Lifting newforms to vector valued modular forms for the Weil representation

Markus Schwagenscheidt and Fabian Völz

Abstract

Given a discriminant form D of level N there is a natural lifting mapping elliptic modular forms of level N to vector valued modular forms for the Weil representation associated to D. We show that in some cases the zero component of a lifting of a newform f is just a scalar multiple of f. In order to do so, we split the lifting map into certain partial liftings corresponding to the prime powers exactly dividing N and then proceed to compute the zero components of these partial maps explicitly. As an application we show that the L-function $L_A(f, s)$ of a newform f and an ideal class A as defined by Gross and Zagier can be written as a certain L-series of the lifting of f.

1 Introduction

As a generalisation of the usual elliptic modular forms one can consider vector valued modular forms. Given an even lattice L of even signature with associated discriminant form $D = L'/L$, a vector valued modular form for the Weil representation ρ_D is a holomorphic function on the complex upper half plane with values in the group algebra $\mathbb{C}[D]$ transforming suitably under $\text{SL}_2(\mathbb{Z})$ and being meromorphic at ∞. Vector valued modular forms are for example important in the theory of Borcherds’ automorphic products where they serve as inputs for the singular theta correspondence, see [2].

Let N be the level of D. There is a lifting map

$$\mathcal{L}_D(f) = \sum_{M \in \Gamma_0(N) \setminus \text{SL}_2(\mathbb{Z})} f|_k M \rho_D(M)^{-1} \chi_D$$

sending elliptic modular forms f of weight k for $\Gamma_0(N)$ and a certain character χ_D associated to D to vector valued modular forms of weight k. This construction is well-known and has for example been studied by Scheithauer in [10], where one can also find explicit formulas for the component functions of the lifting. As the formulas involve sums over the cusps of $\Gamma_0(N)$ they are useful for squarefree level N but difficult to evaluate for arbitrary N.

The zero component of the above lifting has been computed by Bruinier and Bundschuh in [4], Theorem 5, in the case of N and $|D|$ being an odd prime p, by Bundschuh in his
thesis [6], Proposition 4.3.9, in the case of \(N \) being squarefree, and by Zhang [11], Theorem 4.16, for special discriminant forms whose level is a positive fundamental discriminant. It was observed that the zero component of a lifted newform \(f \) is in some cases just a scalar multiple of \(f \). In the present work we consider the zero component
\[
\Phi_D(f) = \langle L_D(f), e_0 \rangle_D
\]
of the lifting for arbitrary level \(N \) and newforms \(f \). Here \(\langle \cdot, \cdot \rangle_D \) denotes the natural inner product on \(\mathbb{C}[D] \). We define partial liftings
\[
L_D^q(f) = \sum_{M \in \Gamma_0(N/q) \setminus \text{SL}_2(\mathbb{Z})} f|_k M \rho_D(M)^{-1} e_0
\]
where \(q \) is a prime power exactly dividing \(N \), and show that \(\Phi_D \) splits as a product of the maps \(\Phi_D^q(f) = \langle L_D^q(f), e_0 \rangle_D \). The latter are then computed explicitly for newforms \(f \), giving our main result (compare Theorem 8.1):

Theorem 1.1. Let \(D \) be a discriminant form of even signature and level \(N \). Assume that all 2-adic Jordan components of \(D \) are even, and that for every odd prime power \(q = p^r \) exactly dividing \(N \) the exponent \(n_r \) in the Jordan decomposition \(D_q \cong \bigoplus_{j=1}^{r} (p^j)^{\pm n_j} \) is even. Here \(D_q \) is the subgroup of elements of order dividing \(q \). Then
\[
\Phi_D(f) = \prod_{q \mid N} \left(1 - \frac{G_{D_q}(q/p)}{|D_q|} \right) \cdot f
\]
for every \(f \in S^\text{new}_k(N, \chi_D) \) where the product runs over all prime powers \(q = p^r \) exactly dividing \(N \), including \(p = 2 \). Further, \(G_{D_q}(q/p) \) denotes the Gauss sum defined in Section 3 and \(\chi_D \) is the character given in (3).

As an application, which was in fact the motivation for this work, we apply this result to a rescaled hyperbolic plane in Section 8, and show that the \(L \)-series \(L_A(f, s) \) associated to a newform \(f \) and an ideal class \(A \) defined by Gross and Zagier in [7] can be written as a certain \(L \)-series of the vector valued lifting of \(f \). Using results of Bruinier and Yang (see [5]) this may lead to a new proof of the Gross-Zagier formula.

Acknowledgments

We would like to thank J. H. Bruinier for suggesting the topic of this work. The present note is based on his ideas. We would also like to thank him for his constant support and his valuable comments.
2 Classical modular forms and Atkin-Lehner operators

Let k be an integer. The group $\text{GL}_2^+(\mathbb{Q})$ acts on the space of functions $f: \mathbb{H} \to \mathbb{C}$ via

$$(f|_k \alpha)(\tau) := \det(\alpha)^{k/2} j(\alpha, \tau)^{-k} f(\alpha \tau), \quad \tau \in \mathbb{H},$$

where $j(\alpha, \tau) := c \tau + d$ for $\alpha = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \text{GL}_2^+(\mathbb{Q})$. For some positive integer N and some Dirichlet character χ mod N we call a holomorphic function $f: \mathbb{H} \to \mathbb{C}$ modular of weight k, level N and character χ if $f|_k \alpha = \chi(\alpha) f$ for all $\alpha \in \Gamma_0(N)$ where $\chi(\alpha) := \chi(d)$ for $\alpha = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \Gamma_0(N)$. If in addition f is meromorphic, holomorphic or vanishes at the cusps of $\Gamma_0(N)$ we call f a weakly holomorphic modular form, a modular form or a cusp form, respectively. The corresponding spaces are denoted by $M_k^!(N, \chi)$, $M_k(N, \chi)$ and $S_k(N, \chi)$.

For a prime p we define the usual Hecke operator T_p by

$$T_p(f) = p^{k/2-1} \sum_{j=0}^{p-1} \frac{f\left(\left(\begin{array}{cc} 1 & j \\ 0 & p \end{array} \right) \right)}{k} + p^{k/2-1} \chi(p) f\left(\left(\begin{array}{cc} p & 0 \\ 0 & 1 \end{array} \right) \right)$$

for $f \in M_k^!(N, \chi)$ where $\chi(p) = 0$ if p divides N. For $r \geq 2$ and coprime integers n, m we define $T_{pr} := T_p T_{pr-1} - p^{k-1} \chi(p) T_{pr-2}$ and $T_{nm} := T_n T_m$. This extends the definition of the operator T_p to arbitrary positive integers. Further, we define the usual Fricke involution

$$H_N(f) := f\left(\left(\begin{array}{cc} 0 & -1 \\ N & 0 \end{array} \right) \right)$$

which gives a map $M_k^!(N, \chi) \to M_k^!(N, \chi)$. (This operator is often denoted by W_N. The present notation was adopted from [1] in order to distinguish between the Fricke involution and the Atkin-Lehner operators defined later on.)

Next we quickly recall the notion of newforms. For a positive divisor d of N such that the conductor of χ divides N/d there are two natural embeddings of $S_k(N/d, \chi)$ into $S_k(N, \chi)$, namely the trivial one $f \mapsto f$ and $f \mapsto f(d\tau)$. The space of newforms $S_k^\text{new}(N, \chi)$ is the orthogonal complement (with respect to the Petersson inner product) of the subspace of $S_k(N, \chi)$ generated by the images of these embeddings for all divisors $d > 1$ of N. One can check that the Hecke operators T_n and the Fricke involution H_N preserve newforms.

Throughout we write $e(z) := e^{2\pi i z}$ for $z \in \mathbb{C}$. We call $f(\tau) = \sum_{n \geq 1} a_f(n) e(\tau n) \in S_k(N, \chi)$ an eigenform if f is an eigenvector for T_n for all n coprime to N, and we say an eigenform f is normalised if $a_f(1) = 1$. Further, we call f a primitive form if f is a normalised eigenform and a newform. It is well-known that the Fourier coefficients of a primitive form are precisely its T_n eigenvalues and are therefore multiplicative. Moreover, the set of primitive forms of weight k, level N and character χ forms an orthogonal basis of the corresponding space of newforms. We will need the following result:

Proposition 2.1. Let p be a prime such that p^2 divides N and let χ be a real Dirichlet character mod N of conductor d. Further, let N_p and d_p be the p-components of N and d, respectively. Then $S_k(N, \chi)$ is the orthogonal complement of the space of modular forms $M_k(N, \chi)$.
respectively. If either p is odd, or if $p = 2$ and $N_p > d_p$, then every $f \in S^\text{new}_k(N, \chi)$ is of the form
\[
f(\tau) = \sum_{\substack{n \geq 1 \\ (n, p) = 1}} a_f(n)e(\tau n), \quad \tau \in \mathbb{H}.
\]
So for a positive integer n being divisible by p the Hecke operator T_n vanishes on $S^\text{new}_k(N, \chi)$.

Proof. It suffices to prove this for primitive forms. Let $f \in S^\text{new}_k(N, \chi)$ be a primitive form. First assume p is odd. Then the p-component of the character χ is either trivial or of the form $(\frac{\cdot}{p})$. In either case we have $N_p \geq p^2 > p > d_p$. So the claimed statement follows for any prime p from part (c) of Theorem 4.6.17 in [9].

Now we introduce Atkin-Lehner operators following Section 1 and 2 of [1]. For $N = qm$ with q and m being coprime positive integers we define
\[
W_q(f) := f\Bigg|_k \begin{pmatrix} qx & y \\ Nz & qw \end{pmatrix}
\]
for $f \in M^1_k(N, \chi)$ where $x, y, z, w \in \mathbb{Z}$ with $y \equiv 1 \mod q$, $x \equiv 1 \mod m$ and such that $
\det\left(\begin{pmatrix} qx & y \\ Nz & qw \end{pmatrix}\right) = q$. This gives a well-defined map from $M^1_k(N, \chi_m)$ to $M^1_k(N, \chi_m^{-1})$ which preserves the corresponding subspaces of modular forms, cusp forms and newforms. Here χ_q and χ_m denote the q and m components of χ, respectively.

Let $q = p^r$ be a prime power. It is shown in [1] that $W_q(f) = \lambda_p(f) f^{(q)}$ for every primitive form $f \in S_k(N, \chi)$ where $|\lambda_p(f)| = 1$ and $f^{(q)} = \sum_{n \geq 1} b(n)e(\tau n)$ is the primitive form defined by
\[
b(\ell) = \begin{cases}
\chi_q(\ell)a_f(\ell), & \text{if } \ell \neq p, \\
\chi_m(p)a_f(p), & \text{if } \ell = p,
\end{cases}
\]
for primes ℓ. If $a_f(p) \neq 0$ then $\lambda_p(f) = q^{k/2-1}G(\chi_q)a_f(q)^{-1}$ where $G(\chi_q)$ denotes the usual Gauss sum of χ_q (this is Theorem 2.1 in [1]).

Proposition 2.2. Let $N = pm$ with p being prime and $(p, m) = 1$. Further, let χ be a real Dirichlet character such that its p-component χ_p is trivial. Then
\[
(W_p \circ T_p)(f) = (T_p \circ W_p)(f) = -p^{k/2-1} f
\]
for $f \in S^\text{new}_k(N, \chi)$.

Proof. We may assume that $f \in S^\text{new}_k(N, \chi)$ is primitive. Then $a_f(p)^2 = \chi_m(p)p^{k-2}$ by part (2) of Theorem 4.6.17 in [9]. In particular, we have $a_f(p) \neq 0$. Hence the above discussion yields $W_p(f) = \lambda_p(f)f^{(p)}$ where $\lambda_p(f) = -p^{k/2-1}a_f(p)^{-1}$. Since χ_p is trivial by assumption we have $b(\ell) = a_f(\ell)$ for all primes ℓ different to p. Moreover, $\chi_m(p) = \pm 1$ as χ is real. So $a_f(p)^2 = \chi_m(p)p^{k-2}$ gives
\[
a_f(p) = \begin{cases}
\pm p^{k/2-1}, & \text{if } \chi_m(p) = 1, \\
\pm ip^{k/2-1}, & \text{if } \chi_m(p) = -1.
\end{cases}
\]
In either case we have $b(p) = \chi_m(p)a_f(p) = a_f(p)$. Therefore $f(p) = f$ and thus the claim follows since $T_p(f) = a_f(p)f$. \hfill\Box

3 Discriminant forms and Gauss sums

Let L be an even lattice of signature (b^+, b^-) and let L' be its dual lattice. The quotient $D = L'/L$ is a finite abelian group and the modulo 1 reduction of the bilinear form on L' induces a non-degenerate \mathbb{Q}/\mathbb{Z}-valued bilinear form $\langle \cdot, \cdot \rangle$ on D with corresponding quadratic form $Q(\gamma) = \frac{1}{2}(\langle \gamma, \gamma \rangle)$. (Some authors write $\gamma\delta$ for (γ, δ) and $\gamma^2/2$ for $Q(\gamma)$.) Such a group D is called a discriminant form. Its signature sign(D) is defined as the class of $b^+ - b^-$ mod 8 and the level of D is the smallest integer N such that $NQ(\gamma) = 0 \mod 1$ for all $\gamma \in D$.

Every discriminant form D is isomorphic to an orthogonal direct sum of ‘basic’ discriminant forms, the so-called Jordan components. We recall their definition from [10]:

- Let $q = p^r$ be a power of an odd prime p. Write $q^{\pm 1}$ for the discriminant form $\mathbb{Z}/q\mathbb{Z}$ where the quadratic form is defined by $Q(\gamma) = a/q$ for $a \in \mathbb{Z}$ with $(\frac{a}{p}) = \pm 1$. This is called a p-adic Jordan component. The level of $q^{\pm 1}$ is q.
- Let $q = 2^r$ be a power of 2. Write $q^{\pm 2}_t$ for the discriminant form $\mathbb{Z}/q\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}$ where the quadratic form is defined on generators γ, δ by $Q(\gamma) = Q(\delta) = 0, (\gamma, \delta) = 1/q$ mod 1 for $q^{\pm 2}_t$, and $Q(\gamma) = Q(\delta) = 1/q, (\gamma, \delta) = 1/q$ mod 1 for $q^{\pm 2}$. This is called an even 2-adic Jordan component. Its level is q.
- Let $q = 2^r$ be a power of 2. Write $q^{\pm 1}_t$ with $t \in \mathbb{Z}/8\mathbb{Z}$ satisfying $(\frac{t}{2}) = \pm 1$ for the discriminant form $\mathbb{Z}/q\mathbb{Z}$ where the quadratic form is defined by $Q(\gamma) = t/2q$ mod 1 for a generator γ. This is called an odd 2-adic Jordan component. Its level is $2q$.

The direct sum of n Jordan components $q^{\pm 1}_t, q^{\pm 2}_t$ or $q^{\pm 1}_i$ with the same prime power q is denoted by $q^{\pm n}, q^{\pm 2n}_t$ or $q^{\pm n}_t$, respectively, where the signs are multiplied and $t = \sum t_j$. Such sums are also called Jordan components. Note that the level of a discriminant form is the least common multiple of the levels of its Jordan components.

Eventually, we define the oddity of a discriminant form: For $q = 2^r$ set oddity$(q^{\pm 2n}_t) = 4k$ mod 8 and oddity$(q^{\pm n}_t) = t + 4k$ mod 8 where $k = 1$ if q is not a square and the exponent is $-n$, and $k = 0$ otherwise. The oddity of an arbitrary discriminant form is the sum of the oddities of its 2-adic Jordan components.

For a discriminant form D and $n \in \mathbb{Z}$ the Gauss sum of D is defined by

$$\mathcal{G}_D(n) = \sum_{\gamma \in D} e(nQ(\gamma))$$

where $e(z) := e^{2\pi i z}$ for $z \in \mathbb{C}$ as before. Note that this sum is multiplicative in D in the sense that $\mathcal{G}_D(n) = \mathcal{G}_{D_1}(n)\mathcal{G}_{D_2}(n)$ if $D = D_1 \oplus D_2$ (where a direct sum is always understood to be orthogonal). Therefore it is sufficient to compute Gauss sums of Jordan components. This has been done by Scheithauer in [10]. We use his results to deduce the following formulas:

5
Proposition 3.1. Let $q = p^s$ be a prime power and $a, s \in \mathbb{Z}$ with $(a, p) = 1$ and $0 \leq s < r$. For p odd we have

$$G_{q^a}(p^s a) = \left(\frac{a}{p^r-s} \right) G_{q^a}(p^s),$$

and for $p = 2$ we have $G_{q^a}(2^s a) = G_{q^a}(2^s)$ and

$$G_{q^a}(2^s a) = \left(\frac{a}{2^r-s} \right) e \left(((a-1) \text{ oddity} (2^{r-s}+1) / 8 \right) G_{q^a}(2^s).$$

Proof. Let p be an odd prime. Then Proposition 3.3 from [10] states that for q not dividing c we have

$$G_{q^a}(c) = \gamma_p((q/q_c)^{\pm 1}) \left(\frac{c/q_c}{q/q_c} \right) \sqrt{q/q_c}$$

with $q_c = (c, q)$. Here $\gamma_p((q/q_c)^{\pm 1})$ is a certain 8th root of unity defined in Section 2 of [10]. Comparing the formula for $c = p^s a$ and $c = p^s$ we see that $G_{q^a}(p^s a)$ and $G_{q^a}(p^s)$ differ by a factor $\left(\frac{a}{p^r-s} \right)$. For $p = 2$ one uses Proposition 3.5 and 3.6 from [10] and proceeds as above.

4 Vector valued modular forms

Let D be a discriminant form of level N. From now on we assume that the signature of D is even. The group algebra $\mathbb{C}[D]$ of D is the \mathbb{C}-vector space generated by the formal basis vectors e_γ for $\gamma \in D$ with multiplication defined by $e_\gamma e_\delta = e_{\gamma+\delta}$. There is a natural inner product on $\mathbb{C}[D]$ being antilinear in the second argument, which is defined by $\langle e_\gamma, e_\delta \rangle_D = 0$ for $\gamma \neq \delta$ and $\langle e_\gamma, e_\gamma \rangle_D = 1$.

We define an action of the generators $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ of $\text{SL}_2(\mathbb{Z})$ on $\mathbb{C}[D]$ by

$$\rho_D(T)e_\gamma = e(Q(\gamma))e_\gamma, \quad \rho_D(S)e_\gamma = \frac{e(-\text{sign}(D)/8)}{\sqrt{|D|}} \sum_{\delta \in D} e(-\langle \gamma, \delta \rangle)e_\delta.$$

This extends to a unitary representation ρ_D of $\text{SL}_2(\mathbb{Z})$ on $\mathbb{C}[D]$, the so-called Weil representation of D. Here it is crucial that the signature of D is even as otherwise we would have to work with a double cover of $\text{SL}_2(\mathbb{Z})$ (see for example [3], Chapter 1). It is well-known that $\Gamma(N)$ acts trivially in this representation. Moreover, for $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$ we have the formula

$$\rho_D(M)e_\gamma = \chi_D(a)e(bdQ(\gamma))e_\delta, \quad (2)$$

where

$$\chi_D(a) = \left(\frac{a}{|D|} \right) e((a-1) \text{ oddity}(D)/8) \quad (3)$$

$$6$$
denotes the Dirichlet character associated to \(D \) (see [10], Proposition 4.5). Note that \(\text{oddity}(D) \) is even by the oddity formula, so \(\chi_D \) is a real character mod \(N \).

Next we consider vector valued functions \(F: \mathbb{H} \to \mathbb{C}[D] \). Write \(F(\tau) = \sum_{\gamma \in D} f_\gamma(\tau) \mathbf{c}_\gamma \). We call \(F \) holomorphic if the component functions \(f_\gamma \) are. Further, we call a holomorphic function \(F: \mathbb{H} \to \mathbb{C}[D] \) a (weakly holomorphic) vector valued modular form of weight \(k \) if it transforms as \(F(\tau)|_k M = \rho_D(M)F(\tau) \) for \(M \in \text{SL}_2(\mathbb{Z}) \) and if every component function \(f_\gamma \) is meromorphic at \(\infty \), that is every \(f_\gamma \) has a Fourier expansion of the form \(\sum_{n \in \mathbb{Z} + Q(\gamma)} a(n, \gamma)e(\tau n) \) with \(a(n, \gamma) = 0 \) for almost all \(n < 0 \).

Using the transformation behaviour of \(F \) and the formula (2) for the action of \(\Gamma_0(N) \) on \(\mathbb{C}[D] \) it is easy to check that the zero component \(f_0 \) of \(F \) is a weakly holomorphic modular form of weight \(k \), level \(N \) and character \(\chi_D \), that is \(f_0 \in M_k^! (N, \chi_D) \). Conversely, every scalar valued modular form \(f \in M_k^! (N, \chi_D) \) can be lifted to a vector valued modular form of weight \(k \) via

\[
\mathcal{L}_D(f) := \sum_{M \in \Gamma_0(N) \setminus \text{SL}_2(\mathbb{Z})} f|_k M \rho_D(M)^{-1} \mathbf{c}_0.
\]

This lifting has for example been studied in [10], Section 5. Taking the zero component of \(\mathcal{L}_D(f) \) for an elliptic modular form \(f \) gives a linear map

\[
\Phi_D: M_k^!(N, \chi_D) \to M_k^!(N, \chi_D), \quad f \mapsto \langle \mathcal{L}_D(f), \mathbf{c}_0 \rangle_D
\]

which preserves the corresponding subspaces of modular forms and cusp forms.

5 Splitting of the map \(\Phi_D \)

As before let \(D \) be a discriminant form of even signature and level \(N \). Write \(N = mm' \) with \((m, m') = 1 \). Then we can decompose \(D = D_m \oplus D_{m'} \) as an orthogonal direct sum where \(D_c \) denotes the subgroup of elements of order dividing \(c \). Note that \(D_m \) and \(D_{m'} \) are discriminant forms whose levels are multiples of \(m \) and \(m' \) with the same prime divisors as \(m \) and \(m' \), respectively. We define an inner product on \(\mathbb{C}[D_m] \otimes \mathbb{C}[D_{m'}] \) by

\[
\langle \mathbf{c}_{\gamma_1} \otimes \mathbf{c}_{\delta_2}, \mathbf{c}_{\gamma_2} \otimes \mathbf{c}_{\delta_2} \rangle_{m \otimes m'} = \langle \mathbf{c}_{\gamma_1}, \mathbf{c}_{\gamma_2} \rangle_{D_m} \cdot \langle \mathbf{c}_{\delta_1}, \mathbf{c}_{\delta_2} \rangle_{D_{m'}}.
\]

One easily checks that the natural map \(\mathbb{C}[D_m] \otimes \mathbb{C}[D_{m'}] \to \mathbb{C}[D] \) sending \(\mathbf{c}_\gamma \otimes \mathbf{c}_\delta \) to \(\mathbf{c}_\gamma \mathbf{c}_\delta \) is an isometry. Moreover, it is an isomorphism of representations, namely of the tensor product representation \(\rho_{D_m} \otimes \rho_{D_{m'}} \) on \(\mathbb{C}[D_m] \otimes \mathbb{C}[D_{m'}] \) and the Weil representation \(\rho_D \) on \(\mathbb{C}[D] \). Thereby one obtains the useful formulas

\[
\rho_D(M)\mathbf{c}_{\gamma + \delta} = \rho_{D_m}(M)\mathbf{c}_\gamma \cdot \rho_{D_{m'}}(M)\mathbf{c}_\delta, \quad (7)
\]

\[
\langle \rho_D(M)\mathbf{c}_{\gamma_1 + \delta_1}, \mathbf{c}_{\gamma_2 + \delta_2} \rangle_D = \langle \rho_{D_m}(M)\mathbf{c}_{\gamma_1}, \mathbf{c}_{\gamma_2} \rangle_{D_m} \cdot \langle \rho_{D_{m'}}(M)\mathbf{c}_{\delta_1}, \mathbf{c}_{\delta_2} \rangle_{D_{m'}}, \quad (8)
\]

for \(\gamma, \gamma_1, \gamma_2 \in D_m, \delta, \delta_1, \delta_2 \in D_{m'} \) and \(M \in \text{SL}_2(\mathbb{Z}) \). Since the inner products of \(D \) and \(D_m \) (resp. \(D_{m'} \)) agree on \(D_m \) (resp. \(D_{m'} \)) we will in the following simply write \(\langle \cdot, \cdot \rangle \) for all of these.
Lemma 5.1. Let \(D \) be a discriminant form of even signature and level \(N = mm' \) with \((m, m') = 1\). Then for \(M \in \Gamma_0(m) \) and \(x \in \mathbb{C}[D_m] \) we have

\[
\langle \rho_D(M)x, e_0 \rangle = \langle x, e_0 \rangle \cdot \langle \rho_D(M)e_0, e_0 \rangle
\]

with \(\rho_D(M)e_0 = \chi_{D_m}(M)\rho_{D_m'}(M)e_0 \in \mathbb{C}[D_m'] \).

Proof. Writing \(x = \sum_{\gamma \in D_m} \langle x, e_\gamma \rangle e_\gamma \) we see that it is enough to prove the lemma for the basis vectors \(e_\gamma \) in \(\mathbb{C}[D_m] \). The first statement is trivial for \(x = e_0 \). For \(\gamma \in D_m \) with \(\gamma \neq 0 \) we have by (8) that

\[
\langle \rho_D(M)e_\gamma, e_0 \rangle = \langle \rho_{D_m}(M)e_\gamma, e_0 \rangle \cdot \langle \rho_{D_m'}(M)e_0, e_0 \rangle.
\]

Let \(M = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(m) \). Since \(d \) is coprime to \(m \) and the level of \(D_m \) is a multiple of \(m \) we have \(d\gamma \neq 0 \). Using (2) we thus obtain

\[
\langle \rho_{D_m}(M)e_\gamma, e_0 \rangle = \langle \chi_{D_m}(M)e(bdQ(\gamma))e_{d\gamma}, e_0 \rangle = 0.
\]

It follows from (7) and the action of \(\Gamma_0(m) \) in \(\rho_{D_m} \) that

\[
\rho_D(M)e_0 = \rho_{D_m}(M)e_0 \cdot \rho_{D_m'}(M)e_0 = \chi_{D_m}(M)\rho_{D_m'}(M)e_0 \in \mathbb{C}[D_m'].
\]

This proves the lemma. \(\square\)

We now consider the partial lifting

\[
L_m^D(f) := \sum_{M \in \Gamma_0(N)\setminus \Gamma_0(N/m)} f|kM \rho_D(M)^{-1}e_0. \tag{9}
\]

This gives a well-defined linear map sending modular forms \(f \in M^!_{k}(N, \chi_D) \) to holomorphic vector valued functions \(F : \mathbb{H} \to \mathbb{C}[D] \) with \(F|k(M\tau) = \rho_D(M)F(\tau) \) for \(M \in \Gamma_0(N/m) \).

The component functions of \(L_m^D(f) \) are linear combinations of \(f|kM \) for certain \(M \in \Gamma_0(N/m) \) and are therefore meromorphic at the cusps. The zero component

\[
\Phi_m^D(f) := \langle L_m^D(f), e_0 \rangle \tag{10}
\]

is again a modular form in \(M^!_{k}(N, \chi_D) \).

Theorem 5.2. Let \(D \) be a discriminant form of even signature and level \(N = q_1 \cdots q_l \) with pairwise coprime prime powers \(q_i = p_i^{r_i} \). Then

\[
\Phi_D = \Phi_D^N = \Phi_D^{q_1} \circ \cdots \circ \Phi_D^{q_l}
\]

on \(M^!_{k}(N, \chi_D) \).
Proof. It is sufficient to prove \(\Phi_D^{rs} = \Phi_D^r \circ \Phi_D^s \) for all pairwise coprime integers \(r, s, t \) with \(N = rst \).

Let \(m := N/r \) and \(n := N/s \). Let \(A \) and \(B \) be systems of coset representatives of \(\Gamma_0(N) \backslash \Gamma_0(m) \) and \(\Gamma_0(N) \backslash \Gamma_0(n) \), respectively. One easily verifies that \(B \) is also a system of coset representatives of \(\Gamma_0(m) \backslash \Gamma_0(t) \). Hence \(AB \) is a system of coset representatives of \(\Gamma_0(N) \backslash \Gamma_0(t) \). Writing out the definition of \(\Phi_D^{rs}(f) \) with \(f \in M_k^0(N, \chi_D) \) gives

\[
\Phi_D^{rs}(f) = \sum_{\alpha \in A} \sum_{\beta \in B} f_{k|\alpha|_{k}\beta} \langle \rho_D(\beta^{-1})(\rho_D^{-1}(\alpha)_0), \epsilon_0 \rangle .
\]

The second statement of Lemma 5.1 shows that \(\rho_D(\alpha^{-1})_0 \in \mathbb{C}[D_{N/m}] \) as \(\alpha^{-1} \in \Gamma_0(m) \).

Note that \(\beta^{-1} \in \Gamma_0(n) \subseteq \Gamma_0(N/m) \), so the first part of Lemma 5.1 applied to \(x = \rho_D(\alpha)^{-1}_0 \) gives

\[
\langle \rho_D(\beta^{-1})(\rho_D(\alpha^{-1})_0), \epsilon_0 \rangle = \langle \rho_D(\alpha^{-1})_0, \epsilon_0 \rangle \cdot \langle \rho_D(\beta^{-1})_0, \epsilon_0 \rangle.
\]

Thus \(\Phi_D^{rs} \) becomes

\[
\Phi_D^{rs}(f) = \left\langle \sum_{\beta \in B} \left\langle \sum_{\alpha \in A} f_{k|\alpha|_{k}\beta} \rho_D(\alpha^{-1})_0, \epsilon_0 \right\rangle , \beta \rho_D(\beta^{-1})_0, \epsilon_0 \right\rangle
= \langle \mathcal{L}_D^{N/s}(f), \epsilon_0 \rangle = (\Phi_D^r \circ \Phi_D^s)(f).
\]

To rewrite the sum over \(B \) into \(\mathcal{L}^{N/s} \) we had to use that \(B \) is a system of coset representatives of \(\Gamma_0(N) \backslash \Gamma_0(n) \).

6 Computation of partial liftings for prime powers

Let \(D \) be a discriminant form of even signature and level \(N \). Write \(N = qm \) with \(q = p^r \) being some prime power and \((p, m) = 1 \). Then \(D = D_q \oplus D_m \).

Lemma 6.1. A set of coset representatives for the quotient \(\Gamma_0(N) \backslash \Gamma_0(m) \) is given by the elements \(\alpha_0, \ldots, \alpha_{q/p-1}, \beta_0, \ldots, \beta_{q-1} \) where

\[
\alpha_j = -ST^{-pjm}S = \begin{pmatrix} 1 & 0 \\ pjm & 1 \end{pmatrix} \quad \text{and} \quad \beta_l = -ST^{-m}ST^l = \begin{pmatrix} 1 & l \\ m & ml + 1 \end{pmatrix} .
\]

Proof. It is well-known that \([\text{SL}_2(\mathbb{Z}) : \Gamma_0(M)] = M \prod_{\ell|M}(1 + 1/\ell) \) where the product runs over all primes \(\ell \) dividing \(M \). Hence \([\Gamma_0(m) : \Gamma_0(N)] = q(1 + 1/p) \) which agrees with the number of given representatives. Thus it remains to check that these matrices indeed represent different cosets which is an easy calculation.

Lemma 6.2. Let \(\alpha_0, \ldots, \alpha_{q/p-1} \) and \(\beta_0, \ldots, \beta_{q-1} \) be the representatives given in the previous lemma. Then

\[
\langle \rho_D(\alpha_j)^{-1}\epsilon_0, \epsilon_0 \rangle = \frac{G_{D_q}(pjm)}{|D_q|} \quad \text{and} \quad \langle \rho_D(\beta_l)^{-1}\epsilon_0, \epsilon_0 \rangle = \frac{G_{D_q}(m)}{|D_q|} .
\]

where \(G_{D_q} \) is the Gauss sum of \(D_q \) defined in Section 3.
Proof. A straightforward computation using the definitions of $\rho_D(S)$ and $\rho_D(T)$ and the usual orthogonality relations for characters shows
\[
\langle \rho_D(\alpha_j)^{-1}e_0, e_0 \rangle = \frac{G_D(pjm)}{|D|} \quad \text{and} \quad \langle \rho_D(\beta_l)^{-1}e_0, e_0 \rangle = \frac{G_D(m)}{|D|}.
\]
Since $|D| = |D_q| \cdot |D_m|$ and $G_D(cm) = G_{D_q}(cm) \cdot G_{D_m}(cm) = G_{D_q}(cm) \cdot |D_m|$ for $c = pj$ and $c = 1$ we obtain the claimed formulas.

Using the previous two lemmas we see for $f \in M_k^1(N, \chi_D)$ that
\[
\Phi'_{\beta}(f) = \frac{1}{|D_q|} \sum_{j=0}^{q/p-1} G_{D_q}(pjm) \cdot f|\alpha_j + \frac{G_{D_q}(m)}{|D_q|} \sum_{l=0}^{q-1} f|\beta_l. \tag{11}
\]

Proposition 6.3. Let β_0, \ldots, β_q be as in Lemma 6.1 and let $f \in M_k^1(N, \chi_D)$. Then
\[
\sum_{l=0}^{q-1} f|\beta_l = \chi_q(-m)q^{1-k/2}(T_q \circ W_q)(f) \in M_k^1(N, \chi_D).
\]

Proof. Fix a choice of integers z, w with $qw - mz = 1$ and define $w_0 := \left(\begin{smallmatrix} q & 1 \\ 1 & 0 \end{smallmatrix}\right)$ as in Section 2. A direct computation shows that
\[
M_l := \beta_l T^z \left(\begin{smallmatrix} 1 & l \\ q & 0 \end{smallmatrix}\right)^{-1} \omega_q^{-1} \left(\begin{smallmatrix} 1/q & 0 \\ 0 & 1/q \end{smallmatrix}\right)^{-1} = \left(\begin{smallmatrix} * & * \\ * & qw-m \end{smallmatrix}\right) \in \Gamma_0(N).
\]

Moreover,
\[
\chi_D(M_l) = \chi_D(qw-m) = \chi_q(qw-m)\chi_m(qw-m) = \chi_q(-m)
\]
since $qw-m \equiv 1 \mod m$ and $qw-m \equiv -m \mod q$. Let $f \in M_k^1(N, \chi_D)$. Then
\[
\sum_{l=0}^{q-1} f|\beta_l = \left(\sum_{l=0}^{q-1} \chi_D(M_l) \cdot W_q(f)|_k \left(\begin{smallmatrix} 1 & l \\ 0 & q \end{smallmatrix}\right)\right)|_{T^z} = \chi_q(-m)q^{1-k/2}(T_q \circ W_q)(f)|_{T^z}
\]
as $\left(\begin{smallmatrix} q & 0 \\ 0 & q \end{smallmatrix}\right)$ acts trivially and $T_q(g) = q^{k/2-1} \sum_{l=0}^{q-1} g|_k \left(\begin{smallmatrix} 1 & l \\ 0 & q \end{smallmatrix}\right)$ by definition. This proves the proposition since T acts as the identity on $(T_q \circ W_q)(f)$. \hfill \square

Proposition 6.4. Let $\alpha_0, \ldots, \alpha_{q/p-1}$ be as in Lemma 6.1 and let $f \in M_k^1(N, \chi_D)$. Then
\[
\sum_{j=0}^{q/p-1} G_{D_q}(pjm) f|\alpha_j = (-1)^k H_N \left(\sum_{n \in \mathbb{Z}} a_q(n) \mu(n; D_q, m)e(\tau n)\right) \in M_k^1(N, \chi_D)
\]
where $g := H_N(f) = \sum_{n \in \mathbb{Z}} a_q(n)e(\tau n)$ is the Fricke involution of f and
\[
\mu(n; D_q, m) = \sum_{j=0}^{q/p-1} G_{D_q}(pjm)e(-pjn/q).
\]
Proof. Let \(h_N = \begin{pmatrix} 0 & -1 \\ N & 0 \end{pmatrix} \) and \(g := H_N(f) = f |_k h_N = \sum_{n \in \mathbb{Z}} a_g(n) e(\tau n) \). Then \(g \in M^1_k(N, \chi_D) \) since \(\chi_D \) is real. Further, a direct computation shows that

\[
 h_N \alpha_j h_N = \begin{pmatrix} -N & 0 \\ 0 & -N \end{pmatrix} \begin{pmatrix} 1 -pj/q \\ 0 & 1 \end{pmatrix}.
\]

As \(h_N^2 = \begin{pmatrix} -N & 0 \\ 0 & -N \end{pmatrix} \) acts as a multiplication by \((-1)^k\) we may write \(f |_k \alpha_j = f |_k h_N^2 \alpha_j h_N^2 \).

This gives the stated formula. \(\Box \)

7 Partial liftings of newforms

As before let \(D \) be a discriminant form of even signature and level \(N = qm \) with \(q = p^r \), \(p \) prime and \((p, m) = 1\). From now on we will focus on the action of \(\Phi^p_D \) on the space of newforms \(S^\text{new}_k(N, \chi_D) \). It turns out to be reasonable to consider the cases \(p \neq 2 \) and \(p = 2 \) separately.

7.1 Powers of odd primes

Let \(q = p^r \) be a power of an odd prime \(p \). Then \(\chi_q = \left(\frac{\cdot}{D_q} \right) \). Let

\[
 D_q \cong \bigoplus_{j=1}^{r} (p^j)^{\pm n_j}
\]

with non-negative integers \(n_j \) be a Jordan decomposition of \(D_q \). In the special case \(q = p \) the discriminant form \(D_q \) is of the form \(p^{\pm n} \) and we have \(\chi_p = \left(\frac{\cdot}{p} \right)^{n_r} \).

Theorem 7.1. Let \(f \in S^\text{new}_k(N, \chi_D) \) and define \(\psi := \left(\frac{\cdot}{p} \right)^{n_r} \).

1. For \(q = p \) we have

\[
 \Phi^p_D(f) = f + \frac{\mathcal{G}_{D_q}(1)}{|D_p|} \psi(-1)p^{1-k/2}(T_p \circ W_p)(f).
\]
2. For \(q = p^r \) with \(r \geq 2 \) we have

\[
\Phi_D^q(f) = f + \frac{G_{D_q}(p^{r-1})}{|D_q|} \psi(-m)G(\psi)(-1)^k H_N((H_N(f))_\psi)
\]

where \(G(\psi) = \sum_{j=1}^{p-1} \psi(j)e(j/p) \) denotes the usual Gauss sum of \(\psi \), and \(g_\psi \) denotes the twist of \(g \) by \(\psi \), that is \(g_\psi = \sum_{n \geq 1} a_g(n)\psi(n)e(\tau n) \).

Proof. First, let \(q = p \). The contribution to \(\Phi_D^q \) coming from Proposition 6.4 is just \(f \) since \(G_{D_p}(0) = |D_p| \). Adding the expression given in Proposition 6.3 we obtain the first formula. Note that \(G_{D_p}(m) = (\frac{m}{p})^n G_{D_p}(1) \) by Proposition 3.1 and \(\psi = \chi_D = (\frac{\cdot}{p})^n \).

Now let \(q = p^r \) with \(r \geq 2 \). Write \(g = \sum_{n \geq 1} a_g(n)e(\tau n) = H_N(f) \). Proposition 2.1 states that \(a_g(n) = 0 \) for all \(n \) being divisible by \(p \), and that \((T_q \circ W_q)(f) = 0 \) as \(W_q(f) \) is a newform of level \(N \) and character \(\chi_D \). So applying Proposition 6.3 and Proposition 6.4 to Eq. (11) yields

\[
\Phi_D^q(f) = \frac{(-1)^k}{|D_q|} H_N \left(\sum_{n \geq 1} a_g(n)\mu(n; D_q, m)e(\tau n) \right). \tag{13}
\]

Let \(n \geq 1 \) with \((n, p) = 1 \). Then

\[
\mu(n; D_q, m) = \sum_{j=0}^{q/p-1} G_{D_q}(pjn)e(-pjn/q) = |D_q| + \sum_{s=1}^{r-1} \sum_{\ell=0}^{p-1} G_{D_q}(p^s \ell m)e(-\ell n/p^{r-s}).
\]

By Proposition 3.1 we can write \(G_{D_q}(p^s \ell m) = \psi_s(\ell m) G_{D_q}(p^s) \) with

\[
\psi_s(\ell) := \prod_{j=s+1} \left(\frac{\ell}{p^j} \right)^{n_j},
\]

thus giving

\[
\mu(n; D_q, m) = |D_q| + \sum_{s=1}^{r-1} \psi_s(m) G_{D_q}(p^s) \sum_{\ell=0}^{p^{r-s}-1} \psi_s(\ell)e(-\ell n/p^{r-s}). \tag{14}
\]

Using that \(\psi_s \) has conductor 1 or \(p \) one can easily see that the inner sum vanishes unless \(s = r - 1 \), in which case it equals the usual Gauss sum

\[
\sum_{\ell=1}^{p-1} \psi_{r-1}(\ell)e(-\ell n/p) = \psi(-n) G(\psi)
\]

of \(\psi = \psi_{r-1} = (\frac{\cdot}{p})^n \). Therefore we finally obtain

\[
\mu(n; D_q, m) = |D_q| + \psi(-m) G_{D_q}(p^{r-1}) \psi(n) G(\psi).
\]

If we insert this expression into (13) we are done. \(\square \)
Corollary 7.2. If \(n_r \) is even then

\[
\Phi_D^g(f) = \left(1 - \frac{G_{D_q}(p^r - 1)}{|D_q|}\right)f
\]

for every \(f \in S_k^{\text{new}}(N, \chi_D) \). In particular, \(\Phi_D^g \) defines an isomorphism of \(S_k(N, \chi_D) \).

Proof. Let \(n_r \) be even. Then \(\psi = (\frac{\cdot}{p})^{n_r} \) is trivial. If \(q = p \) then the \(p \)-component \(\chi_p = \psi \) of \(\chi_D \) is trivial and thus we have \((T_p \circ W_p)(f) = -p^{k/2-1}f \) for \(f \in S_k^{\text{new}}(N, \chi_D) \) by Proposition 2.2. This gives the claimed formula.

If \(q = p^r \) with \(r \geq 2 \) then \((H_N(f))_\psi = H_N(f) \) since \(\psi \) is trivial and since Proposition 2.1 implies that \(a_{H_N(f)}(n) = 0 \) for all \(n \) being divisible by \(p \). So the formula follows as \(G(\psi) = -1 \) and \((-1)^k H_N^2 \) acts as the identity.

It remains to note that we have \(|G_{D_q}(p^r - 1)| / |D_q| = p^{-nr/2} \) in both cases, that is the single eigenvalue of \(\Phi_D^g \) is non-zero. So \(\Phi_D^g \) is an isomorphism of \(S_k(N, \chi_D) \).

Proposition 7.3. 1. If \(n_r \) is odd and either \(q = p \) or \(q = p^r \) with \(r \geq 3 \), then \(\Phi_D^g \) still defines an endomorphism of \(S_k^{\text{new}}(N, \chi_D) \).

2. If \(n_r \) is odd with \(n_r \neq 1 \) then \(\Phi_D^g \) is injective on \(S_k^{\text{new}}(N, \chi_D) \).

Proof. Let \(n_r \) be odd and \(\psi = (\frac{\cdot}{p}) \). For (1) we only have to note that the operators \(T_p, W_p \) and \(H_N \) preserve newforms, and that if \(q = p^r \) with \(r \geq 3 \) the twist of a newform by \(\psi \) is still a newform. (This follows from Theorem 3.12 in [8] as \(e(\chi) = 1, e(\omega) = 0, 1 \) and \(v \geq 3 \) in the situation of the theorem.)

It remains to prove (2): If \(q = p^r \) with \(r \geq 2 \) and \(f \in S_k^{\text{new}}(N, \chi_D) \) with \(\Phi_D^q(f) = 0 \) then part (2) of Theorem 7.1 implies \(g = -\lambda g_\psi \) where

\[
\lambda := \frac{G_{D_q}(p^r - 1)}{|D_q|} \psi(-m)G(\psi)
\]

and \(g := H_N(f) \). Suppose that \(g \neq 0 \). Comparing the first non-zero Fourier coefficient on both sides of \(g = -\lambda g_\psi \) we obtain \(|\lambda| = 1 \). On the other hand, a direct computation using Proposition 3.3 in [10] to evaluate the Gauss sum \(G_{D_q}(p^r - 1) \) and the well-known fact that \(|G(\psi)| = p^{1/2} \) yields \(|\lambda| = p^{(1-nr)/2} \). If \(n_r \neq 1 \) this is a contradiction. So we have \(g = 0 \) and thus \(f = 0 \). Hence \(\Phi_D^g \) is injective.

For the case \(q = p \) let \(f \in S_k^{\text{new}}(N, \chi_D) \) be primitive. Recall from Section 2 that \(W_p(f) = a_p(f) f^{(p)} \) where \(f^{(p)} = \sum_{n \geq 1} b(n) \tau(n) \) is defined as in (1) and \(a_p(f) = p^{k/2-1} G(\psi) a_f(p)^{-1} \) since \(a_f(p) \neq 0 \) by part (1) of Theorem 4.6.17 in [9]. Hence we have

\[
\Phi_D^g(f) = f + \lambda \frac{b(p)}{a_f(p)} f^{(p)}
\]

and \(\lambda := G_{D_p}(1) |D_p|^{-1} \psi(-1) G(\psi) \). It is easy to see that \((f^{(p)})^{(p)} = f \). Therefore we obtain

\[
\Phi_D^g(f^{(p)}) = f^{(p)} + \lambda \frac{a_f(p)}{b(p)} f.
\]
Example 7.5. Let \(D = 9^{+1} \) be a Jordan component. Then \(\text{sign}(D) \) is even and \(\chi_D \) is trivial. Put \(N = 9 \). The space \(S_6^{\text{new}}(N, \chi_D) \) is generated by the primitive form \(f = q + 6q^2 + O(q^4) \) where \(q = e^{2\pi i r} \). We have shown that
\[
\Phi_D^6(f) = f + \lambda H_N((H_N(f))_\psi)
\]
for some non-zero constant \(\lambda \in \mathbb{C}^* \) where \(\psi = (\frac{3}{7}) \). As \(S_6^{\text{new}}(N, \chi_D) \) is 1-dimensional we have \(H_N(f) = \mu f \) for some \(\mu \in \mathbb{C}^* \). So \((H_N(f))_\psi = \mu(q - 6q^2 + O(q^4)) \) is not a multiple of \(f \), hence not a newform. Therefore \(H_N((H_N(f))_\psi) \) and \(\Phi_D^6(f) \) cannot be newforms either. So \(\Phi_D^6 \) is not an endomorphism of \(S_6^{\text{new}}(N, \chi_D) \).

Example 7.6. Let \(D = 3^{+1} \) be a Jordan component. Using the notation of \([10]\), Section 2, we have 3-excess\((D) = 2 \mod 8\), \(p\)-excess\((D) = 0 \mod 8 \) for all primes \(p > 3 \) and oddity\((D) = 0 \mod 8 \). So the oddity-formula yields \(\text{sign}(D) \equiv -(3\text{-excess}(D)) \equiv 6 \mod 8 \). Further, we have \(\chi_D = (\frac{3}{7}) \). Put \(N = 3 \). By Theorem 7.1 we have
\[
\Phi_D^3(f) = f + i3^{(k-1)/2}(T_3 \circ W_3)(f)
\]
as \(G_D(1) = e(\text{sign}(D)/8)\sqrt{|D|} \) by Milgram’s formula. Let \(k = 7 \). The space \(S_7^{\text{new}}(N, \chi_D) \) is generated by the primitive form \(f = q - 27q^3 + O(q^4) \). Hence \((T_3 \circ W_3)(f) = i3^{(k-1)/2}f \) since \(G(\chi_D) = i\sqrt{3} \) and \(f^{(3)} = f \) as \(S_7^{\text{new}}(N, \chi_D) \) is 1-dimensional. So \(\Phi_D^3(f) = 0 \) and thus \(\Phi_D^3(f) \) vanishes on \(S_7^{\text{new}}(N, \chi_D) \).

7.2 Powers of 2

Let now \(q = 2^r \) be a power of \(p = 2 \). If \(q = 2 \) then \(D \) does not contain any odd 2-adic Jordan components and we may proceed as in the previous subsection. Moreover, the 2-component \(\chi_2 = (\frac{1}{2^n}) \) of \(\chi_D \) will always be trivial since \(|D_2| = 2^{2n} \) for some positive integer \(n \). So Proposition 2.2 applies and thus we obtain:

Corollary 7.7. If \(N = 2m \) with \((2, m) = 1\) then
\[
\Phi_D^2(f) = \left(1 - \frac{G_D(1)}{|D_2|}\right) f
\]
for every \(f \in S_k^{\text{new}}(N, \chi_D) \). In particular, \(|G_{D_2}(1)|/|D_2| = 2^{-n}\) implies that \(\Phi_D^2 \) defines an isomorphism of \(S_k^{\text{new}}(N, \chi_D) \).

Next let \(q = 2^r \) with \(r \geq 2 \). Using the formula given in (3) it is not difficult to see that \(\chi_q = (\frac{\cdot}{q}) \varepsilon_D \) where \(\varepsilon_D \) is the trivial character if \(\text{oddity}(D) \equiv 0 \mod 4 \), and \(\varepsilon_D \) is the (unique) primitive character mod 4 if \(\text{oddity}(D) \equiv 2 \mod 4 \). Let

\[
D_q \cong \bigoplus_{j=1}^{r_1} (2^j)^{+2n_j} \oplus \bigoplus_{j=1}^{r_2} (2^j)^{1+m_j},
\]

be a Jordan decomposition of \(D_q \) with non-negative integers \(n_j, m_j \) and \(n_{r_1}, m_{r_2} \geq 1 \). Note that \(r = \max(r_1, r_2 + 1) \). As in the proof of Theorem 7.1 we want to apply Proposition 2.1. This is possible if the conductor \(d_q \) of \(\chi_q \) is smaller than \(q \). On the other hand, if \(d_q \geq q \) we may generalise part (1) of Theorem 7.1:

Proposition 7.8. Let \(d_q \geq q = 2^r \) with \(r \geq 2 \). Then either \(q = d_q = 4 \) or \(q = d_q = 8 \), and in both cases we have

\[
\Phi_D^2(f) = f + \frac{G_{D_q}(1)}{|D_q|} \chi_q(-1)q^{1-k/2}(T_q \circ W_q)(f)
\]

for every \(f \in S_k^{\text{new}}(N, \chi_D) \). In particular, \(\Phi_D^2 \) defines an endomorphism of \(S_k^{\text{new}}(N, \chi_D) \).

Proof. The conductor \(d_q \) of \(\chi_q \) is either 1, 4 or 8. Since \(q \geq 4 \) we have \(d_q \neq 1 \). Let \(d_q = 4 \). Then \(\chi_q = \varepsilon_D \) is primitive mod 4 and \(q = 4 \). Hence there is exactly one odd Jordan component \(2_{t_1}^{+m_1} \). Moreover, we have oddity\((D) \equiv m_1 \equiv t_1 \equiv 2 \mod 4 \) as \(\varepsilon_D(a) = e((a-1) \text{ oddity}(D)/8) \) is non-trivial.

The factor \(\mu(n; D_q, m) \) from Proposition 6.4 simplifies to

\[
\mu(n; D_q, m) = |D_q| + G_{D_q}(2m)e(-n/2).
\]

By [10], Proposition 3.5, the Gauss sum of \(2_{t_1}^{+m_1} \) vanishes for \(2m \), so \(G_{D_q}(2m) = 0 \). In order to obtain the claimed formula from (11) it remains to note that we still have \(G_{D_q}(m) = \chi_q(m)G_{D_q}(1) \) by Proposition 3.1.

Next let \(d_q = 8 \). If \(q = 4 \) there can be at most one odd Jordan component \(2_{t_1}^{+m_1} \). If there is no such component then \(\chi_q \) is trivial, and if there is one then \(m_1 \) needs to be even as the signature of \(D \) is even by assumption, and thus \(\chi_q \) is of conductor at most 4. So let \(q = 8 \). Then we have exactly two odd Jordan components, namely \(2_{t_1}^{+m_1} \) and \(4_{t_2}^{+m_2} \), since otherwise \(d_q \) is at most 4 as before. Remark that \(m_1 \) and thus \(m_2 \) need to be odd in order to give a character \(\chi_8 \) of conductor 8. Next we have

\[
\mu(n; D_q, m) = |D_q| + G_{D_q}(4m)e(-n/2) + G_{D_q}(2m)e(-n/4) + G_{D_q}(6m)e(-3n/4).
\]

Again all Gauss sums vanish by [10], Proposition 3.5, and \(G_{D_q}(m) = \chi_8(m)G_{D_q}(1) \). Therefore the claimed formula holds.
Using exactly the same arguments as in Proposition 7.3 together with Proposition 3.5 and 3.6 in [10] one obtains the following statement:

Proposition 7.9.

1. Let $q = d_q = 4$. If the number of even and odd 2-adic Jordan components of D_4 is not minimal (that is we do not have $m_1 = 2$ and $n_1 = n_2 = 0$) then Φ_D^4 defines an isomorphism of $S_{k}^{\text{new}}(N, \chi_D)$.

2. Let $q = d_q = 8$. If the number of even and odd 2-adic Jordan components of D_8 is not minimal (that is we do not have $m_1 = m_2 = 1$ and $n_1 = n_2 = n_3 = 0$) then Φ_D^8 defines an isomorphism of $S_{k}^{\text{new}}(N, \chi_D)$.

Next we consider the cases in which Proposition 2.1 applies. Since the signature of an odd 2-adic Jordan component does not need to be even, the general case is quite messy. Therefore we make further assumptions in order to obtain a nice statement.

Theorem 7.10. Let $d_q < q = 2^r$ with $r \geq 2$ and $f \in S_{k}^{\text{new}}(N, \chi_D)$. Further, we assume that the signature of all odd 2-adic Jordan components of D_q is even, which is equivalent to m_1, \ldots, m_{r_2} being even by the oddity formula.

1. If $r = r_1 > r_2 + 1$, or if $m_{r_2} \equiv 0$ mod 4 then

$$\Phi_D^r(f) = \left(1 - \frac{G_{D_q}(2^{r-1})}{|D_q|}\right)f$$

where $G_{D_q}(p^{r-1}) = 0$ if $r = r_2 + 1$. In particular, Φ_D^r defines an isomorphism of $S_{k}^{\text{new}}(N, \chi_D)$.

2. If $r = r_2 + 1 \geq r_1$ and $m_{r_2} \equiv 2$ mod 4 then

$$\Phi_D^r(f) = f + \frac{G_{D_q}(2^{r-2})}{|D_q|} \psi(-m)G(\psi)(-1)^k H_N((H_N(f))_\psi)$$

where ψ is primitive mod 4 and $G(\psi) = \sum_{j=0}^{3} \psi(j)e(j/p) = 2i$. If $r \geq 5$ then Φ_D^r is an endomorphism of $S_{k}^{\text{new}}(N, \chi_D)$, and if we do not have $r_2 + 1 = r_1$ and $m_{r_2} = 2$ then Φ_D^r is injective.

Proof. Since all m_j are even, $|D_q|$ is a square and thus $\chi_q = \varepsilon_D$ is of conductor 1 or 4. Further, we may apply Proposition 2.1 as $q > d_q$ by assumption. So there is no contribution of the β_i’s in (11) as $T_q(W_q(f)) = 0$, and we only have to consider factors $\mu(n; D_q, m)$ for odd n. By Proposition 3.1 we have $G_{D_q}(2^s lm) = \psi_s(km)G_{D_q}(2^s)$ for odd l and $1 \leq s \leq r - 1$ with

$$\psi_s(a) := \prod_{j=s+1}^{r_2} \chi_{(2j-s)l_j}^{\pm m_j}(a).$$ (16)

Note that $(2j-s)l_j^{\pm m_j}$ is a discriminant form of even signature as we assume that m_j is even. Moreover, the character ψ_s is of conductor 1 or 4 for the same reason as χ_q is. Next we
observe that \(\psi_s \) is trivial for \(r_2 \leq s \leq r - 1 \) and \(\mathcal{G}_{D_q}(2^{r_2}) = 0 \) by [10], Proposition 3.5. Thus Eq. (14) becomes

\[
\mu(n; D_q, m) = |D_q| + \sum_{s=1}^{r_2-1} \psi_s(m) \mathcal{G}_{D_q}(2^s) \sum_{\ell=0}^{2^{r-s}-1} \psi_s(\ell) e(-\ell n/2^{r-s}) \tag{17}
\]

\[
+ \sum_{s=r_2+1}^{r-1} \mathcal{G}_{D_q}(2^s) \sum_{\ell=0}^{2^{r-s}-1} e(-\ell n/2^{r-s}).
\]

The first inner sum vanishes for \(r - s \geq 3 \) as the conductor of \(\psi_s \) is at most 4, and the second inner sum vanishes for \(r - s \geq 2 \). We distinguish the following two cases:

1. Let \(r = r_1 > r_2 + 1 \). Then the first sum vanishes completely and we are left with the last summand of the second sum: \(\mu(n; D_q, m) = |D_q| - \mathcal{G}_{D_q}(2^{r-1}) \). So we are indeed in the first case of the theorem.

2. Suppose that \(r = r_2 + 1 \geq r_1 \). Then the second sum vanishes and only the last summand of the first sum remains:

\[
\mu(n; D_q, m) = |D_q| + \psi_{r-2}(m) \mathcal{G}_{D_q}(2^{r-2}) [e(-n/4) + \psi_{r-2}(-1)e(n/4)].
\]

By (16) we know that \(\psi_{r-2} \) is trivial if \(m_{r_2} \equiv 0 \text{ mod } 4 \) and primitive mod 4 if \(m_{r_2} \equiv 2 \text{ mod } 4 \). In the latter case we obtain part (2) of the theorem, and otherwise it remains to note that \(\mathcal{G}_{D_q}(2^{r-1}) = 0 \) as mentioned above in order to obtain part (1) again.

In order to show that \(\Phi^f_{D} \) is an endomorphism or injective we may argue as in Proposition 7.3, now using Proposition 3.5 and 3.6 in [10] instead of Proposition 3.3.

If we omit the assumption that \(m_1, \ldots, m_{r_2} \) are even integers, the functions \(\psi_s \) defined above might not be characters anymore. However, if we assume that the even 2-adic Jordan components “dominate” the odd 2-adic Jordan components in the following sense we recover part (1) of the previous theorem:

Proposition 7.11. Let \(d_q < q = 2^r \) with \(r \geq 2 \). If \(r = r_1 > r_2 + 2 \) then

\[
\Phi^f_{D}(f) = \left(1 - \frac{\mathcal{G}_{D_q}(2^{r-1})}{|D_q|} \right) f.
\]

for every \(f \in S^\text{new}_k(N, \chi_D) \). In particular, \(\Phi^f_{D} \) defines an isomorphism of \(S^\text{new}_k(N, \chi_D) \).

Proof. We may almost completely follow the proof of the previous theorem. Note that for \(1 \leq s \leq r - 1 \) the function

\[
\psi_s(a) := \prod_{j=s+1}^{r_2} \left(\frac{a}{2^{j-s}} \right)^{m_j} e\left((a - 1) \text{ oddity} \left(\frac{(2^{j-s})^{\pm m_j}}{2} \right) /8 \right)
\]

17
will in general not be a character. Nevertheless ψ_s is well-defined modulo 8 and thus the inner sum in (17) still vanishes for $r - s \geq 4$. If $r = r_1 > r_2 + 2$ this is the case for $s = 1, \ldots, r_2 - 1$. So we may proceed as before.

It remains to note that $|G_{Dq}(p^{r-1})|/|D_q| = 2^{-n_r} \neq 1$. So Φ^q_D indeed defines an isomorphism. \hfill \square

8 Summary and an application

Given a particular nice situation we may summarise our results using Theorem 5.2:

Theorem 8.1. Let D be a discriminant form of even signature and level N. Assume that for every odd prime power q exactly dividing N the exponent n_r in the Jordan decomposition (12) of D_q is even. If N is even we further assume that either all 2-adic Jordan components of D are even, or that the even 2-adic Jordan components ‘dominate’ the odd ones as in Proposition 7.11. Then

$$\Phi_D(f) = \prod_{q\|N} \left(1 - \frac{G_{Dq}(q/p)}{|D_q|}\right) \cdot f$$

for every $f \in S^\text{new}_k(N, \chi_D)$ where the product runs over all prime powers $q = p^r$ exactly dividing N, including $p = 2$.

Remark 1. The statement of the previous theorem also holds for various other discriminant forms whose Jordan decomposition involve odd 2-adic Jordan components (compare for example part (1) of Theorem 7.10).

Example 8.2. Let N be a positive integer and let $L = H_{1,1}(N)$ denote a rescaled hyperbolic plane, that is a 2-dimensional lattice having basis vectors e, f with $\langle e, f \rangle = N$ and norm $q(e) = q(f) = 0$. The corresponding discriminant form $D = L'/L$ has order $|D| = N^2$, signature 0 mod 8 and level N. In particular, the character χ_D is trivial.

If 2 divides N then the only 2-adic Jordan component of D is $(2^r)\sqrt{N}$ where 2^r exactly divides N. The other Jordan components of D are $q^\pm 2$ with $(\frac{-1}{p}) = \pm 1$ for odd prime powers $q = p^r$ exactly dividing N. Hence Theorem 8.1 is applicable, that is we have

$$\Phi_D(f) = \prod_{q\|N} \left(1 - \frac{G_{Dq}(q/p)}{|D_q|}\right) \cdot f$$

for every $f \in S^\text{new}_k(N, \chi_D)$. The Gauss sums can be computed with the formulas from Propositions 3.3 and 3.6 in [10] giving $G_{Dq}(q/p) = q^2/p$. As $|D_q| = q^2$ we obtain

$$\Phi_D(f) = \prod_{p|N} \left(1 - \frac{1}{p}\right) \cdot f = \frac{\varphi(N)}{N} f$$

where the product runs over all primes dividing N and φ denotes Euler’s φ function.
The following application was proposed by J. H. Bruinier, and was in fact one of the main motivations for the considerations of this work (compare [5], Sections 4 and 8):

Let \(N \) be an arbitrary positive integer and let \(L = \mathcal{H}_{1,1}(1) \oplus \mathcal{H}_{1,1}(N) \) be a lattice of signature \((2,2)\) where \(\mathcal{H}_{1,1}(N) \) denotes a rescaled hyperbolic plane as in the previous example. Then the discriminant form \(D = L'/L \) is isomorphic to the one given in the previous example and thus we obtain \(\Phi_D(f) = \frac{\varphi(N)}{N} f \) for every \(f \in S_{k}^{\text{new}}(N, \chi_D) \).

Let \(V_+ \) be a 2-dimensional positive definite definite subspace of \(V := \mathbb{L} \otimes \mathbb{Q} \) with negative definite complement \(U := V_+^\perp \), and let \(\mathcal{P} := L \cap V_+ \) and \(\mathcal{N} := L \cap U \) be definite sublattices of \(L \). Put \(M := \mathcal{P} \oplus \mathcal{N} \). In general \(M \) is only a sublattice of \(L \) of finite index. The inclusions \(M \subseteq L \subseteq L' \subseteq M' \) show \(L/M \subseteq L'/M \subseteq M'/M \). Further, we have a natural map

\[
L'/M \to L'/L, \quad \gamma = x + M \mapsto \overline{\gamma} = x + L
\]

which gives rise to a map sending modular forms \(F \) for the Weil representation \(\rho_{L'/L} \) to modular forms \(F_M \) for \(\rho_{M'/M} \) defined by

\[
(F_M)_\gamma = \begin{cases}
F_{\overline{\gamma}}, & \text{if } \gamma \in L'/M, \\
0, & \text{if } \gamma \notin L'/M,
\end{cases}
\]

for \(\gamma \in M'/M \), see Lemma 3.1 in [5].

Let \(F \) be a vector valued cusp form for \(\rho_{L'/L} \) of weight \(1 + b^-/2 = 2 \), and let \(b(n, \gamma) \) with \(\gamma \in M'/M \) and \(Q(\gamma) \equiv n \mod 1 \) denote the coefficients of \(F_M \). Identifying \(M'/M \) with \(\mathcal{P}'/\mathcal{P} \oplus \mathcal{N}'/\mathcal{N} \) we may view \(\mathcal{P}'/\mathcal{P} \) as a subgroup of \(M'/M \). In [5], Eq. (4.24), Bruinier and Yang define an \(L \)-function of \(F_M \) by

\[
L(F_M, U, s) = (4\pi)^{-(s+2)/2} \Gamma\left(\frac{s+2}{2}\right) \sum_{n \geq 1} \sum_{\gamma \in \mathcal{P}'/\mathcal{P}} r(n, \gamma) b(n, \gamma) n^{-(s+2)/2}
\]

where \(r(n, \gamma) \) are the coefficients of the vector valued theta series of \(\mathcal{P} \), that is

\[
\Theta_\mathcal{P}(\tau) = \sum_{x \in \mathcal{P}'} e(\tau q(x)) \epsilon_{\mathcal{P}'} = \sum_{\gamma \in \mathcal{P}'/\mathcal{P}} \sum_{n \geq 0} r(n, \gamma) e(\tau n) \epsilon_{\gamma}.
\]

Note that the zero component of \(\Theta_\mathcal{P} \) equals the usual scalar valued theta function

\[
\theta_\mathcal{P}(\tau) = \sum_{x \in \mathcal{P}} e(\tau q(x)) = \sum_{n \geq 0} r(n) e(\tau n).
\]

For simplicity, we drop the subscript \(M \) in \(L(F_M, U, s) \), writing \(L(F, U, s) \) instead.

Let now \(F = L_D(f) \) be the lifting of a primitive form \(f \in S_2^{\text{new}}(N, \chi_D) \). Further, we assume that the discriminant \(d \) of \(\mathcal{P} \) is an odd (and therefore squarefree) negative fundamental discriminant which is coprime to \(N \). Then every element in \(\mathcal{P}'/\mathcal{P} \cap L'/M \) has

\[19\]
order dividing \((d, N) = 1\), and thus the intersection equals 0. So in (22) only the summand for \(\gamma = 0\) remains, giving

\[
L(\mathcal{L}_D(f), U, s) = (4\pi)^{-s/2} \Gamma\left(\frac{s + 2}{2}\right) \frac{\varphi(N)}{N} \sum_{n \geq 1} r(n)a_f(n)n^{-(s+2)/2}.
\] (25)

(Note that the Fourier coefficients \(a_f(n)\) of \(f\) are real since the character \(\chi_D\) is trivial.) As in [7] we assume that there are Heegner points of discriminant \(d\) on the curve \(X_0(N)\) which is equivalent to saying that every prime divisor of \(N\) splits in \(K := \mathbb{Q}(\sqrt{d})\). So \((\frac{d}{p}) = 1\) for every prime \(p\) dividing \(N\). Then

\[
L\left(\left(\frac{d}{\cdot}\right), s\right) = \prod_{p | N} (1 - p^{-s})^{-1} \sum_{n \geq 1 \atop (n, dN) = 1} \left(\frac{d}{n}\right) n^{-s}.
\]

On the other hand the Dirichlet class number formula states that

\[
L\left(\left(\frac{d}{\cdot}\right), 1\right) = \frac{2\pi h(d)}{\omega(d)\sqrt{|d|}}
\]

where \(h(d)\) is the class number of \(K\) and \(\omega(d)\) is the order of the unit group of \(\mathcal{O}_K\). Moreover, it is not difficult to see that

\[
\theta_A(\tau) = \frac{1}{\omega(d)} \theta_P(\tau)
\]

where \(A\) is the ideal class associated to \(P\) and \(\theta_A\) is the theta function given in [7], equation (5.2). Taking derivatives on both sides of (25) and plugging in \(s = 0\) we obtain

\[
L'(\mathcal{L}_D(f), U, 0) = \frac{\omega(d)^2 \sqrt{|d|}}{8\pi^2 h(d)} L'_A(f, 1)
\] (26)

where \(L_A(f, s)\) is the \(L\)-function associated to the newform \(f\) and the ideal class \(A\) as in [7], equation (5.3). Here we used that \(L(\mathcal{L}_D(f), U, 0) = 0\) and \(L_A(f, 1) = 0\).

Finally, we choose some harmonic weak Maass form \(g \in H_{0, \rho_D}\) of weight 0 and dual representation \(\rho_D\) such that \(\xi(g) = \mathcal{L}_D(f)\) where \(\xi : H_{0, \rho_D} \to S_{2, \rho_D}\) is the differential operator defined in Section 3.1 of [5]. Then equation (26) determines the second summand \(L'(\xi(g), U, 0)\) in Theorem 4.7 of [5]. On the other hand the value of the automorphic Green function on the left-hand side of the cited formula is essentially the archimedian part of a certain height pairing (compare [5], equation (5.1)). In order to obtain a formula for \(L'_A(f, 1)\) in the spirit of Gross and Zagier one could try to relate the first summand of the right-hand side of [5], Theorem 4.7, to the finite part of this height pairing.

20
References

