(r, k, s) is explicitly given by

Γ(r, k, s) = Γ2(s)

b r
2
c∑

µ=0

a2µ−1,µ

2µ

k∑
j=0

(
k

j

)(
r − 2k

2(µ− j)

)
(−1)µ−j

r−µ−1∏
l=0

(s+ l) .

With respect to the SO(2)-weight decomposition, the operator Γ(ρr ⊗ dets) is
given by the diagonal matrix

Γ(ρr⊗dets) = diag
(
Γ(r, 0, s),Γ(r, 1, s), . . . ,Γ(r, br

2
c, s), . . . ,Γ(r, 1, s),Γ(r, 0, s)

)
.

In particular, Γ(ρr ⊗ dets) is divisible by Γ2(s)
∏b r

2
c−1

l=0 (s + l). Apart from its
finite set of zeros and its set of poles which is contained in that of Γ2(s), the
operator Γ(ρr ⊗ dets) is invertible for Re s > 1

2 .

Proof of proposition 5.6. We determine Γ(r, k, s) by choosing ν = 0 in (10).
For integers a, b ≥ 0

(Y 2
11 + Y 2

12)a(Y11 ± iY12)b =
a∑
j=0

b∑
l=0

(
a

j

)(
b

l

)
(±i)lY 2(a−j)+b−l

11 Y 2j+l
12 ,

so by lemma 5.1 only the summands with even Y12-exponents contribute to the
integral∫

Y
(Y 2

11 + Y 2
12)a(Y11 ± iY12)b det(Y )se− tr(Y ) dYinv

= Γ2(s)

a∑
j=0

b b
2
c∑

l=0

(
a

j

)(
b

2l

)
(−1)l

a2(j+l)−1,j+l

2j+l

2a+b−(j+l)−1∏
µ=0

(s+ µ) .

Notice that the integral is independent of the sign in (Y11± iY12)b. Accordingly
Γ(r, k, s) = Γ(r, r− k, s), and we may restrict to the case k ≤ r− k, and apply
the above formula with a = k and b = r − 2k. �

In particular, in case k = 0

(11) Γ(r, 0, s) = Γ2(s)

b r
2
c∑

µ=0

(
r

2µ

)
(−1)µ

a2µ−1,µ

2µ

r−µ−1∏
l=0

(s+ l) .
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On the other hand, we recall the formula valid for all ν

Γ(r, 0, s) =

∫
Y

(Y11 − iY12)r−ν(Y11 + iY12)ν det(Y )se− tr(Y ) dYinv .

Because

(Y11 + Y22)r =
r∑

ν=0

(
r

j

)
(Y11 − iY12)r−ν(Y22 + iY12)ν ,

we obtain ∫
Y

(Y11 + Y22)r det(Y )se− tr(Y ) dYinv = 2r · Γ(r, 0, s) ,

which implies

Γ(r, 0, s) =
Γ2(s)

2r

r∑
j=0

(
r

j

)min{j,r−j}∑
µ=0

(
r − j
µ

)(
j

µ

)
(−1)µµ!

r−µ−1∏
l=0

(s+ l) ,

or equivalently

(12) Γ(r, 0, s) = Γ2(s)

b r
2
c∑

µ=0

(−1)µ
µ!

2r

r−µ∑
j=µ

(
r

j

)(
r − j
µ

)(
j

µ

) r−µ−1∏
l=0

(s+ l) .

Noticing that the polynomials
∏r−µ−1
l=0 (s + l) for µ = 0, . . . , b r2c are linearly

independent, we obtain by comparing the coefficients of (11) and (12)

µ!

2r

r−µ∑
j=µ

(
r

j

)(
r − j
µ

)(
j

µ

)
=

(
r

2µ

)
a2µ−1,µ

2µ
,

which is easily simplified to the identity of proposition 5.7 (a) below.

Proposition 5.7. The triangle numbers defined in Proposition 5.3 take the
following special values.

(a) For all µ = 0, 1, 2, . . . ,

a2µ−1,µ =
(2µ)!

2µµ!
= (2µ− 1)!! .

(b) For all µ = 1, 2, 3, . . . ,

a2µ−1,µ−1 = µ · (2µ− 1)!! .

(c) For all µ = 1, 2, 3, . . . ,

a2µ,µ−1 =
µ

3
(2µ+ 1)!! .

Proof of Proposition 5.7. By the defining recursion formula we obtain

a2µ,µ = 2a2µ−1,µ−1 + a2µ−1,µ .
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Because part (a) has already been verified for all ν, we obtain part (b) by using
proposition 5.3 (iv)

a2µ−1,µ−1 =
1

2

(
(2µ+ 1)!!− (2µ− 1)!!

)
= µ · (2µ− 1)!! .

By recursion a2µ+1,µ = 3a2µ,µ−1 + a2µ,µ, and applying (a) and (b), we obtain
part (c)

a2µ,µ−1 =
1

3

(
(µ+ 1)(2µ+ 1)!!− (2µ+ 1)!!

)
=

µ

3
(2µ+ 1)!! . �

Example 5.8 (Symmetric representation). For r = 2 the representation ρ2 is
isomorphic to the symmetric representation. In terms of the basis of eigenvec-
tors Vk(z), k = −2, 0, 2, for SO(2), the Γ-integral is given by the matrix

Γ(ρ2 ⊗ dets) = sΓ2(s)

s+ 1
2

s+ 3
2

s+ 1
2

 .

Equivalently, on the space of symmetric matrices X =
(
X1 X12
X12 X2

)
,

Γ((Sym⊗dets)(X)) =

∫
Y >0

Y XY det(Y )se− tr(Y )dYinv

= s(s+ 1)Γ2(s) ·X +
s

2
Γ2(s) · X̃ ,

where X̃ =
(

X2 −X12
−X12 X1

)
is the adjunct matrix for X. In particular, this

example shows that Γ(ρ) is not a scalar operator in general.

5.3. Weyl’s character formula. Lemma 5.1 suggests the following integral
transformation. For the diagonal torus T of GL(m,R) let

T>0 = {t = diag(t1, . . . , tm) ∈ T | t1 > t2 > · · · > tm} .
Denote by Pm the set of positive definite (m,m)-matrices, Pm ⊂ Sym2(Rm).
Let K = SO(m) with unit element E. There is an injective map

T>0 ×K → Pm , (t, k) 7→ ktk′ = ktk−1 = Y ,

which has open and dense image. For the pullback φ∗ we find

φ∗(dY ) (t, E) = (dX ′ · t+ t · dX) + dt ,

where

dX =


0 dx12 . . . dx1m

−dx12
. . .

...
... . . . . . . 0

 .

So −dX · t+ t · dX equals
0 (t1 − t2)dx12 . . . (t1 − tm)dx1m

(t1 − t2)dx12
. . .

. . .
...

... . . . (tm−1 − tm)dxm−1,m 0

 .
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Accordingly, the pullback φ∗(det(Y )−
m+1

2
∏
i≤j dYij) at (t, E) of the invariant

measure dYinv on Pm is given by

±det(t)−
m+1

2 ·
∏
i<j

(ti − tj)
∧

i<j
dxij ∧ (dt1 ∧ · · · ∧ dtm) .

Since φ∗(dYinv) is K-invariant, we obtain

(13) Γ(ρ) = ±
∫
K

∫
T>0

det(t)−
m+1

2

∏
i<j

(ti − tj)ρ(ktk′)e− tr(t) dt dk .

We double check this formula by testing it for ρ = detk in case m = 2, where

Γ(detk) = Γ2(k) =
√
π · Γ(k)Γ(k − 1

2
) .

This must equal up to a constant depending on the normalization of measures
and their orientation∫

t2>t1>0
(t1t2)k−

3
2 (t1 − t2)e−t1−t2 dt1 dt2 ,

which equals∫ ∞
0

t
k− 3

2
2 e−t2 dt2 ·

∫ ∞
0

t
k− 1

2
2 e−t1 dt1 − 2

∫ ∞
0

t
k− 3

2
2 e−t2

∫ ∞
t2

t
k− 1

2
1 e−t1 dt1 dt2 .

For the last integral we first notice that by partial integration∫ ∞
t2

t
k− 1

2
1 e−t1 dt1 = t

k− 1
2

2 e−t2 + (k − 1

2
)

∫ ∞
t2

t
k− 3

2
1 e−t1 dt1 .

Let φ(t) be an antiderivative of −tk−
3
2 e−t, in particular

φ(t2) =

∫ ∞
t2

t
k− 3

2
1 e−t1 dt1 .

Accordingly,∫ ∞
0

φ′(t2)φ(t2) dt2 =

∫ ∞
0

t
k− 3

2
2 e−t2

∫ ∞
t2

t
k− 3

2
1 e−t1 dt1 dt2

= φ(t2)2 |∞0 −
∫ ∞

0
φ(t2)φ′(t2) dt2 ,

i.e.

−2

∫ ∞
0

t
k− 3

2
2 e−t2

∫ ∞
t2

t
k− 3

2
1 e−t1 dt1 dt2 = −Γ(k − 1

2
)2 .

So we obtain
∫
t2>t1>0(t1t2)k−

3
2 (t1 − t2)e−t1−t2 dt1 dt2 to equal

Γ(k +
1

2
)Γ(k − 1

2
)− 1

22k−2
Γ(2k − 1) − (k − 1

2
)Γ(k − 1

2
)2 ,

which simplifies to −
(

1
2

)2k−2
Γ(2k − 1). Using Legendre’s relation,

√
π

2z−1
Γ(z) = Γ(

z

2
)Γ(

z + 1

2
)
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we conclude∫
t2>t1>0

(t1t2)k−
3
2 (t1 − t2)e−t1−t2 dt1 dt2 = − 1√

π
· Γ(k)Γ(k − 1

2
) .

Thus indeed,

Γ2(detk) = (−1) · vol(K) ·
∫
t2>t1>0

(t1t2)k−
3
2 (t1 − t2)e−t1−t2 dt1 dt2

with the volume of K normalized by vol(K) = π.

We use (13) to compute the trace

tr(Γ(ρ)) = ± vol(K)

∫
T>0

det(t)−
m+1

2

∏
i<j

(ti − tj) tr(ρ(t))e− tr(t) dt .

On the other hand, we can use Weyl’s character formula

χρ =

∑
w∈Sm sign(w)ew(λ+δ)∏
α∈Φ+(e

α
2 − e−

α
2 )

=

∑
w∈Sm sign(w)ew(λ+δ)−δ∏

α∈Φ+(1− e−α)
,

where δ is half the sum of positive roots of SO(m), to compute tr(ρ(t)) = χρ(t).
In case the rank m = 2m′ ≥ 4 is even, a system Φ+ of positive roots is given
by ei − ej and ei + ej for 1 ≤ i < j ≤ m, so δ =

∑
i(m− i)ei for m = 2m′. We

obtain

tr(ρ(t)) = χρ(t) =

∑
w∈Sm sign(w)tw(λ+δ)−δ∏

i<j(1−
tj
ti

)
,

where for a vector v = (v1, . . . , vm) we write tv = tv11 · · · tvmm . Thus, in the even
rank case we obtain

tr(Γ(ρ)) = ± vol(K)
∑
w∈Sm

sign(w)

∫
T>0

tw(λ+δ)−m+1
2 e− tr(t) dt .

In case the rank m = 2m′ + 1 ≥ 3 is odd, there are the additional positive
roots ei, i = 1, . . . ,m, so δ =

∑
i(m+ 1

2 − i)ei and

χρ(t) =

∑
w∈Sm sign(w)tw(λ+δ)−δ∏
i<j(1−

tj
ti

) ·
∏
i(1− t

−1
i )

.

Thus in the case of odd rank

tr(Γ(ρ)) = ± vol(K)
∑
w∈Sm

sign(w)

∫
T>0

tw(λ+δ)−m
2∏

i(ti − 1)
e− tr(t) dt .
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