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Abstract

Let G be a connected reductive almost simple group over the Witt ring W (F) for F a
finite field of characteristic p. Let R and R′ be complete noetherian local W (F)-algebras
with residue field F. Under a mild condition on p in relation to structural constants of
G , we show the following results: (1) Every closed subgroup H of G (R) with full residual
image G (F) is a conjugate of a group G (A) for A ⊂ R a closed subring that is local
and has residue field F. (2) Every surjective homomorphism G (R) → G (R′) is, up to
conjugation, induced from a ring homomorphism R→ R′. (3) The identity map on G (R)
represents the universal deformation of the representation of the profinite group G (R)
given by the reduction map G (R) → G (F). This generalizes results of Dorobisz and
Eardley-Manoharmayum and of Manoharmayum, and in addition provides an abstract
classification result for closed subgroups of G (R) with residually full image.

We provide an axiomatic framework to study this type of question, also for slightly
more general G , and we study in the case at hand in great detail what conditions on F
or on p in relation to G are necessary for the above results to hold.

1 Introduction

Let R be a complete noetherian local ring with finite residue field F. Let ρ̄ : SLn(R)→ SLn(F)
be the induced group homomorphism. It is shown in [Dor16, Man15, EM16] that for all but
finitely many pairs (n,F) the universal deformation of ρ̄ for representations into GLn, in the
sense of [Maz89], is represented by id: SLn(R) → SLn(R). The proofs were based in part
on quite long and explicit computations. Our first observation was that these computations
could be avoided almost entirely by a systematic use of methods from deformation theory
and of largely well-known results on reductive groups over finite fields, their Lie algebras and
some related cohomology groups. For a precise list of conditions, we refer the reader to the
axiomatic framework introduced in Section 2. This axiomatic viewpoint, allows us to obtain
the same result for an arbitrary absolutely simple connected reductive group G over the ring
of Witt vectors W (F) in place of SLn. In fact, we have extensions to certain non-connected
G with G o as in the previous line, or to G ⊂ G ′ modeling SLn ⊂ GLn; for the relevant
deformation theory, we refer to [Til96].

A second insight was that, by extending ideas of Boston from [MW86, Appendix], within
our axiomatic framework we can obtain general results on closed subgroups of SLn(R) (or
G (R)) with full residual image. We recover [Man15, Main Theorem] in nearly all cases, and
we generalize it to our setting: given an injection W (F)→ R, closed subgroups of G (R) with
residual image G (F) typically contain a conjugate of G (W (F)). More generally, we show that
certain closed subgroups H of G (R) with full residual image are simply conjugates of groups
G (A) with A a closed subring of R.

Let us give a concrete theorem that highlights the main results of the present article. Let G
be a connected absolutely simple linear algebraic group scheme over the ring of Witt vectors
W (F) of a finite field F of characteristic p. Assume that p ≥ 5, that p does not divide n + 1
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if G is of type An, and that F 6= F5 if G is of type A1 or Cn. Let ÂrW (F) be the category
of complete local W (F)-algebras that are filtered inverse limits of local Artin W (F)-algebras
R with residue field F. Denote by π : R → F the residue homomorphism and by G (π) the
induced homomorphism G (R)→ G (F). Then the following holds:

Theorem 1.1. Let R,R′ be in ÂrW (F).

(a) If H is a closed subgroup of G (R) that surjects under π onto G (F) then there exists a

closed W (F)-subalgebra A ⊂ R in ÂrW (F) such that H is conjugate to G (A).

(b) Let ϕ : G (R)→ G (R′) be a surjective group homomorphism that on residue fields induces
the identity of G (F). Then a conjugate of ϕ is the map G (α) for some surjective ring

homomorphism α : R→ R′ in ÂrW (F).

(c) The functor ÂrW (F) → Sets,

A 7→ {G -valued deformations of π : G (R)→ G (F) to A}

is representable and a universal deformation is given by the class of idG (R).

Parts (a) and (b) mean that all closed subgroups with maximal residual image and all
homomorphisms between such must be ‘linear’. Part (c) is a consequence of (a), (b) and
the definition of deformation. We shall in fact prove (a) and (c) from which (b) follows
immediately.

Remark 1.2. (a) Part (a) is an abstract big image theorem under strong residual hypotheses.
For GL2 there are more general results under weaker residual hypotheses in [Bel19] or
[CLM19]. One of their aims is a general description of the image of certain p-adic families
of automorphic forms as in [Hid15]. We plan to apply our results in a similar way in
future work.

(b) Part (a) extends [Man15] by Manoharmayum. There it is proved, again for G = SLn
and considered inside GLn, that under the hypothesis of (a), a conjugate of H contains
the subgroup G (W (F)R) where W (F)R is the image under the structure morphism
W (F) → R; it is a quotient ring of W (F). Our part (a) implies this particular case for
any G considered, since clearly W (F)R = W (F)A ⊂ A.

(c) Part (c) for G = SLn and for deformations of the given π but into GLn is a result
due to, independently, Dorobisz and Eardly-Manoharmayum; see [Dor16, EM16]. Their
results are more complete than what we state above and also include p = 2, 3. [Dor16]
also characterizes the finitely many exceptions for small p, by giving counterexamples.
In Corollary 5.5 we recover their very list from our axiomatic framework.

(d) Part (c) implies in particular that any complete noetherian local ring occurs as a univer-
sal deformation ring, a question posed in [BCdS13, Question 1.1]. It was the motivation
behind [Dor16] and [EM16], and answered for GLn in these papers.

(e) For the most general results in the sense of Theorem 1.1(a), we refer to Corollaries 6.3
and 6.4, and for those in the sense of Theorem 1.1(c), to Corollaries 5.4 and 5.5.

We now give an outline of the article. In Section 2, we present our basic set-up to be used
throughout the remainder of this article and we formulate a number of axiomatic conditions.
They have occurred, at least implicitly, in some form in the deformation theory of Galois
representations for GLn. These axiomatic conditions are admittedly somewhat technical. But
they match very well with what is needed in our proofs of the main results in Sections 5 and 6.
In Section 2, we also formulate technical versions of Theorem 1.1(a) and (c), based on our
axiomatic conditions. Moreover the section contains, before Definition 2.11, the technically
important assignment H 7→ Hc for closed subgroups H of G (R) with certain residual images.
The group Hc is a variant of the commutator subgroup that preserves the residual image.
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In Section 3 we hope to convince the reader that our axiomatic conditions are natural
by proving that they are satisfied for connected absolutely simple reductive groups G over
W (F) with ‘few’ exceptions. Theorem 1.1 gives a good idea of what ‘few’ might mean, namely
that they hold whenever p is ‘large’ in comparison to data coming from G . Section 3 gives a
thorough investigation of when precisely our axiomatic conditions are satisfied for absolutely
simple G , even if p is small! There is a finite list of ‘obvious’ exceptions. But the validity
of our conditions depends, for small p, also on further invariants of G , such as its center or
the type of its root system; see Theorem 3.2 for a summary. In addition, in Subsection 3.7
we also study the validity of our axiomatic conditions for a situation G ⊂ G ′ that resembles
that of SLn ⊂ GLn; see Theorem 3.51. We hope that our thorough analysis of the small
prime situation, which makes up almost half of this article, is also useful to others since, as
mentioned earlier, several of the conditions we investigate also occur in deformation theory.
Moreover our review of the literature also discovered several untreated cases. It might be a
challenge for us or others to eventually resolve these.

Section 4 contains preparations for the proofs of our main results. We lay a number
of elementary foundations of a group theoretic nature, and we explain how our axiomatic
conditions are used to deduce results on group extensions, commutators etc. Some ideas
are taken from [MW86, Appendix] by Boston. The proofs of our main results are given in
Sections 5 and 6. They make essential use of standard results on universal deformations and,
building on the preparations from Section 4, are rather elementary.

Let us end this introduction with a general question in the spirit of [BCdS13, Questions 1.1
and 1.2] but from a slightly different perspective. Suppose that Π is a profinite group, and
ρ̄ : Π → GLn(F) is a continuous homomorphism with trivial determinant.1 Consider Fn as
being acted on by Π via ρ̄ and assume that the natural map F→ EndΠ(Fn) is an isomorphism.
Then ρ̄ possesses a universal deformation ρu : Π→ GLn(Ru) with trivial determinant (unique

up to unique conjugacy) with Ru ∈ ÂrW (F); essentially by [Maz89]. Let H be the closed
compact subgroup ρu(Π) of GLn(Ru) and consider the diagram

Π // H �
� ρH //

ρ̄H
##

GLn(Ru)

��

GLn(F),

where the composed maps from Π to GLn(Ru) and to GLn(F) are ρu and ρ̄, respectively. It
is straightforward to see that

Fact 1.3. The universal deformation of ρ̄H (with trivial determinant) exists and is represented
by ρH .

In light of Theorem 1.1 the following seems a natural question to us:

Question 1.4. For which subgroups HF of SLn(F) can one classify closed subgroups of GLn(R)

with R ∈ ÂrW (F) in a way similar to Theorem 1.1(a)?

In cases where the question has a reasonable answer, the image H of a universal deforma-
tion ρu has a uniform description, in which Ru depends on Π, but the shape of H depends on
Ru and HF only, not on Π in any further way. A result for GL2, very much in this direction,
is [Bel19, Thm. 7.2.3].

Notation and Conventions

◦ p will denote a prime number, F a finite field of characteristic p and W (F) its ring of
Witt vectors.

1For simplicity we phrase the question for GLn and assume trivial determinant; the generalization to other
G and more general ‘determinants’ is left to the reader.
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◦ ÂrW (F) is the category of complete local W (F)-algebras R that are filtered inverse limits
of local Artin W (F)-algebras with residue field F. The maximal ideal of R will be denoted
mR.

◦ The ring of dual numbers F[X]/(X2) ∈ CW (F) will be denoted by F[ε].

◦ Algebraic groups will always be denoted by capital script letters such as G ; abstract
groups by roman letters such as H; Lie algebras by small gothic letters such as g; for
the Lie algebra of G we write Lie(G ) but also often simply g.

◦ The center of a group H or an algebraic group G or a Lie algebra g will be Z(H) or
Z(G ) or Z(g), respectively; see also A.9.

◦ The socle of a representation is the largest semisimple subrepresentation; the socle of a
Lie algebra is the largest semisimple sub Lie algebra. Dually one defines the cosocle as
the largest semisimple quotient.

◦ We follow the standard convention that the types of classical groups are (An)n≥1,
(Bn)n≥2, (Cn)n≥3 and (Dn)n≥4.

Acknowledgements:
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2 An axiomatic framework

Let us begin by introducing some notation. By G we denote a smooth group scheme over W (F)
whose connected component G o is reductive over W (F), and such that G /G o is a constant
group of order prime to p, see A.1, A.3, A.6 and A.7 in the Appendix. We write G der for
the commutator subgroup [G o,G o], see A.16. The group G der is a characteristic subgroup
of G because G o is characteristic in G and G der in G o, and in particular it is normal in G .
It is semisimple over W (F) and G o/G der is a torus, see A.16. Moreover G /G der exists as a
smooth group scheme over W (F), and it is an extension of the constant group G /G der by
the torus G o/G der, see A.18. We write G F, G o

F, G der
F for the special fibers of G , G o and G der,

respectively, and note that (G F)o = G o
F, that G o

F is reductive and that G der
F is semisimple; see

A.3 and A.8. We denote the Lie algebras of G F and G der
F by g and gder, respectively; cf. A.2.

Via the adjoint representation g and gder carry an action of G (F) and G der(F), respectively.
Note also that g = Lie(G o

F).

Throughout this article, we fix a pair (HF, H
′
F) consisting of a subgroup HF ⊂ G (F) and a

normal subgroup H ′F of HF such that H ′F ⊂ G der(F). We make the following

Assumption 2.1 (Standard hypothesis). The tuple (G ,F, HF, H
′
F)2 satisfies

(a) HF surjects onto (G /G o)(F) and HF/[HF, HF] is of order prime to p,

(b) there exists a subgroup MF of HF of order prime to p such that MFH
′
F = HF.

Remark 2.2. Note that if H ′F is contained in [HF, HF], for instance if H ′F is perfect, then the
quotient HF/[HF, HF] being of order prime to p is implied by (b): By hypothesis, H ′F is normal
in HF. If in addition H ′F is contained in [HF, HF], then we have a surjective homomorphism
HF/H

′
F → HF/[HF, HF]. Now (b) gives the isomorphism MF/(MF ∩H ′F) ∼= HF/HF

′, showing
that HF/HF

′ and hence HF/[HF, HF] is of order prime to p, because MF is so.

The possible presence of G /G o allows for instance that G ∼= G o o Gal(L/K) where L/K
is a finite Galois extension of global fields (of order prime to p).

Definition 2.3. For A ∈ ÂrW (F) we define H ′A := {g ∈ G der(A) | g (mod mA) ∈ H ′F}.
2We often simply refer to the pair (HF, H

′
F), the group G and the field F being implicitly understood.
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Let Mo
F = MF ∩ G o(F). Since MF is of order prime to p, by Lemma 4.1 for A ∈ ÂrW (F)

there exist subgroups Mo
A ⊂ G (A) and MA ⊂ G (A) that modulo mA reduce isomorphically

to Mo
F and MF, respectively, they both normalize H ′A, and the group Mo

AH
′
A is independent

of the choice of Mo
A. Our hypotheses imply Mo

A ⊂ G o(A). Throughout this article we impose

Convention 2.4. We fix lifts

Mo
W (F) ⊂MW (F) ⊂ G (W (F))

ofMo
F ⊂MF, for whichM?

W (F)→M?
F is an isomorphism under reduction for ? ∈ {o,∅}. For any

A in ÂrW (F), we define M?
A as the image of M?

W (F) under the structure morphism W (F)→A.

We set
Ho
A := Mo

AH
′
A, HA := MAH

′
A. (1)

Conditions 2.5. For a tuple (G ,F, HF, H
′
F) satisfying Assumption 2.1, we formulate the fol-

lowing conditions:

(pf) the group H ′F is perfect;

(ct) the natural inclusion LieZ(G o) ↪→ H0(HF, g) is an isomorphism, and moreover the
schematic center of G is smooth;

(l-ge) (i) gder is perfect, i.e., [gder, gder] = gder for the commutator Lie subalgebra, the center
Z(gder) of gder is trivial, (ii) gder is irreducible and non-trivial as an Fp[H ′F]-module, and
(iii) the natural map F→ EndFp[H′F](g

der) is bijective3;

(l-un) (i) as Fp[H ′F]-module, [gder, gder] ⊂ gder is non-trivial, and one of the Jordan-Hölder
factors of [gder, gder] is not a Jordan-Hölder factor of gder/[gder, gder] and (ii) the natural
map F→ EndFp[H′F](g

der) is bijective;

(l-cl) (i) gder is perfect and (ii) the Fp[H ′F]-cosocle gder of gder is irreducible and HF acts

trivially on Ker(gder → gder);

(csc) the cosocle of gder does not contain the trivial H ′F-module Fp;

(van) the cohomology H1(H ′F, g) vanishes;

(sch) the mod p Schur multiplier group H2(H ′F,Fp) vanishes;

(n-s) the extension 1→ gder → H ′W2(F) → H ′F → 1 is non-split.

Remark 2.6. It is straightforward to see that the following conditions are equivalent: (i)
condition (csc), (ii) HomFp[H′F](g

der,Fp) = 0, (iii) H0(H ′F, g
der) = 0.

Remark 2.7. Note that (l-ge)(ii) implies (csc), that (l-ge)(i) and (ii) imply (l-cl), and that
(l-ge)(ii) and (iii) imply (l-un).

In Section 3 we discuss in great detail the case when G is connected, G der is absolutely
simple, HF = G der(F) and H ′F ⊃ [HF, HF]. Because of the Lie-part of Corollary 3.5 we like to
think that (l-ge) describes the ‘generic’ behavior of gder. As was just observed, (l-ge) implies
(l-un) and (l-cl). The latter conditions will be a crucial input about the Lie algebra gder in
our main theorems on certain universal deformation rings and on closed subgroups of G (R),

for R ∈ ÂrW (F), respectively.

We shall now state the main technical results of this work and use them to derive Theo-
rem 1.1. For this let R be in ÂrW (F) and consider the canonical reduction

ρ̄R : HR → G der(F) ⊂ G (F)

3For any F[G]-module V there is a canonical homomorphism F→ EndFp[G](V ).
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as a G (F)-valued representation ofHR. A G -deformation of ρ̄R toA (in ÂrW (F)) is a Ker(G (A)→
G (F))-conjugacy class of continuous homomorphisms ρA : HR → G (A) such that ρA ≡ ρ̄R
(mod mA). As in [Maz89] or [Til96] one shows that4

Lemma 2.8. If (ct) holds, then the functor

Dρ̄R : ÂrW (F) → Sets, A 7→ {G -valued deformations of ρ̄R to A}

is pro-representable within ÂrW (F).

Definition 2.9. We denote the universal ring representing Dρ̄R by Rρ̄R and a representative
of the universal deformation by ρρ̄R : HR → G (Rρ̄R).

The first main technical result of this article is the following:

Theorem 2.10 (Theorem 5.2). Suppose (G ,F, HF, H
′
F) satisfies conditions (ct), (van), (n-

s), (l-un) and one of (csc) or G = G der. Then the canonical inclusion ι : HR → G (R)
represents the universal deformation of Dρ̄R , and in particular Rρ̄R = R.

In Remark 5.6, we shall explain the relation to results of Dorobisz and Eardly-Manoharmayum.

For the second main result, let H denote any closed subgroup of G (R) such that the image
of H in G (F) is equal to H ′F. In Lemma 4.2 we shall prove that there exists a unique closed

subgroup Hc ⊂ H that contains the closure [H,H] of the commutator subgroup and for which
Hc/[H,H]→ HF/[HF, HF] is an isomorphism. Note that by definition Hc is a closed subgroup
of H that surjects onto HF. We shall also show that H 7→ Hc commutes with passing from R
to a quotient.

We define H(0) := H and, inductively, for any i ≥ 1 we define H(i) := (H(i−1))c. The H(i)

define a descending sequence of closed subgroups of H.

Definition 2.11. The group H is called HF-perfect if H = Hc.
For any H, its HF-perfection is defined as H(∞) :=

⋂
iH

(i).

Note that for any artinian quotient of R the procedure defining H(∞) stops after finitely
many steps. From R being a filtered inverse limit of such rings and from Lemma 4.2, it
follows that H(∞) is HF-perfect. We call a closed subgroup H of HR residually full if under
the reduction map H surjects onto HF.

The second main technical result of this article is:

Theorem 2.12 (Theorem 6.1). Let H ⊂ HR be a closed subgroup that is residually full.
Suppose that (ct), (n-s) and (van) hold, and that either (l-ge) holds or that (l-cl) and
(sch) hold. Then there exists a closed W (F)-subalgebra A of R such that H(∞) is conjugate
to HA ⊂ G (R).

In Remark 6.8 we shall explain its relation to a result by Manoharmayum.

Proof of Theorem 1.1. In Corollary 3.5 we show that under the hypotheses of Theorem 1.1
conditions (pf), (ct), (l-ge), (sch), (n-s) and (van) hold. By Remark 2.7, also condition (l-
un) holds. Hence Theorem 1.1(a) and (c) are immediate from Theorem 5.2 and Theorem 6.1.
Using the universal deformation property of id : G (R)→ G (R), the proof of (b) follows from
(a), (c) and Lemma 4.3.

We end this section with some remarks on our standard hypotheses from Assumption 2.1
in relation to speculations about compatible systems of Galois representations attached to
pure motives with coefficients. References are [Ser94] and [Hui18] although they do not fully
address the situation we describe.

4Both references require that R is noetherian. Hence one may apply them to all Artin quotients of R and
then argue using an inverse limit argument.
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Let G be an affine group scheme over a number field F such that the identity component
Go of G is reductive. Denote by PF the set of finite places of F , by Fλ the completion of F
at λ ∈ PF , by Oλ its ring of integers and by Fλ its residue field. Let k be a number field
with absolute Galois group Γk; we write Frobv for a Frobenius automorphism of the finite
place v ∈ Pk. We write `v and `λ for the rational prime below v and λ, respectively, we set
Sλ := {v ∈ Pk | `v = `λ}. Then an F -rational G-compatible system ρ• of Γk consists of a
finite set S of places of Pk, for each λ ∈ PF a continuous representation ρλ : Γk → G(Fλ) that
is unramified outside S ∪ Sλ, and for each v ∈ Pk r S a semisimple G(Q)-conjugacy class tv
in G(Q) such that for all λ ∈ PF and v ∈ Pk r (S ∪ Sλ), the semisimplification of ρλ(Frobv)
is conjugate to tv in G(Fλ).

For any smooth projective variety X over k and fixed i ≥ 0, the i-th étale `-adic cohomolo-
gies over all primes ` form a Q-rational GLn-compatible system with n = dimHi

et(X,Q`).
If in addition one has a projector in the sense of Grothendieck motives for the i-th étale
cohomologies of X, say defined over a number field F , then multiplying with the projector
defines an F -rational compatible system. Similarly, it is expected that to a G′-valued cuspidal
automorphic representation with Hecke field F ′ and Langlands dual G of G′ one can attach
a an F ′-rational compatible system over a finite extension F of F ′.

Given a G-compatible system, a first expectation is that there exists a reductive subgroup
H of G such that, up to conjugation for each λ ∈ PF , the group ρλ(Γk) is Zariski dense
in H(Fλ). So let us assume from now on that G is chosen so that ρλ(Γk) is Zariski dense
in G(Fλ) for all λ. The group G should then be the motivic Galois group of the F -rational
compatible system. There is a finite Galois extension k′ of k such that Gal(k′/k) is isomorphic
to G(Fλ)/Go(Fλ), and a result of Serre on compatible systems says that k′ is independent
of λ.

By forming the quotient modulo the center of Go, let us next assume that Go is semisimple
of adjoint type. The system remains compatible. Because Go is of adjoint type, by [Pin98]
the compatible system (ρλ : Γk′ → Go(Fλ)) thus obtained should arise from an Ftr-rational
G′-compatible system where Ftr ⊂ F is the field of traces of its adjoint representation and
G = G′ ×Ftr

F . We now make two hypotheses for the remaining discussion:

(a) The group Go is absolutely simple.

(b) The G-compatible system, and not only its restriction to Γk′ , is Ftr-rational.

Condition (a) is an intrinsic condition on the motive giving rise to (ρλ)λ. We assume it in
order to fit our context. Concerning (b), observe that the result of Pink guarantees that
for each λ ∈ PF and λ′ ∈ PFtr

below λ, there is connected reductive group Hλ′ defined over
(Ftr)λ′ whose base change to Fλ is Go×F Fλ. Pink’s result does not guarantee that the groups
come from a global group H defined over Ftr. This should be expected and this is one of our
requirements in (b). The other requirement is that there is an extension G′ of a finite group
by H defined over Ftr, such that G = G′ ×Ftr F . We want to alert the reader at this point,
that Go is simply connected and of adjoint type, and hence inner-twist like phenomena do
not occur. We think that it is an interesting question to ask if (b) can always be expected, or
if there are natural sufficient conditions for it to hold. Jointly with A. Conti, the first author
plans to explore this further in some particular cases.

The group G has an integral model G over an open non-empty subscheme U of Spec OF .
For places λ in |U | ⊂ PF the group G o(Oλ) is maximal hyperspecial. An expectation that one
has in this context, cf. [Lar95], is that for almost all λ ∈ |U | the condition (hypλ) holds: the
subgroup ρλ(Γk′) of Go(Fλ) itself is maximal hyperspecial, and hence conjugate to G o(Oλ).
The following result is now a direct consequence of the above discussion and Corollary 3.5.

Proposition 2.13. Let ρ• be an F -rational G-compatible system of representations of Γk with
Go absolutely simple and of adjoint type. Suppose condition (hypλ) holds for all but finitely
many λ ∈ PF .5 Set Hλ := ρ̄λ(Γk) and H ′λ := Hλ ∩ G o(Fλ). Then for all but finitely many
λ ∈ PF the tuple (GW (Fλ),Fλ, Hλ, H

′
λ) satisfies Assumption 2.1 and conditions (pf), (ct),

(l-ge), (van), (sch), (n-s).
5In particular, ρλ(Γk) is open in G(Fλ) and Zariski-dense in G×F Fλ for all these λ.
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3 Discussion of basic hypotheses for Chevalley groups

In this section, until the end of Subsection 3.6, we fix the following set-up.

Conditions 3.1. (a) G is a connected absolutely simple linear algebraic group over F,

(b) H ′F is the image of G sc(F) under G sc(F)→ G (F), and

(c) HF is any subgroup of G (F) that contains H ′F.

We shall investigate the validity of Assumption 2.1 and the conditions formulated in
Conditions 2.5 for the tuple (G ,F, HF, H

′
F). We rely on well-known results from the literature.

To get them into the precise shape needed, we often need to prove auxiliary results. We shall
investigate our basic hypotheses separately, each in its own subsection. In Subsection 3.7 we
shall consider a slight variation of this basic setup. It will be useful to have the following lists
that will be used to describe some exceptional behavior:

E (pf) := {SL2(F2), SL2(F3), SU3(F2), Sp4(F2), G2(F2)} (1)

E (sch) :=

{
(A1,F?)?∈{4,9}, (A2,F?)?∈{2,4}, (A3,F2), (B2,F2),(B3,F?)?∈{2,3}, (C3,F2),

(D4,F2), (F4,F2), (G2,F?)?∈{3,4}, (
2A3,F?)?∈{2,3}, (

2A5,F2), (2E6,F2)

}
(2)

E (n-s) :=

{
(SL2,F?)?∈{2,3}, (PGL2,F?)?∈{2,3,4}, (SL3,F2), (PGL3,F2),

(SU3,F2), (PGU3,F2), (PGU4,F2), (SO6,F2)

}
(3)

The following result combines the results from Subsections 3.1 to 3.6.

Theorem 3.2. Suppose that (G ,F, HF, H
′
F) satisfies Conditions 3.1

(a) If G sc(F) is not in E (pf), then (pf) holds and (G ,F, HF, H
′
F) satisfies Assumption 2.1.

(b) If (type,F) /∈ E (sch), then (sch) holds.

(c) Suppose that G sc(F) /∈ E (pf). Then (G ,F, HF, H
′
F) satisfies:

(i) (l-ge) if G is of type An and p - n + 1, or if G is of type Bn, Cn, Dn, E7 or F4

and p 6= 2, or if G is of type E6 or G2 and p 6= 3, or if G is of type E8.

(ii) (l-cl) if G is Lie-simply connected of type An, n ≥ 2, Dn, En, or G is of type A1,
Bn, Cn, F4 and p 6= 2, or of type G2 and p 6= 3.6

(iii) (l-un) unless G is Lie-intermediate of type An with p|n+ 1 or Dn with n odd and
p = 2, or G is of type B2 or F4 and p = 2, or of type G2 and p = 3.

(d) If G is Lie-simply connected, then (csc) holds.

(e) (ct) holds ⇐⇒ Z(g) = 0 ⇐⇒ G is of Lie-adjoint type.

(f) Condition (n-s) holds if and only if (G ,F) is not E (n-s).

(g) Condition (van) holds if G sc(F) /∈ E(pf), (type,F) /∈ E(sch) ∪{(A1,F5)}, (ct) holds, and
if further one of the following holds:

(i) If type = Cn, then |F| /∈ {2, 3, 4, 5, 9}.
(ii) If G is non-split (and hence of type A, D or E6), then |F| ≥ 4.

Remark 3.3. Observe that (ct) and (l-cl) can hold simultaneously only if (l-ge)(ii) holds;
and in the present situation the latter implies (l-ge).

Notation 3.4. For the conjunction of G sc(F) /∈ E (pf), (type G ,F) /∈ E (sch) and (G ,F) /∈ E (n-s),
we shall simply write (G ,F) /∈ E , and say that (G ,F) is not exceptional.

We state an immediate consequence of Theorem 3.2.

6For types An, Dn, E6, E7, this gives restrictions only if p|n+ 1, p = 2, p = 3, p = 2, respectively.
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type An Bn Cn Dn, (n odd) Dn, (n even) E6 E7 E8 F4 G2

Z µn+1 µ2 µ2 µ4 µ2 × µ2 µ3 µ2 µ1 µ1 µ1

Table 1: Centers of absolutely simple simply connected G

Corollary 3.5. Suppose that p ≥ 5, that p6 |n+ 1 if G is of type An and that F 6= F5 if G is
of type A1 or Cn. Then (pf), (sch), (l-ge), (ct), (n-s) and (van) hold.

We fix the following notation throughout this section for an absolutely simple group G
over F. By ϕsc : G sc → G and ϕad : G → G ad we denote the central isogenies from the simply
connected cover of G and to its adjoint group, respectively. We define ϕ := ϕad ◦ϕsc and write
Z := Kerϕ for the center of G sc. We set Z ′ := Kerϕsc and Z ′′ := Kerϕad, so that there is
a short exact sequence 1→ Z ′ → Z → Z ′′ → 1. Cf. A.13.

We remind the reader of the well-known structure of Z given in Table 1, see [MT11,
Table 9.2 and Table 24.2]. Here µn is the finite flat group scheme that is the kernel of Gm →
Gm, α 7→ αn. In particular Z is étale over F and Lie Z = 0 if and only if p does not divide
the order of Z . We also recall the following fact for the convenience of the reader, since it is
used repeatedly.

Fact 3.6 ([Mil17, 10.14]). Let u : G → G ′ be a morphism of affine algebraic groups over a
field. Then Lie(keru) = ker(Lieu) by [Mil17, 10.14].

The homomorphisms on Lie algebras induced from the above morphisms of algebraic
groups are denoted dϕsc : gsc → g, dϕad : g → gad and dϕ = dϕad ◦ dϕsc. We set z :=
Ker dϕ = Lie(Z ) and z∗ := Coker dϕ, so that dim z = dim z∗; see [Pin98, Prop. 1.11(a)]. We
also define z′ := Ker dϕsc and z′′ := Ker dϕad, so that z′ = Lie Z ′ and z′′ = Lie Z ′′. Note
that [Pin98] usually requires that G be adjoint, so that z′ = z. The action of G ? on g? for
? ∈ {sc,∅, ad} is via the adjoint action, and hence it factors via the canonical map to G ad.
In particular, all Lie algebras and homomorphisms between them that we just defined are
modules under any of the algebraic groups G ?, and thus also modules for HF. For any Lie
algebra h over F, we write hF for h⊗F F where F is an algebraic closure of F. We note that if

h is any of the Lie algebras above, then hF carries a representation of G ad(F). Adapting the
notation of [Hog82] to our needs, we call G Lie-simply connected if dϕsc is an isomorphism,
Lie-adjoint if dϕad is an isomorphism, and Lie-intermediate otherwise.

Following [Pin98], in our notation (!), we let g be the image of gsc under dϕ, and we
write dϕ : gsc → g and incl : g → gad for the induced homomorphisms, of Lie algebras and
of G ad-representations. By [Pin98, Prop. 1.10] there is a Lie algebra and G ad-module ĝ such
that one has a pushout as well as a pullback diagram of Lie algebras and G ad-representations

ĝ // // gad

gsc
?�

OO

dϕ
// // g.
?�

incl

OO

We will see in Subsection 3.7 that in fact ĝ occurs as the Lie algebra of a certain reductive
group constructed from G ad (or G sc). The usefulness of ĝ can also be seen in Subsections 3.4
and 3.5.

3.1 Condition (pf)

Note again that until the end of Subsection 3.6 we assume Conditions 3.1.

Theorem 3.7 (Tits, see [MT11, Thm. 24.17]). If G sc(F) is not in the list E (pf) from (1),
then the group G sc(F) is perfect, and its quotient G sc(F)/Z(G sc(F)) is simple.
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Corollary 3.8. Write Z for Z ′(F). Then the following hold:

(a) The map ϕsc induces short exact sequences 1→ Z → G sc(F)→ H ′F → 1 and 1→ H ′F →
G (F)→ Z → 1.

(b) The group Z is finite abelian of order prime to p.

(c) Suppose that G sc(F) is not in E (pf), then H ′F is perfect and H ′F = [G (F),G (F)].

Proof. The argument seems to be well-known, but we could not find a complete reference, so
we give some details: The map ϕsc induces the short exact sequence 1→ Z ′ → G sc → G → 1
of group schemes. Applying (non-commutative) flat cohomology yields the 5-term left exact
sequence of pointed sets

0→ H0
fl(F,Z ′)→ H0

fl(F,G sc)→ H0
fl(F,G )→ H1

fl(F,Z ′)→ H1
fl(F,G sc);

in fact because Z ′ is central, by [Gir71, Prop. 3.4.3] the first three non-trivial arrows are
group homomorphisms. Moreover for smooth group schemes flat and étale cohomology in
degrees 0 and 1 coincide; for both see [Mil80, III.4.5, III.4.7, III.4.8]. This yields

0→ H0
fl(F,Z ′)→ G sc(F)

ϕsc

→ G (F)→ H1
fl(F,Z ′)→ H1

et(F,G
sc).

By a result of Steinberg, we have H1
et(F,G

sc) = 1; see [Ste65, Thm. 1.9]. The sequence also
implies that H0

fl(F,Z ′) ∼= Ker(ϕsc) = Z. Note next that the group scheme Z ′ is a product
of group schemes µn, and for the latter ones flat cohomology in degrees 0 and 1 can be
computed via 1 → µn → Gm → Gm → 1 by the same arguments that were used above, now
using Hilbert 90, from the 4-term exact sequence of groups

1 −→ H0
fl(F, µn) −→ F× α7→αn−→ F× −→ H1

fl(F, µn) −→ 1.

Because F× is finite cyclic of order prime to p, it follows that H0
fl(F, µn) ∼= H1

fl(F, µn) is finite
cyclic of order prime to p. Hence H1

fl(F,Z ′) ∼= H0
fl(F,Z ′) ∼= Z, and Z is finite abelian of order

prime to p, and this completes the proof of (a) and (b).
To prove (c), note first that by Theorem 3.7 the group G sc(F) is perfect, and hence so is

Im(ϕsc) = H ′F. It remains to show that H ′F is equal to [G (F),G (F)]. Since the cokernel of ϕsc

is abelian, the group H ′F contains [G (F),G (F)]. But H ′F cannot be larger, since as a perfect
group it has no non-trivial abelian quotients.

Remark 3.9. The group Z is cyclic unless G is of type Dn with n even, p > 2 and ϕad is an
isomorphism in which case Z is isomorphic to Z/2× Z/2.

Corollary 3.10. Suppose that G sc(F) is not in E (pf). Then the pair (HF, H
′
F) satisfies As-

sumption 2.1.

Proof. By Corollary 3.8 the group H ′F is perfect. Therefore it suffices to find a subgroup MF
of HF that is of order prime to p and such that MF surjects onto HF/H

′
F. Since G (F)/H ′F is

finite abelian, it suffices to construct MF in the case where HF = G (F): if MFH
′
F = G (F), then

the product of the kernel of MF → G (F)/HF with H ′F will be equal to HF for any HF with
H ′F ⊂ HF ⊂ G (F).

Let T ⊂ G be a maximal torus. Then by A.14 its inverse image T sc is a maximal torus
in G sc and one has a short exact sequence 1→ Z ′ → T sc → T → 1. Arguing as in the proof
of Corollary 3.8, we obtain a 4-term exact sequence

1 −→ Z ′(F) −→ T sc(F)
ϕsc

−→ T (F) −→ T (F)/T sc(F) −→ 1.

It follows that T (F)/T sc(F) has the same cardinality as Z ′(F), and by Corollary 3.8, as
G (F)/H ′F. Because T sc is the fiber product of T with G sc over G , the resulting square of
F-points and elementary group theory yield a natural inclusion

T (F)/ϕsc(T sc(F)) ↪→ G (F)/ϕsc(G sc(F))
3.8(a)

= G (F)/H ′F.

By our consideration on cardinalities, it must be an isomorphism. Therefore we can take
MF := T (F) which is clearly of order prime to p.
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Remark 3.11. The groups in the list E (pf) are discussed in [MT11, Rem. 24.18]. Analyzing
them in more detail, using [CCN+85, I.3.5], one can verify that Assumption 2.1 is satisfied for
the pairs (H ′F, H

′
F) (any type) and the pair (G2(F3), HF), but not for any other pair (HF, H

′
F)

with G (F) ∈ E (pf) exceptional. We leave the details to the reader.

For later use, we also note the following immediate consequence of Corollary 3.8.

Corollary 3.12. For G sc(F) /∈ E (pf) one has H1(G (F),Fp) = Hom(G ,Fp) = 0.

3.2 Condition (sch)

Theorem 3.13 ([Ste81, Thm. 1.1]). Let G be as in Conditions 3.1. Then the mod p Schur
multiplier H2(G sc(F),Fp) vanishes, unless (type,F) is in the list E (sch) from (2).

Remark 3.14. In fact, the result stated in [Ste81, Thm. 1.1] is slightly different. It asserts
that the Schur multiplier H2(G (F),Z) vanishes whenever (type,F) /∈ E (sch), and that for
(type,F) ∈ E (sch) the group H2(G (F),Z) is finite and of order a power of p. The relation to
Theorem 3.13 is given by the universal coefficient theorem. It gives the short exact sequence

0→ Ext1(H1(G (F),Z), A)→ H2(G (F), A)→ Hom(H2(G (F),Z), A)→ 0.

Because G (F) is finite and Z is torsion free, the left hand term is zero, and A = Z/(p) gives
the above theorem. Another consequence is that all finite central extensions of G (F) of order
prime to p are trivial.

Remark 3.15. (a) In the statement of [Ste81, Theorem 1.1] there is a typo: the group A2(3)
should be A3(2) (see (5), §2.3 of [Ste81]). Moreover, to obtain the above list from
Theorem 1.1 in [Ste81], one should take into account that B2(2) is isomorphic to the
symmetric group S6, which has nontrivial mod p Schur multiplier (cf. [Ste81, (6) in
§3.3]), as well as the exceptional isomorphism B3(2) ' C3(2).

(b) One can find the same list of exceptions in [Gri80, Table 1]. The groups considered in
[Gri80] are simple groups of Lie type of the form H ′F = [G (F),G (F)], where G is of
adjoint type.

Corollary 3.16. Suppose that (type,F) /∈ E (sch). Then (sch) holds.

Proof. In the simply connected case this result is Theorem 3.13, taking into account that
H ′F = [G (F),G (F)] = G (F). In the general case, one applies Corollary 3.8(a), (b) to control
kernel and cokernel of G sc(F)→ G (F), and then concludes using the Hochschild-Serre spectral
sequence from group cohomology.

3.3 Condition (ct)

We begin with the following result due to Hogeweij on the center:

Theorem 3.17 (Hogeweij). One has

Ker(dϕad : g→ gad)
Fact 3.6

= LieZ(G ) = Z(g).

Because Z(G ) is finite, Z(g) is non-zero if and only if p divides the order of Z(G ), i.e., if and
only if G is Lie-adjoint.

More concretely, from Table 1 one has z = Ker(dϕ : gsc → gad) 6= 0 if and only if one of
the following conditions is satisfied:

(a) g is of type An and p|(n+ 1).

(b) g is of type Bn, Cn or Dn (n odd) or E7 and p = 2.

(c) g is of type E6, and p = 3.
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(d) g is of type Dn (n even), and p = 2.

In cases (a)–(c) one has dim z = 1, in case (d) one has dim z = 2.
For general g one has Z(g) 6= 0 if and only if z 6= 0 and either dϕsc : gsc→ g is bijective

in cases (a)–(c), or Ker(dϕsc : gsc→ g) has dimension at most 1 in case (d).
Finally, Z(g) is an F[HF]-submodule of g on which HF acts trivially.

Proof. It is a basic fact that LieZ(G ) is a sub Lie algebra of Z(g); see [Mil17, Prop. 10.33].
To prove the displayed formula, note that dimF Lieµm = 1 if p|m, and dimF Lieµm = 0,
otherwise. Hence one can read off from Table 1 the dimension of Z(G sc).

Next note that ϕsc 7→ Kerϕsc defines a bijection between the (central) isogenies ϕsc : G sc →
G and the subgroups of Z(G sc). Moreover Z(G ) is equal to Z(G sc) modulo Kerϕsc. This allows
one to read off dim LieZ(G ) from Table 1 for all G (as a function of p and ϕsc). One now
compares this dimension with that of Z(g) given in [Hog82, Table 1] and observes equality in all
cases, so that the stated formula holds. The remaining assertions on Z(g) follow immediately
from [Hog82, Table 1].

The assertion on the F[HF]-module structure is straightforward from Z(g) = LieZ(G ):
Z(G ) ⊂ G is a stable subgroup under the adjoint action, and the latter is trivial on Z(G ).
Passing to Lie algebras, Z(g) ⊂ g is an HF-stable subalgebra on which HF acts trivially.

Proposition 3.18. (G ,F, HF, H
′
F) satisfies (ct) if and only if Z(g) = 0.

Proof. The center of G sc is described in Table 1. For a general G , the central isogeny ϕsc : G sc →
G , introduced above Table 1, gives a short exact sequence 1→ Ker(ϕsc)→ Z(G sc)→ Z(G )→
1. From the explicit description in Table 1, it follows that Z(G ) is smooth (over W (F)) if and
only if p does not divide the order of Z(G ), and the latter is equivalent to LieZ(G ) be-
ing trivial. By Theorem 3.17 this is equivalent to Z(g) being zero. It remains to show that
H0(H ′F, g) = 0 provided that Z(g) = 0. This can be read off from [Pin98, Prop. 11.1]. Note
that there one considers g ⊗F F; but this does not affect the vanishing of H0(H ′F, g). Also,
z in [Pin98] is defined as Ker(gsc → gad); but we have identified this with Z(gsc) in Theo-
rem 3.17.

Remark 3.19. If Z(g) is non-zero, we shall obtain in Subsection 3.7 an “ambient group” of G
for which (ct) holds; see in particular Theorem 3.51(a).

3.4 Condition (lie)

This subsection is devoted to collecting results on the structure of the Lie algebra g of G .
Recall the maps ϕ, ϕsc and ϕad in G sc → G → G ad, and their induced maps dϕ? on Lie
algebras. Let G be the finite (Chevalley) group that is the image of G sc(F) in G ad(F) under
ϕ. We are going to consider the structure of the Lie algebra g of G , both as a Lie algebra and
as an Fp[G]-module.

Our main references will be [Hog82], [His84], and [Pin98]. Since the last two references
work over an algebraically closed field, we begin with two lemmas to descend from F to F.
For an F-vector space V , we write VF for the base change V ⊗F F.

Lemma 3.20. Let h be a Lie algebra over F. Then the following hold:

(a) If a ⊂ h is an ideal, then aF is an ideal of hF and the assignment a 7→ aF satisfies
dimF a = dimF aF and is injective. In particular, if hF is simple, then so is h; and if h
splits as a⊕ b for two ideals a, b, then hF splits as aF ⊕ bF.

(b) Under h 7→ hF, we have [hF, hF] = [h, h]F and Z(h)F = Z(hF). In particular h is perfect,
i.e., [h, h] = h, if and only if hF is perfect.
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Proof. Let (Xi)i∈I be a basis of h such that (Xi)i∈J for a subset J ⊂ I is a basis for a.
Because a is an ideal, all brackets [Xi, Xj ], for i ∈ I and j ∈ J , lie in the F-span of

(Xi)i∈J . Since aF is also spanned by (Xi)i∈J , this in turn implies that aF is an ideal of hF.
The injectivity of a 7→ aF follows from the injectivity for the corresponding map on F-vector
spaces; the remaining parts are immediate and this completes the proof of (a).

For (b) note that the F-span of the brackets [Xi, Xi′ ], i, i
′ ∈ I, is [h, h]; their F-span is

[hF, hF]. This implies the first assertion, and also the last. To see the remaining assertion,
observe that Z(h) = {Y ∈ h | ∀i ∈ I : [Y,Xi] = 0}. This is a linear system of equations. Hence
an F-basis of Z(h) is also an F-basis of Z(hF), and thus also (b) is proved.

Lemma 3.21. Let V be an F[G]-module and let W be an F-vector subspace. Suppose that
NF ⊂ VF is invariant under G. Then N is an F[G]-submodule of V .

Proof. Let (vi)i∈I be a basis of V over F such that there exists J ⊂ I such that (vi)i∈J is
a basis of N . Let j ∈ J . The G-invariance of NF implies that gvj =

∑
j′∈J λjj′vj for some

λjj′ ∈ F. The fact that V carries a G action implies that gvj =
∑
i′∈I µji′vi′ for suitable

µji′ ∈ F. The basis property of (vi)i∈I yields µjj′ = λjj′ for j′ ∈ J and µji′ = 0 for i′ ∈ I rJ .
Hence Gvj ∈ N for all j ∈ J , and this implies the lemma.

In many cases, the Lie algebra g of G is simple, both as a Lie algebra and as an F[G]-module.
From [His84, Hauptsatz und Korollare], [Hog82, Cor. 2.7] and Lemma 3.20, the following is
immediate:

Proposition 3.22. The Lie algebra g is simple if and only if none of the following holds

(a) g is of type An and p divides n+ 1.

(b) g is of type Bn, Cn, Dn, E7 or F4 and p = 2.

(c) g is of type E6 or G2 and p = 3.

If g is simple as a Lie algebra, it is simple as an F[G]-module.

The following result is a complete classification of when g is perfect, i.e., when [g, g] = g.
It follows directly from [Hog82] using Lemma 3.20.

Proposition 3.23 ([Hog82]). Suppose that p 6= 2 if G is of type A1, B2 or Cn. Then g is
perfect if and only if G is Lie-simply connected. Moreover, the map dϕsc can fail to be an
isomorphism in the following cases only:

(a) g is of type An and p divides n+ 1.

(b) g is of type Bn, n ≥ 3, Dn, n ≥ 4, or E7 and p = 2.

(c) g is of type E6 and p = 3.

The next result is again essentially due to Hiss and Hogeweij with some additions by
Pink. There is also much overlap with [Vas03, Thm. 3.10]. Recall the exact sequences 0 →
z → gsc → g → 0 and 0 → g → gad → z∗ → 0 of G ad-representations in which z ∼= z∗ are the
trivial representation; see [Pin98, Prop. 1.11(a)].

Theorem 3.24. Suppose that p 6= 2 if G is of type A1, Bn, Cn or F4 and that p 6= 3 if G is
of type G2. Let H be any group with G ⊂ H ⊂ G ad(F). Then the following hold:

(a) As a Lie algebra and as an F[H]-module, g is absolutely simple and non-trivial.

Assume from now on that p divides the order of Z(G sc).

(b) The socle of gsc as a Lie algebra and as an F[H]-module is z.

(c) The cosocle of gad as a Lie algebra and as an F[H]-module is z∗.
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(d) G is Lie-simply connected if and only if z′ = 0; it is Lie-adjoint if and only if z′′ = 0.

(e) If z′ and z′′ are non-zero, then dim z′ = dim z′′ = 1 and either of the following holds:

(i) G is Lie-intermediate of type An with p2|n+1 or of type Dn with n odd and p = 2,
and then g ∼= g⊕ z′′ as Lie algebras and as F[H]-modules.

(ii) G is Lie-intermediate of type Dn with n even and p = 2, and then g possesses a
unique composition series

0 ( z′′ ( [g, g] ( g

as a Lie algebra and as an F[H]-module, with g/[g, g] ∼= z′, and [g, g]/z′′ ∼= g.

Proof. It clearly suffices to prove the result for H = G. The assertions on Lie algebras are
from [Hog82, Table 1] – strictly speaking the results in [Hog82] are results on gF; but by
Lemma 3.20 this suffices to deduce the above results over F from the corresponding ones over
F. The assertion on the F[G]-module structure is stated, over F, in a similar way in [Pin98,
Prop. 1.11]. It completes previous work from [His84, Hog82].

(a) Consider [Hog82, Table 1]. Since gF only depends on the type of G , we may assume
that G is simply connected, i.e., that gF of universal type in the sense of op.cit. In all cases
that we allow, all nontrivial ideals are contained in Z(gF). Thus gF ' gF/Z(gF) is simple as
a Lie algebra. That gF = gsc

F /Z(gsc
F ) is a simple F[G]-module is [His84, Hauptsatz]. Because

dimF g > 1, the action cannot be trivial.
(b) Note first that under the hypothesis for (b)–(e) we have z 6= 0 by Theorem 3.17. By

[Hog82, Table 1], the only nontrivial ideals of gsc
F are contained in the centre zF = Z(gsc

F ). By
Lemma 3.20, the nontrivial ideals of gsc are thus contained in z. By (a), the socle of gsc as a
Lie algebra is either z or gsc. If it was gsc, then there should be an ideal a such that z⊕a = gsc,
and after enlarging coefficients we would have zF⊕ aF = gsc

F . But [Hog82, Table 1] displays no
such ideal.

We now consider gsc as an F[H]-module. From Theorem 3.17 we see that 0 6= z ⊂ g is
an F[H]-submodule on which H acts trivially. Hence it is part of the F[H]-socle of gsc. If
the socle was strictly larger, then by (a) it would be all of g, and by semisimplicity of the
socle there would be a subrepresentation h ⊂ g that would map isomorphically to g. But then
g = h⊕ z. This contradicts [His84, Hauptsatz], which asserts also that gsc

F is indecomposable

as an F[G]-module.
(c) The proof is dual to that of (b). From the ideals displayed in [Hog82, Table 1], it follows

that z∗ is an abelian Lie algebra, and by [Pin98, Prop. 1.11(a)] we have that the action of H
on z∗ is trivial. Moreover from [Hog82, Table 1] it follows g = [gad, gad] is absolutely simple
and contained in all non-trivial Lie ideals of gad and from [Pin98, Prop. 1.11(b)] which is
based on [His84] and our hypothesis on the types, it follows that g is absolutely irreducible
and contained in all non-trivial subrepresentations of gad. Hence arguing as in (b) one deduces
(c).

(d) Follows from dimF g
sc = dimF g = dimF g

ad and the definition of z′ and z′′ as the kernels
of dϕsc and of dϕad, respectively.

(e) If both z′ and z′′ are non-zero, then neither dϕsc nor dϕad is an isomorphism, and so
G is Lie-intermediate. Looking at [Hog82, Table 1], this can only happen if G is of type An,
with p2|(n + 1), or p = 2 and types D2n or D2n+1, and in either case dim z′ = 1. Because
ϕsc : G sc → G is a universal central isogeny, we have the exact sequence 1 → Kerϕsc →
Z(G sc)→ Z(G )→ 1. Applying the functor Lie(·) yields the left exact sequence

0→ z′ → z
dϕsc

→ z′′. (4)

In case An, we have dimF z = 1 = dimF z
′′. From the above sequence and z′ 6= 0 we deduce

that z′ = z, and so dimF z
′ = 1 and dϕsc(z) = 0. Next we establish (i) for An. (The case

Dn with n odd is analogous). According to [Hog82, Table 1], the non-trivial ideals of gF are
z′′F = Z(gF) of dimension 1 and [gF, gF] of codimension 1 of gF. It follows from Lemma 3.20

that the non-trivial ideals of g are z′′ of dimension 1 and [g, g] of codimension 1. Another
codimension 1 Lie subalgebra of g is the image of dϕsc which is isomorphic to g and hence
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simple. Since dimF g− 1 = dimF g > 1 = dimF z
′′, we must have g ∼= [g, g] and z′′ ∩ [g, g] = 0,

and now (i) follows for An and the Lie algebra structure.
In both cases An and Dn with n odd, we know that z′′ is a trival F[G]-module of F-

dimension 1. Moreover, the image of dϕsc is an F[G]-submodule of g. We have already seen
that Im dϕsc = [g, g] ∼= g and z′′ have trivial intersection, and thus we have g = z′′ ⊕ [g, g] as
F[H]-modules.

Suppose now that p = 2 and that the type is Dn with n even. Then Z(G sc) ∼= µ2×µ2, and
because G is neither of simply connected nor of adjoint type, we must have Kerϕsc ∼= µ2

∼=
Z(G ). It follows that (4) is also exact on the right, and moreover that dimF z

′ = dimF z
′′ = 1.

From [Hog82, Table 1] and using Lemma 3.20, we find again that the non-trivial ideals of g
are z′′ of dimension 1 and [g, g] of codimension 1. At the same time dϕsc(gsc) is an ideal of
codimension 1, and as a Lie algebra it is perfect, because this holds for gsc by Proposition 3.23.
Since dimF g > 2, we deduce dϕsc(gsc) = [g, g], and we have g = gsc/z ∼= [g, g]/z′′. Thus as a
Lie algebra we have the composition series described in (ii), and since g has no other ideals,
it is the unique composition series.

It remains to understand the F[H]-module structure of g. By (b) we have that z ⊂ gsc

is an F[H]-submodule on which H acts trivially. Hence z′ has the same property. Because
dϕsc is H-equivariant, it follows that z′′ = dϕsc(z) and [g, g] = dϕsc(gsc) are F[H]-submodules
of g. Moreover H acts trivially on z′′ and by (a) the quotient [g, g]/z′′ ∼= g is absolutely
irreducible and non-trivial. Since z′′ lies in [g, g] and is the kernel of dϕad, we have an injection
g/[g, g] ↪→ gad/g = z∗ as F[H]-modules. This shows that H acts trivially on g/[g, g], and for
dimension reasons the latter is isomorphic to z′ as an F[H]-module.

It remains to prove the uniqueness of the F[H] composition series in (ii). Let s be the socle
and c be the cosocle of g. We need to show that the canonical inclusion z′′ ↪→ s and surjection
c −→→ g/[g, g] are isomorphisms. By [Pin98, Prop. 1.11-(b)], we know that gF is the cosocle
of gsc

F as F[G]-module, and hence also as F[H]-module. Passing to the quotient by z′F and

applying Lemma 3.20, we find that z′′ is the socle of [g, g], and it follows that s ∩ [g, g] = z′′.
Modding out by z′′, we have s/z′′⊕ g ⊂ gad as F[H]-modules. However again by [Pin98, Prop.
1.11-(b)], the socle of gad

F as an F[G]-module is gF, and from Lemma 3.20, we deduce s/z′′ = 0,
which shows the first isomorphism. The argument for c is dual but analogous, and so we omit
it.

Remark 3.25. For p = 2 and G sc of type A1, [gsc, gsc] = Z(gsc) (cf. [Hog82, Table 1]), thus g is
abelian as a Lie algebra. However, if q ≥ 4, it is indecomposable as an F[G]-module (cf. [His84,
Hauptsatz]).

Remark 3.26. For those G not of type A1 that are not included in Theorem 3.24, the repre-
sentation g possesses a non-trivial composition series, as an H-module and as a Lie algebra.
Much of this is related to some non-standard isogenies between types Bn and Cn or from F4

to F4 if p = 2 and from type G2 to G2 if p = 3; see [Pin98, Sect. 1].

Remark 3.27. Assertions (b) and (c) of Theorem 3.24 are still true in the cases, p = 2, type
Cn with n even, and type Bn with n ≥ 4 even, as can be directly verified from [His84, Hog82].
Also, in all cases, i.e., also those excluded in Theorem 3.24, it holds true that the maximal
Fp[G]-submodule of gsc on which G acts trivially is z (cf. [His84, Hauptsatz]).

Next, we study the canonical map F→ EndFp[H′F](g). For this we need the following result:

Lemma 3.28. Let G be a finite group, let L ⊃ K be any extensions of fields, and let V be a
KG-module. Then

(a) If L⊗K V is completely reducible as an LG-module, then V is completely reducible as a
KG-module.

(b) Suppose V is completely reducible as a KG-module, EndKG(V ) contains a finite field
extension E of K and dimL EndLG(L ⊗K V ) = dimK E, then E = EndKG(V ) and V
is irreducible as a KG-module.

15



Proof. Lacking a reference for the certainly well-known results of the lemma, we give a proof:
We deduce (a) from the following result of M. Deuring and E. Noether, cf. [CR62, Theorem
(29.11)]. Let W,W ′ be finite-dimensional KG-modules such that L ⊗K W ∼= L ⊗K W ′ as
LG-modules. Then W ∼= W ′.

If now V0 = 0 ( V1 ( . . . Vi−1 ( Vi = V is a composition series of V with simple quotients,
then by our hypothesis on L⊗K V we have L⊗K V ∼= L⊗K (⊕ij=1Vi/Vi−1). It follows from
Deuring-Noether that V is completely reducible.

For part (b) note first that EndKG(V )⊗K L injects into EndLG(L⊗K V ), because for any
finite-dimensional K-vector space V one has EndK(V )⊗KL ∼= EndL(L⊗KV ). We deduce that
E ⊗K L injects L-linearly into EndLG(L ⊗K V ), and using our dimension hypothesis we see
that E⊗K L→ EndLG(L⊗K V ) is an isomorphism, and hence the inclusion E ↪→ EndKG(V )
must be an isomorphism as well. Because V is semisimple and E is a field, we also deduce
that V is a simple KG-module.

Proposition 3.29. Suppose that G sc(F) /∈ E (pf). Denote by gh.w. the F[G]-subquotient of

g of highest weight. Then gh.w. is irreducible as an Fp[H ′F]-module and the canonical map
F→ EndFp[H′F](g

h.w.) is an isomorphism.

The proposition expresses the fact that F is the smallest coefficient field over which the
absolutely irreducible F[G]-module gh.w. can be defined. Lacking a reference, we give a proof.

Proof. In [Pin98, Prop. 1.11] a composition series of gF as an F[G]-module is given. According
to [Hog82, Table 1] there is a filtration of F-Lie subalgebras of g whose scalar extension to F is
the decomposition series from [Pin98], and hence by Lemma 3.21, the filtration deduced from
[Hog82] is also one of F[G]-modules. It follows that the highest weight subquotient of gF is
defined over F, i.e., that gh.w. is defined and absolutely irreducible. Hence by Lemma 3.28(a),
the Fp[G]-module gh.w. is completely reducible.

We consider gh.w. ⊗Fp F as a F[H ′F]-module. Using the decomposition

F⊗Fp F
'−→

⊕
σ∈Gal(F/Fp)

F , α⊗ β 7→ (ασ(β))σ∈Gal(F/Fp),

we find gh.w. ⊗Fp F ∼=
⊕

σ∈Gal(F/Fp) g
h.w. ⊗σF F, where each tensor product uses a different

Galois automorphism. We now use the Steinberg Tensor Theorem and Steinberg’s theory of
irreducible representations of finite Chevalley groups to deduce that the gh.w.⊗σFF are pairwise
non-isomorphic.

Let M denote the set of irreducible restricted (algebraic) representations of G sc; their
number is p` where ` denotes the rank of G sc; see [Ste63, p. 36]. Let n := [F : Fp]. By
[Ste63, Thm. 7.4 and 9.3] every irreducible representation V of G sc(F) can be written as

⊗n−1
i=0 V

(i)
i for a unique choice (V0, . . . , Vn−1) ∈Mn, and where the superscript (i) denotes the

i-th Frobenius twist of Vi; here the Vi are supposed to be considered as representations of
G sc(F) and therefore one has W (n) = W for W ∈M. Choose the Vi for gh.w., considered as a
representation of G sc(F) via the surjection G sc(F)→ H ′F. Let Fr ∈ Gal(F/Fp) be the geometric

Frobenius automorphism α 7→ α1/p. It is elementary to see that gh.w. ⊗Fri

F F = gh.w.,(i). It

follows that gh.w.⊗Frj

F F ∼= ⊗n−1
i=0 V

(i+j)
i . Denote by w := (w0, . . . , wn) the tuple of p-restricted

weights such that
∑n−1
i=0 wip

i is the highest weight of gh.w.. Then it remains to show that no
cyclic permutation of w except for the identity, fixes the list w.

By [Bou68, Planches], the highest weight of gh.w. in terms of a basis of fundamental weights
$1, . . . , $`, depending on the type, is given in the following table:

type A` B2 B`, `≥3 C`, `≥3 D`, `≥4 E6 E7 E8 F4 G2

h.w. $1 +$` 2$2 $2 2$1 $2 $2 $1 $8 $1 $2
(5)

As a Z-linear combination in the basis ($i)i=1,...,`, only the coefficients 0, 1 and 2 occur,
and 2 only occurs for types B` and C`. But for the latter two we require p > 2. Hence the
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highest weight of gh.w. itself is p-restricted, and thus the gh.w.,(i), i = 0, . . . , n−1 are pairwise
non-isomorphic.

We now have seen that gh.w. ⊗Fp F ∼=
⊕

σ∈Gal(F/Fp) g
h.w. ⊗σF F is a decomposition into

pairwise non-isomorphic absolutely irreducible modules. This implies

EndF[H′F](F⊗Fp g
h.w.) ∼= F× . . .× F

with n factors on the right, so that dimF EndF[H′F](F⊗Fp g
h.w.) = n = [F : Fp]. The proposition

now follows from Lemma 3.28(b).

Corollary 3.30. Suppose that p 6= 2 if G is of type Bn, Cn or F4 and that p 6= 3 if G is of
type G2, and suppose that G sc(F) /∈ E (pf), so that G sc(F) is perfect. Then g is irreducible as
an Fp[H ′F]-module and the canonical map F→ EndFp[H′F](g) is an isomorphism.

Proof. By our hypotheses and Theorem 3.24, the module g is absolutely irreducible, as a
module over F[H ′F], and it is not difficult to see that g ∼= gh.w. in all cases of the corollary.
Hence the result follows from Proposition 3.29.

From what we proved in Subsection 3.4 so far, the following result is now immediate.

Corollary 3.31. If G sc(F) is not in E (pf), then the triple (G , HF, H ′F) satisfies (l-ge) if G
is of type An and p - n+ 1, or if G is of type Bn, Cn, Dn, E7 or F4 and p 6= 2, or if G is of
type E6 or G2 and p 6= 3, or if G is of type E8.

For (l-un) we also need the following result, where for an F[G]-module V we denote by
soc(V ) and csoc(V ) the socle and cosocle of V , respectively:

Lemma 3.32. Let V be an F[G]-module that is irreducible over Fp[G], carries a non-trivial
G-action and for which the natural ring map F → EndFp[G](V ) is an isomorphism. Suppose
that V is an F[G]-module that satisfies one of the following conditions:

(a) The module V sits in a short exact sequence 0→ soc(V )→ V → csoc(V )→ 0 such that
{soc(V ), csoc(V )} = {Fr, V } for some r ≥ 1.

(b) The module V possesses a 3-step filtration 0 ( V1 ( V2 ( V such that V1 = soc(V ) ∼= F,
V/V2 = csoc(V ) ∼= F and V2/V1

∼= V .

(c) The module V sits in a short exact sequence 0→ soc(V )→ V → csoc(V )→ 0 such that
{soc(V ), csoc(V )} = {F⊕V , V ′} for some irreducible F[G]-module V ′ such that F, V ′, V
are pairwise non-isomorphic.

(d) The module V possesses a unique filtration 0 = V0 ( V1 ( V2 ( V3 ( V4 = V
with irreducible F[G]-subquotients Qi = Vi/Vi−1, i = 1, . . . , 4, and moreover one of
the following holds:

(i) Q1
∼= Q3

∼= F and {Q2, Q4} = {V , V ′} for some irreducible non-trivial F[G]-module
V ′ such that F, V ′, V are pairwise non-isomorphic.

(ii) Q2
∼= Q4

∼= F and {Q1, Q3} = {V , V ′} for some irreducible non-trivial F[G]-module
V ′ such that F, V ′, V are pairwise non-isomorphic.

Then the natural map F→ EndFp[G](V ) is an isomorphism.

Proof. The proofs are all fairly standard. They use properties of the socle and cosocle of
modules over group rings. For instance if V → V ′ is an F[G]-module homomorphism, then it
induces maps soc(V )→ soc(V ′) and csoc(V )→ csoc(V ′). Case (b) can use case (a) and case
(d) can benefit from (a) and sometimes (b). As a sample proof we give one half of the proof
in case (c):

Suppose that soc(V ) = F ⊕ V and csoc(V ) = V ′, and let ϕ : V → V be in EndFp[G](V ).

Since ϕ preserves the socle, it induces a map ϕ|F⊕V in EndFp[G](F ⊕ V ). The latter ring is

isomorphic to F× F by our hypothesis on EndFp[G](V ) and the fact that V is irreducible and
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non-isomorphic to Fp. By replacing ϕ by ϕ′ := ϕ− λ idV , we may assume that ϕ′ restricts to
the zero map on V . We need to prove that ϕ′ = 0.

The map ϕ′ induces a homomorphism ϕ̄′ : V/V → V . Suppose first that ϕ̄′ is injective.
Then V/V is a direct summand of V , so that V ∼= V ⊕V/V , since V and V ′ are irreducible over
Fp[G] and of different dimensions and since they are not isomorphic to Fp. But the csoc(V )
surjects onto V ′⊕V , which contradicts our hypothesis. Hence Ker ϕ̄′ 6= 0. We note that V/V
is a non-trivial extension of V ′ by F, since otherwise csoc(V ) would surject onto F⊕V ′ which
is not allowed. Thus Ker ϕ̄′ ∈ {F, V/V }, and we need to rule out the first case.

Suppose F = Ker ϕ̄′. Then ϕ vanishes on F ⊕ V and induces an injective homomorphism
V ′ ∼= V/(F ⊕ V ) ↪→ V . But then V ′ ⊂ soc(V ), which contradicts the hypotheses of (c). This
completes the proof of (c).

Corollary 3.33. Suppose that one of the following conditions holds:

(a) (lie-ge) holds

(b) G is Lie-simply connected or Lie-adjoint and of type An with p|n+ 1 and not (F, n) =
(F2, 2) or of type Dn with p = 2, or G is of type E7 with p = 2, or of type E6 with p = 3.

(c) G is Lie-intermediate of type Dn with p = 2 and n even.

(d) G is of type Bn or Cn, n ≥ 3, and p = 2.

Then the natural map F→ EndFp[G](g) is an isomorphism.

Proof. If (l-ge) holds, then g = gh.w. and we can directly apply Proposition 3.29. In all other
cases we apply Lemma 3.32. The case (b) here reduces to (a) of Lemma 3.32, the case (c) here
reduces to (b), the case (d) here reduces to (c) if n is odd and to (d) if n is even. To see that
one can apply Lemma 3.32, note first that by [Pin98, Prop 1.11] we have filtrations of gF as an
F[G]-module with the properties described in Lemma 3.32(a)–(d), and that by [Hog82, Table
1] there is a filtration of F-sub Lie algebras of g whose scalar extension to F is that of [Pin98,
Prop 1.11]. Hence by apply Lemma 3.21, the filtration descends to one of F[G]-modules of g,
as does the uniqueness property stated in [Pin98, Prop. 1.11]. This establishes the required
properties on socles, cosocles and filtrations needed in Lemma 3.32(a)–(d). That F, V ′, V are
pairwise non-isomorphic is most easily deduced from [His84, Diagrams in Hauptsatz], where
it is observed that they have pairwise distinct dimensions.

Remark 3.34. In the following situations not covered by Corollary 3.33, the canonical map
F→ EndFp[G](g) is not an isomorphism:

(a) G is of type B2 or F4 and p = 2 or of type G2 and p = 3; here EndFp[G](g) ∼= F[ε]. These
are the cases where the Ree and Suzuki groups occur.

(b) G is of Lie-intermediate type An with p|n + 1 or Dn with p = 2 and n odd; here
EndFp[G](g) ∼= F× F.

Lemma 3.35. Condition (l-un)(i) holds unless G is of type B2.

Proof. The commutator Lie subalgebras [g, g] and the quotients g/[g, g] are given in [Hog82,
Table1]. Except for types A1 and p = 2, for types Cl, l > 2, and G Lie-universal, and for types
B2, the quotient is of the form Fr with r ∈ {0, 1, 2}. If the latter is the quotient then gh.w. is
a JH-factor of [g, g], and so (l-un)(i) holds. For type A1 and p = 2 we have [g, g] = F and the
quotient g/[g, g] is non-trivial irreducible F[G]-module. For Cl with l > 2 and G Lie-universal,
the quotient g/[g, g] is irreducible but not isomorphic to gh.w. by [His84, Hauptsatz].

Combining the last two results, we obtain:

Corollary 3.36. If G sc(F) /∈ E (pf), then (l-un) holds unless G is Lie-intermediate of type
An with p|n+ 1 or Dn with n odd and p = 2, or G is of type B2 or F4 and p = 2, or of type
G2 and p = 3.
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Lastly we turn to (l-cl).

Lemma 3.37. If G sc(F) /∈ E (pf), then (l-cl) holds if G is Lie-simply connected of type An,
n ≥ 2, Dn, En, or G is of type A1, Bn, Cn, F4 and p 6= 2, or of type G2 and p 6= 3.

Proof. The condition that g is perfect, i.e. (l-cl)(i), is completely described in Proposi-
tion 3.23. It requires G to be Lie-simply connected and that the type of G is not A1, B2

or Cn if p = 2. Condition (l-cl)(ii), that soc(g) ∼= Fr for r ≥ 0 and csoc(g) = g (and hence
csoc(g) = gh.w.), can be read off from [Pin98, Prop. 11.1]. It requires us to further exclude
Bn, F4 of p = 2 and G2 if p = 3. Note also Theorem 3.17 concerning the HF-action.

Let us also state the complete result concerning (csc).

Proposition 3.38. If G is Lie-simply connected, then (csc) holds.

Proof. It follows from [His84, Hauptsatz] that in the case where G is Lie-simply connected
the cosocle of gF contains no copy of the trivial H ′F-module F. Hence the cosocle of g cannot
contain a copy of F; and this implies (csc).

3.5 Condition (van)

This subsection collects the known results on the vanishing of H1(H ′F, g). We begin with the
following lemma that, when combined with results we shall recall later, suggests that it is
most natural to expect the vanishing of H1(H ′F, ĝ) in (almost) all cases (similar to [TZ70,
Thm. 9] for G = GLn). The lemma will be used later in Subsection 3.7; it is also useful to
determine H1(H ′F, g) in some cases.

Lemma 3.39. Suppose that (G ,F) lies neither in E (pf) nor in E (sch). Then the following are
equivalent:

(a) H1(H ′F, ĝ) = 0.

(b) dimFH
1(H ′F, g) = dimF Z(g).

(c) dimFH
1(H ′F, g) = dimF z.

Remark 3.40. The proof shows that if dϕsc : gsc → g is an isomorphism, then (a)⇔(b) only
requires that (G ,F) is not in E (pf); the same holds when dϕad : g → gad is an isomorphism
for (b)⇔(c).

Proof. We first assume that dϕsc : gsc → g is an isomorphism. To prove (a)⇔(b) consider the
short exact sequence 0→ gsc→ ĝ→ z∗ → 0 and the resulting long exact sequence

0→ H0(H ′F, g
sc)→ H0(H ′F, ĝ)→ z∗ →

→ H1(H ′F, g
sc)→ H1(H ′F, ĝ)→ H1(H ′F, z

∗)→ . . .

of group cohomology. Note that by Theorem 3.24 and Remark 3.27, the module z is the
maximal one of both gsc ⊂ ĝ on which H ′F acts trivially. Hence H0(H ′F, g

sc) → H0(H ′F, ĝ)
is an isomorphism in the above sequence. Also we have H1(H ′F, z

∗) ∼= H1(H ′F,Fp) ⊗Fp z∗,
because z∗ is trivial as a H ′F-module. Therefore H1(H ′F, z

∗) = 0 by Corollary 3.12, so that
0→ z∗ → H1(H ′F, g

sc)→ H1(H ′F, ĝ)→ 0 is a short exact sequence. This implies (a)⇔(b).
To prove (b)⇔(c) consider the short exact sequence 0 → z → gsc → g → 0 and the

resulting long exact sequence of group cohomology

0→ z→ H0(H ′F, g
sc)→ H0(H ′F, g)→ H1(H ′F, z)→

→ H1(H ′F, g
sc)→ H1(H ′F, g)→ H2(H ′F, z)→ . . .

We deduce H1(H ′F, z) = 0 as in the previous paragraph (there for z∗ instead of z). Moreover
we obtain H2(H ′F, z) = 0 from Corollary 3.16. Since z = Z(gsc) we showed (b)⇔(c).
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From now on we no longer assume that dϕsc : gsc → g is an isomorphism. Instead, we
consider the short exact sequences (i) given by 0 → Ker dϕsc → gsc → Im dϕsc → 0 and
(ii) given by 0 → Im dϕsc → g → Coker dϕsc → 0. We shall prove that (b) for gsc and (b)
for g are equivalent: Using (i) and Ker dϕsc ⊂ z, and arguing as in (b)⇔(c), we deduce the
isomorphism

H1(H ′F, g
sc)
'→ H1(H ′F, Im dϕsc).

Note now that by Theorem 3.24 and Remark 3.27, the module Z(Im dϕsc) is the maximal one
of both Im dϕsc ⊂ g on which H ′F acts trivially. Therefore we can now argue as in (a)⇔(b) in
the first paragraph using the sequence (ii), to deduce the short exact sequence

0→ Coker dϕsc → H1(H ′F, Im dϕsc)→ H1(H ′F, g)→ 0.

Observing that dimF Coker dϕsc = dimF ker dϕsc, since dimF g
sc = dimF g we may now com-

bine the above with the short exact sequence

0→ ker dϕsc → z→ Z(Im dϕsc)→ 0,

to deduce, by a simple dimension count, that (b) for gsc and (b) for g are equivalent.

The following result is essentially due to Cline, Jones, Parshall, Scott for the A-D-E types
and due to Völklein for the others, as we shall indicate in its proof.

Theorem 3.41. Suppose that (G ,F) satisfies the following conditions

(i) (type,F) is neither (A1,F2) nor (A1,F5).

(ii) If type = Cn, then #F /∈ {2, 3, 4, 5, 9}.

(iii) If G is non-split (and hence of types A, D or E6), then |F| ≥ 4.

Then
dimFH

1(H ′F, g) = dimF Z(g).

Proof. Suppose first that G is split. Then by [Völ89b, Theorem and Remarks (a)] conditions
(i) and (ii) describe all cases that need to be excluded. Concerning [Völ89b, Remarks (a)],
note that the assertion is not quite immediate from [Völ89a, Cor. 2]. Some additional work is
required since the module V defined and used in [Völ89a] is not equal to g for G of type Bn,
Cn, F4 and G2, cf. [His84, Diagrams in Hauptsatz]. Hence in addition to [Völ89a, Cor. 2] one
has to prove the vanishing of H1(H ′F,W ) for certain subfactors W of g directly. This is not
difficult.

Suppose finally, that G is non-split over F. Since we assume |F| ≥ 4 it is shown in [CPS77,
Table 3], in all cases claimed, that H1(G sc(F), g) = dimF z. It follows from Lemma 3.39 that
H1(G sc(F), ĝ) = 0, since all exceptions in that lemma occur for |F| < 4 in the non-split case.
By inflation-restriction and Corollary 3.8(a) we deduce H1(H ′F, ĝ) = 0, and then again from
Lemma 3.39, the assertion.

Remark 3.42. Concerning the excluded A1 cases, a direct computation shows that

H1(SL2(F2), sl2) ∼= F2
∼= Z(sl2) H1(SL2(F5), sl2) ∼= F5 6∼= Z(sl2) = 0

H1(PGL2(F2), pgl2) ∼= F2 6∼= Z(pgl2) = 0 H1(PGL2(F5), pgl2) = 0 = Z(pgl2)

The results on the Lie algebra centers are straightforward. For the cohomology computations
over F2 one can simply use the Hochschild-Serre spectral sequence; over F5, the result for SL2

can be found in [CPS75, Table 4.5] and that for PGL2 can be easily derived via Hochschild-
Serre from [Fla92, Lem. 1.2] which states H1(GL2(F5), gl2) = 0.

Combining Lemma 3.39 and Theorem 3.41, we obtain.

Corollary 3.43. Condition (van) holds if G sc(F) /∈ E (pf), (type,F) /∈ E (sch) ∪ {(A1,F5)},
(ct) holds, and if one of the following holds:

(ii) If type = Cn, then #F /∈ {2, 3, 4, 5, 9}.

(iii) If G is non-split (and hence of types A, D or E6), then |F| ≥ 4.
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3.6 Condition (n-s)

In this subsection we recall two results from [Vas03] on (n-s). Let G be an absolutely simple
semisimple group scheme defined over W (F), and consider the exact sequence of Fp[G (F)]-
modules

0→ g→ G (W2(F))
πG→ G (F)→ 0 (6)

The most comprehensive study of the splitness of such a sequence (and also for general
semisimple G ) is to our knowledge carried out in [Vas03].

Theorem 3.44 (Vasiu). Suppose G over W (F) is absolutely simple. Then (6) is non-split if
|F| ≥ 5, or in the following cases:

(a) F = F2, G is of adjoint type and the type is not in {A1, A2,
2A2,

2A3}, or G is simply
connected and the type is not in {A1, A2,

2A2}.

(b) F = F3, G is of adjoint type or simply connected and the type is not A1.

(c) F = F4, G is of adjoint type and the type is not A1 or G is simply connected.

Moreover for the exceptions listed in (a)–(c) it is known that (6) is split.
In addition, (6) is split if G is of type 2A3 but neither simply connected nor of adjoint type.

Proof. The case |F| ≥ 5 follows from [Vas03, Prop. 4.4.1]. Cases (a)–(c) and the assertion
thereafter follow from [Vas03, Thm. 4.5]; note that there is an omission in his result: the
reduction SL2(Z2) → SL2(F2) has a splitting; see [Dor16, Prop. 20]. The last line, can be
deduced from the second to last paragraph of the proof of [Vas03, Thm. 4.5]: As described
there, one has a degree 2 cover SO−6 → PGU4 (note D3 = A3 as Dynkin diagrams), which can
be found in [CCN+85, p. 26] or in [MT11, Table 22.1]. Vasiu deduces from [CCN+85, p. 26]
a splitting of G (Z2)→ G (F2) for G of type SO−6 .

To have a more complete result, we clarify the relation between the splitness of (6) for
G and for its universal cover ϕsc : G sc → G . The first important point to notice is that the
proof of Corollary 3.8(a) holds over the base ring W2(F) instead of F with next to no changes.
Recalling Z ′ = Kerϕsc, Z ′ := Z ′(F), we obtain short exact sequences

1→ z′ × Z ′ → G sc(W2(F))→ E2 → 1 and 1→ E2 → G (W2(F))→ z′ × Z ′ → 1,

in which E2 is defined as the image of G sc(W2(F))→ G (W2(F)) under ϕsc.
Let us now consider the following diagram of abstract groups, in which the group E3 is

defined as the pullback from row 4, and the πj are the maps they label

1 // gsc // E1 := G sc(W2(F))

mod z′×Z′
��

πG sc
// G sc(F)

modZ′

��

// 1

1 // g2 := gsc/z′
� _

��

// E2� _

��

π2 // H ′F
// 1

1 // g3 := g // E3� _

��

π3 // H ′F
//

� _

��

1

1 // g // E4 := G (W2(F))
π4:=πG // G (F) // 1.

Note that each of the extensions in rows 1, . . . , 4 defines a corresponding class γi in second
group cohomology such that row i is split if and only γi = 0: γ1 ∈ H2(G sc(F), gsc), γ4 ∈
H2(G (F), g), and γi ∈ H2(H ′F, gi) for i = 2, 3. One has the following result:

Lemma 3.45. If (n-s) holds for G it holds for G sc. If conversely (n-s) holds for G sc and if
G sc is not in E (pf) or in E (sch), then (n-s) holds for G .
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Proof. It is clear that if row 1 splits, then so does row 2, by passing to quotients. Also it is triv-
ial that if row 2 splits, then so does row 3. Suppose that row 3 is split. Let s : G (F)→ E4 be a
set-theoretic splitting that defines the class γ4. Then its restriction toH ′F defines a set-theoretic
splitting H ′F → E3, i.e., a representative of γ3. By hypothesis, γ3 = 0. Now the Hochschild-
Serre spectral sequence for 1→ HF → G (F)→ Z ′ → 1 degenerates with g coefficients, because
Z ′ is of order prime to p. Hence restriction is an isomorphism H2(G (F), g) → H2(H ′F, g)Z

′
,

and it follows that γ4 = 0.
We now go in the opposite direction. It is clear that a splitting of row 4 restricts to a

splitting of row 3. Suppose now that row 3 is split via some s : H ′F → E3. Composing this
with the surjection E3 → E3/E2 induces a homomorphism H ′F → E3/E2

∼= z′. Note that the
target is an elementary abelian p-group. As G sc is not in E (pf), the map H ′F → E3/E2 is zero
by Corollary 3.12. Hence s takes values in E2.

Suppose finally that row 2 is split, via some homomorphism s : H ′F → E2. The splitting in
row 2 gives a commuting diagram

z′ × Z ′

��

G sc(F)

s◦(mod z′×Z′) ))

// E1

��

E2.

We first wish to lift to the dotted homomorphism. The obstruction lies in the groupH2(G sc(F), z′×
Z ′). Here Z ′ is finite abelian and of order prime to p and z′ is finite abelian and p-torsion.
As we assume that G sc lies not in E (sch), it follows from Remark 3.14 that the obstruction
vanishes. Let s′ : G sc(F)→ E1 be a homomorphism lifting s. Consider the map ψ : G sc(F)→
z′×Z ′, g 7→ s′(g)g−1. Since it takes values in the center z×Z ′ of G sc(W2(F)), it is easily seen
to be a homomorphism. For the same reason ψ−1 ◦ s′ : G sc(F) → E1 is a homomorphism. It
clearly lifts s and hence row 1 is split. This completes the proof.

The following result is immediate from Theorem 3.44 and Lemma 3.45.

Corollary 3.46. Suppose G over W (F) is absolutely simple. Then (n-s) holds if and only if
(G ,F) is not in the list E (n-s) given in (3).

3.7 z-Lie-balanced groups

In this subsection we introduce a particular kind of reductive group over W (F) that is fre-
quently encountered in applications and for which the analog Theorem 3.51 of Theorem 3.2
has fewer exceptions, for instances for (l-cl) or (l-un).

Let us begin by a construction inspired from [Art02, p. 474] which uses ideas from z-
extensions introduced by Langlands and Kottwitz. Let H be a connected reductive group
over W (F) whose special fiber H F is absolutely simple and such that the natural map h =
Lie H F → had is an isomorphism. The kernel of the central isogeny H sc → H is described
in Table 1. Let π : H ′ →H be a central isogeny such that H sc →H ′ is étale. This implies
that the natural map hsc → h′ is an isomorphism and that Z(H )o lies in Kerπ. Choose a
homomorphism Kerπ ↪→ T over W (F) into a torus whose induced map Z(h′)→ t = Lie(T F)
on Lie algebras is an isomorphism. Define G ′ := (H ′ × T )/Kerπ with Kerπ embedded
diagonally. Then one has a short exact sequence of reductive groups

1→ T → G ′ →H ′ → 1 (7)

with the following properties:

(a) the extension is central,

(b) the natural map H ′ → G ′,der is an isomorphism and H ′ is Lie-simply connected,
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(c) the image of T in G ′ is the identity component of the center of G ′,

(d) the Lie algebra g′ = Lie G ′ is isomorphic to ĥ.

(e) the induced sequence of Lie algebras 0→ t→ g′ → h→ 0 is exact.

Definition 3.47. We call a connected reductive group G ′ over W (F)

(a) Lie-balanced if it arises as a G ′ via the above construction.

(b) z-Lie-balanced if there exists a central homomorphism G ′ → G ′′ to a Lie-balanced G ′

with smooth kernel of multiplicative type such that the induced morphism G ′,der →
G ′′,der is a central isogeny.

Example 3.48. The groups GLn and GSpn are z-Lie-balanced over W (F) for any finite field
F. They are Lie-balanced if p divides n, for GLn, or if p = 2, for GSpn.

If G is almost simple over W (F) and if g is simple, cf. Proposition 3.22, then G is Lie-
balanced.

Lemma 3.49. If G ′ is z-Lie-balanced, then the following hold:

(a) The identity component Z(G ′)o of Z(G ′) is a torus, and hence Z(G ′) is smooth.

(b) One has a short exact sequence 0 → t → Lie G ′ → ĥ → 0 as Lie algebras and as HF-
modules for some t ⊂ Lie G ′ which is an abelian sub Lie algebra and which carries a
trivial HF-action.

Proof. Let π : G ′ → G ′′ be a homomorphism as in the definition of z-Lie-balanced with G ′′

Lie-balanced. Because π is central and surjective with smooth kernel of multiplicative type, we
have a short exact sequence of centers 1→ Kerπ → Z(G ′)→ Z(G ′′)→ 1 with Kerπ smooth
of multiplicative type. By the hypothesis on G ′′ the group Zo(G ′′) is a torus. Therefore Z(G ′)
is smooth and of multiplicative type. This implies (a).

To see (b) set t := Lie Kerπ. Because π is central the claimed properties on t are clear.
Also the displayed sequence is clearly left exact. The right exactness follows from smoothness
and dimension considerations: One clearly has dimKrull G

′ = dimKrull G
′′ + dimKrull Kerπ.

Passing to tangent spaces at the identity and using the smoothness, we obtain dimF Lie G ′ =
dimF Lie G ′′ + dimF t, and using Lie G ′′ ∼= ĥ, we are done.

Conditions 3.50. The algebraic group G ′ is z-Lie-balanced over F, H ′F := [G ′(F),G ′(F)], and
HF is a subgroup of G ′(F) that contains H ′F.

Theorem 3.51. Suppose that (G ′,F, HF, H
′
F) satisfies Conditions 3.50. Let G := G ′,der. Then

the tuple also satisfies Assumption 2.1, and the following hold:

(a) (pf), (ct), (csc) and (n-s) hold unless (type,F) for the group G is in the list

(A1,F?)?∈{2,3}, (
2A2,F2), (2A3,F2), (B2,F2), (G2,F2).

(b) (van) holds unless (type,F) for G is in the list

(A1,F?)?∈{2,3,5}, (
2A2,F2), (Cn,F?)n≥2,?∈{2,3,4,5,9}, (G2,F2)

or G der is non-split, and hence of types A, D or E6, and |F| < 4.

(c) Assuming G sc(F) /∈ E (pf), concerning (lie-?) the following hold:

(i) (l-ge), if G is of type An and p - n + 1, or of type Bn, Cn, Dn, E7 or F4 and
p 6= 2, or if G is of type E6 or G2 and p 6= 3, or if G is of type E8.

(ii) (l-un), unless G is of type B2 or F4 and p = 2, or of type G2 and p = 3.

(iii) (l-cl), if G is of type An, n ≥ 2, Dn or En, or G is of type A1, Bn, Cn, F4 and
p 6= 2, or of type G2 and p 6= 3.
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Proof. Part (a) of Assumption 2.1 is clear, since G ′ is connected reductive. To see Assump-
tion 2.1(b) note that HF is generated by H ′F = G (F) together with Z(G ′)(F) and that the
latter group is of order prime to p.

(a): Conditions (pf), (csc) and (n-s) only depend on H ′F and G . Hence we can directly
apply Corollary 3.8(c), Proposition 3.38 and Corollary 3.46, noting that here the map gsc → g
is an isomorphism. The list in (a) is the union of the relevant sublists of the exceptional lists
E (pf) and E (n-s) that occur in the two corollaries. It remains to see that (ct) can only
fail for groups in that list. That Z(G ′) is smooth follows from Lemma 3.49(a). To see that
Z(Lie G ′) → H0(HF, g

′) is an isomorphism, we consider the commutative diagram induced
from Lemma 3.49(b)

0 // Lie(Kerπ) //

��

LieZ(G ′) //

��

LieZ(G ′′)

��

0 // H0(HF, t) // H0(HF, g
′) // H0(HF, g

′′),

where π : G ′ → G ′′ is a surjection as in Definition 3.47. The top row is exact by the proof
of Lemma 3.49. The arrow on the left is an isomorphism, again by Lemma 3.49(b), and so
it suffices to show that the arrow on the right is an isomorphism, i.e., we may assume that
G ′ = G ′′. But then Lie G ′′ = ĥ for h = Lie G der, and now the isomorphism property follows
from Theorem 3.24(b) and the last line of Remark 3.27.

(b): Using the sequence in Lemma 3.49(b) together with Corollary 3.12, we may assume
that G ′ = G ′′ for the proof; the exceptions ruled out in Corollary 3.12 are part of the list
in (b). From the definition of Lie-balanced, we know that gsc → g is an isomorphism. By
Remark 3.40, for Lemma 3.39(a)⇔(b) we only need G (F) /∈ E (pf). For Lemma 3.39(b) to
hold, we need to avoid the pairs (G ,F) listed as exceptions in Theorem 3.41. The combined
list of exceptions is that given in (b).

(c) The conditions (lie-?) only depend on G , which by construction is Lie-simply con-
nected. Therefore (c) follows from Corollary 3.31, Corollary 3.36 and Lemma 3.37.

Remark 3.52. It is possible to construct a sequence as in (7) also for cases where H ′ is
Lie-intermediate (and not only for Lie-simply connected cases, as done here). However in this
situation the analog of Theorem 3.51(b) on (van) does not hold. Since this condition is crucial
for our later applications, we did not pursue this here.

Corollary 3.53. The tuple (GLn,F, HF,SLn(F)) for HF a subgroup of GLn(F) that contains
SLn(F) satisfies Assumption 2.1, and the following hold:

(a) (pf), (ct), (van), (csc) and (n-s) hold unless (n,F) is in the list (2,F?)?∈{2,3,5}.

(b) (l-un) holds unconditionally, (l-cl) holds if and only if (n,CharF) 6= (2, 2).

4 Preparations

Suppose throughout this section that Assumption 2.1 holds for (G ,F, HF, H
′
F).

Our first result clarifies the definition of HR from (1) based on Convention 2.4.

Lemma 4.1. Let R be in ÂrW (F). Then the following hold:

(a) there exist subgroups Mo
R ⊂ G o(R) and MR ⊂ G (R) that under reduction modulo mR

map isomorphically to Mo
F and MF, respectively;

(b) the possible Mo
R from (a) form a conjugacy class under Ker

(
G o(R) → G o(F)

)
, and so

do the MR;

(c) the groups Mo
R and MR normalize H ′R;

(d) the group Ho
R := H ′RM

o
R ⊂ G o(R) is independent of the choice of Mo

R;
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(e) if G /G o acts trivially on G o/G der, then also HR = H ′RMR ⊂ G (R) is independent of
any choices.

Proof. Parts (a) and (b) follow from the profinite version of the Schur-Zassenhaus Theorem
given in [Bos91, Prop. 2.1]: Since Mo

F has order prime to p, the cohomology groups Hi(Mo
F , g),

i ≥ 1, vanish. Now the kernel of G o(R) → G o(F) is a pro-p group. Therefore an inductive
argument using H2(Mo

F , g) = 0 shows the existence of a lift as in (a); its uniqueness up to
conjugation, i.e. (b), follows from H1(Mo

F , g) = 0, again by induction. The same argument

works for MR as well. Since G der(R) is characteristic in G (R), see Proposition A.18, it is
normalized by Mo

R and MR. Because Mo
F and MF normalize H ′F, part (c) follows.

For (d) note that by construction Ho
R ∩ G der(R) = H ′R. Hence it suffices to show that

Ho
R/H

′
R
∼= G der(R)Ho

R/G
der(R) = G der(R)Mo

R/G
der(R) ⊂ G o(R)/G der(R)

is independent of any choices. However G o(R)/G der(R) is abelian and the conjugation action
of Mo

R induced from (b) is thus trivial. This shows (d). The proof of (e) is analogous, using
the hypotheses of (e) and again assertion (b).

The following lemma introduces in our setting an important substitute Hc for the commu-
tator subgroup [H,H] for a closed subgroup H of HR that surjects onto HF under reduction
modulo mR, and that takes the residual image HF into account.

Lemma 4.2. Let R be in ÂrW (F) and let H ⊂ G (R) be a closed subgroup that surjects onto

HF. Then there exists a unique closed subgroup Hc ⊂ H that contains the closure [H,H] of
the commutator subgroup and for which Hc/[H,H]→ HF/[HF, HF] is an isomorphism.

Moreover if I is an ideal of R and if H̄ denotes the image of H in HR/I , which is a
closed subgroup, then under reduction modulo I the group Hc maps onto H̄c. In particular,
the reduction of Hc modulo mR is HF.

Proof. The group Hab := H/[H,H] surjects onto Hab
F := HF/[HF, HF] and the kernel is a

pro-p group. Since Hab
F is of order prime to p, there exists a lift Hab,c of Hab

F to Hab that is
unique up to conjugation. Because Hab is abelian, in fact Hab,c is unique. Clearly Hc must
be the inverse image of Hab,c under the canonical surjection H → Hab.

It remains to prove the second assertion. It is immediate that the reduction of [H,H]
modulo I equals [H̄, H̄]. Consider the reduction maps

Hab −→ H̄ab := H̄/[H̄, H̄] −→ Hab
F .

The above construction defines subgroups Hab,c ⊂ Hab and H̄ab,c ⊂ H̄ab. Since the image of
Hab,c in H̄ab satisfies the properties required for H̄ab,c, the uniqueness of H̄ab,c shows that
Hab,c maps isomorphically to H̄ab,c under reduction. This implies (b).

Lemma 4.3. Let R be in ÂrW (F) and let H ⊂ HR be a closed subgroup that surjects onto
HF. If either (l-ge)(ii) holds, or if H = HR and (csc) holds, then Hc = H.

Proof. By an inverse limit argument and Lemma 4.2, it suffices to prove the lemma for Ar-
tinian R. Here, by an inductive argument, and again by Lemma 4.2, it will suffice to prove
the following: Let I ⊂ R be an ideal such that I ∼= F as an R-algebra, let H̄ be the image of
H in HR/I . Then H̄c = H̄ implies that Hc = H. To see this consider the diagram of short
exact sequences

0 // N //
� _

��

H //
� _

ι

��

H̄� _

��

// 0

0 // gder ⊗ I ∼= gder // HR
// HR/I

// 0,

where N is the kernel of H → H̄. If N is the trivial group, then H → H̄ is an isomorphism,
and the result is clear. Suppose now that N is non-trivial. Then either by (l-ge)(ii), or by
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hypotheses (csc) if H = HR, we must have N = gder. In either case, H0(H ′F, g
der) = 0, i.e.,

gder is the Fp-span of {gX −X | X ∈ gder, g ∈ H ′F}. This implies N = [N,H] ⊂ [H,H]. Thus
Hc contains N . Since H̄c = H̄ by hypothesis, we deduce Hc = H.

Remark 4.4. Suppose that as an Fp[H ′F]-module no Jordan-Hölder factor of gder is trivial,
i.e., that HomFp[H′F](N,Fp) = 0 for all submodules N of gder. Then the above argument shows
that H = Hc for any closed subgroup H ⊂ HR.

If on the other hand there exists an Fp[H ′F]-submoduleN with a non-zero Fp[H ′F]-homomorphism
N → Fp, then N is a normal subgroup of HF[ε], and H := NHF is a subgroup of HF[ε] with
Hc ( H.

Lemma 4.5. Consider a diagram with exact rows

0 // N //
� _

��

H //
� _

ι

��

HF // 0

0 // gder // HF[ε]
// HF

σ
yy

// 0

(1)

with ι an inclusion and σ the canonical splitting. Then the following hold:

(a) Suppose N = 0. If (van) holds, then ι is conjugate to σ via an element of gder.

(b) Suppose N 6= 0. Suppose either (1) that (l-ge)(ii) holds, or (2) that (l-cl)(ii) and (sch)
hold, and that H = Hc. Then H = HF[ε].

Proof. If N = 0, then ι is a splitting of the bottom sequence and by (van) all such splittings
are conjugate by an element in gder. Thus it remains to prove (b), and we assume N 6= 0.
Under condition (l-ge)(ii), we deduce N = gder, and we are done.

Suppose now in (b) that (2) holds. Because of (l-cl)(ii), we have to rule out that N lies
in Ker(gder → gder). Assume on the contrary that N lies in this kernel, so that N ∼= Frp for
some r ≥ 1. As HF/H

′
F is of order prime to p, the Hochschild-Serre spectral sequence yields

H2(HF, N) ∼= H2(H ′F, N)HF/H
′
F , and the latter is zero by (sch). Hence H is a semidirect

product NoHF. By hypothesis, HF acts trivially on N , and thus H = N×HF. One computes
[H,H] ⊂ σ(HF) ( H, and this contradicts H = Hc. Thus we must have H = HF[ε].

Lemma 4.6. Consider the diagram with exact rows

0 // N //
� _

��

H //
� _

ι

��

HF // 0

0 // gder // HW2(F)
// HF // 0

with ι the inclusion. Assume (n-s) and either (l-ge)(ii) or (l-cl)(ii) and (sch). Then H =
HW2(F).

Proof. Because of (n-s) the subgroup N must be non-trivial. If in addition (l-ge)(ii) holds,
then N = gder because gder is irreducible as an Fp[H ′F]-module, and thus ι is an isomorphism.

Suppose now that (l-cl)(ii) and (sch) hold. We immediately deduce from (sch) and (n-s)
that N cannot be a submodule of Ker(gder → gder), and then from (l-cl)(ii) that N surjects
onto the cosocle of gder. But as a submodule of gder that surjects onto the cocoscle of gder,
we must have N = gder. This completes the proof.

Example 4.7. If gder possesses a non-trivial Fp[H ′F]-homomorphism to Fp, then one cannot
expect the conclusion of Lemma 4.5(b) or of Lemma 4.6 to hold. For a concrete example, let
G = PGLp and HF = PGLp(F) with p = CharF and #F /∈ {2, 3, 4, 5, 9}, so that (sch) and
(n-s) hold. One has a surjective homomorphism pdet : PGLp(R) → R×/R×p induced from
det. Let R ∈ {W2(F),F[ε]} and define H ⊂ PGLp(F[ε]) as the kernel of pdet : PGLp(R) →
R×/R×p ∼= (F,+). Then H surjects onto HF. But H is properly contained in PGLp(R), it is
a proper extension of HF, and it satisfies H = HF[H,H].
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For the following result, let G [i](R) denote the kernel of G der(R)→ G der(R/miR) for i ≥ 1

and R ∈ ÂrW (F), and recall from [Pin98, Sect. 6] that one has natural exponential maps

giving isomorphisms gder ⊗F m
i
R/m

i+1
R

'→ G [i](R)/G [i+1](R) for any i ≥ 1.

Lemma 4.8 (cf. [MW86, Appendix, Prop. 2]). Let R be an Artinian ring in ÂrW (F). Assume

that mn+1
R = 0 and mnR 6= 0 for some n ≥ 2. Consider a diagram

0 // N //
� _

��

H //
� _

ι

��

HR/mnR
// 0

0 // gder ⊗F m
n
R

// HR
// HR/mnR

// 0

with exact rows and ι the inclusion. Then the following hold:

(a) The intersection of N with the commutator subgroup [G [n−1](R)∩H,G [1](R)∩H] con-
tains [gder, gder]⊗F m

n
R.

(b) If (l-cl)(i) holds, then H = HR.

Proof. Clearly the multiplication map mn−1
R ⊗mR → mnR factors via

mn−1
R /mnR ⊗mR/m

2
R → mnR/m

n+1
R .

It follows that the commutator map

G [n−1](R)× G [1](R)→ G [n](R), (g, h) 7→ ghg−1h−1

factors via

G [n−1](R)/G [n](R)× G [1](R)/G [2](R) ∼= gder ⊗F m
n−1
R /mnR × gder ⊗F m

1
R/m

2
R → G [n](R).

For X,Y ∈ gder and f ∈ mn−1
R , g ∈ mR, the last map is given by

(X ⊗ f, Y ⊗ g) 7→ [X,Y ]⊗ fg ∈ gder ⊗F m
n
R
∼= G [n](R).

Now H ∩ G [i]/H ∩ G [i+1] is naturally isomorphic to G [i]/G [i+1] for i = 1, . . . , n − 1, since
H surjects onto HR/mnR

. Hence forming (products of) commutators in H, we see that the

commutator subgroup [G [n−1](R)∩H,G [1](R)∩H] must contain [gder, gder]⊗F m
n
R ⊂ gder ⊗F

mnR
∼= G [n](R). This proves (a). Part (b) is obvious since (l-cl)(i) asserts that [gder, gder] =

gder.

For any R ∈ ÂrW (F) denote by πR the canonical reduction HR → HF, and for any ideal I
of R by πR,I the canonical reduction HR → HR/I .

Corollary 4.9. Let R in ÂrW (F) be Artinian and let H ⊂ HR be a subgroup such that
πR(H) = HF. Suppose that (l-cl)(i) holds. Then H = HR assuming one of the following:

(a) one has πR,m2
R

(H) = HR/m2
R

;

(b) one has πR,(p,m2
R)(H) = HR/(p,m2

R) and condition (n-s) and either (l-ge) or (l-cl)(ii)

and (sch) hold.

Proof. Let us first show that (b) implies the condition in (a). For this, for simplicity of
notation, we may assume that m2

R = 0, and we need to show that then H = HR. If p = 0 in R
then there is nothing to show. Otherwise R ∼= W2(F)[x1, . . . , xn]/(p, x1, . . . , xn)2 for some n,
and there are surjective ring homomorphisms onto R/(p,m2

R) and onto W2(F). The kernels of
the induced group homomorphisms πR,(p) : HR → HR/(p,m2

R) and πR,(x1,...,xn) : HR → HW2(F)

intersect trivially. Now the restriction of πR,(p) to H is surjective by hypothesis and that of
πR,(x1,...,xn) to H by Lemma 4.6, using the hypotheses in (b). This implies H = HR, as had
to be shown.

To deduce H = HR from (a) one proceeds by induction over rings R such that mnR = 0,
starting at n = 2, and one applies Lemma 4.8(b) in the induction step.
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Corollary 4.10. Let R be an Artinian ring in ÂrW (F). Let ϕ : HR → HF[ε] be any group
homomorphism such that πF[ε] ◦ ϕ = πR. Suppose that (l-un) holds. Then ϕ factors via
πR,m2

R
: HR → HR/m2

R
.

If in addition condition (n-s) holds, then ϕ factors via πR,(p,m2
R) : HR → HR/(p,m2

R).

Proof. For the first part we induct on n ≥ 2 and rings R such that mnR = 0. The case n = 2 is
clear by hypothesis. In the induction step we assume that mn+1

R = 0. We claim that ϕ factors
via πR,mnR : HR → HR/mnR

, and by induction this implies the result. We have the commutative
diagram

0 // G [1](R) //

��

HR
//

ϕ

��

HF // 0

0 // gder // HF[ε]
// HF // 0.

Because gder is abelian as a group under +, the group [G [1](R),G [1](R)] lies in the kernel of ϕ.

Hence by Lemma 4.8(a), the restriction of ϕ to gder⊗Fm
n
R
∼= G [n](R) contains [gder, gder]⊗Fm

n
R

in its kernel. By (l-un)(ii), we know that any Fp[H ′F]-module homomorphism gder ⊗F m
n
R →

gder is either surjective or trivial. If we apply this to ϕ and observe that (l-un)(i) holds, then

we see that ϕ restricted to G [n](R) is zero, and this proves the claim.
For the second part, we may assume m2

R = 0 and in addition that p /∈ m2
R, since otherwise

there is nothing to show. The embedding W2(F) → R gives the subgroup HW2(F) ⊂ HR.
Now assume that ϕ(KerπW2(F)) 6= 0, else we are done. Then ϕ restricted to HW2(F) defines a

non-zero homomorphism from gder ∼= KerπW2(F) to gder ∼= KerπF[ε]. By (l-un)(ii), it follows
that any such homomorphism is multiplication by a scalar in F, and since the map is non-zero
the scalar must be non-trivial. This implies that the restriction of ϕ to HW2(F) defines an
isomorphism HW2(F) → HF[ε]. But this is absurd since the extension HF[ε] → HF is split while
HW2(F) → HF is non-split by (n-s).

Remark 4.11. If there is a splitting of HW2(F) → HF and if (van) holds, then all split

extensions of HF by gder are equivalent, and in particular HW2(F)
∼= HF[ε].

5 Rings as universal deformation rings

Throughout this section, we assume that G is connected and that (G ,F, HF, H
′
F) satisfies

Assumption 2.1, which in the present case means that HF = MFH
′
F with MF ⊂ G (F) of order

prime to p. From now on we fix some R ∈ ÂrW (F). Then HR = Ho
R = MRH

′
R from Lemma 4.1

is independent of any choices.
Recall ρ̄R, Dρ̄R and Rρ̄R from Definition 2.9 and the paragraphs preceding it. Concerning

the image of ρA ∈ Dρ̄R(A), let us first observe the following, which is trivial if G = G der.

Lemma 5.1. For an HF-perfect closed subgroup H of HR, an A ∈ ÂrW (F) and [ρA] ∈ Dρ̄R(A)
with representative ρA, one has ρA(H) ⊂ HA. If moreover (csc) holds, then ρA(HR) ⊂ HA.

Proof. Since G = G o, the composition of ρA with the canonical surjection π : G (A) →
G (A)/G der(A) has abelian image. Therefore H → π ◦ ρA(H) factors via H/[H,H], which
by the construction of Hc in Lemma 4.2 and our hypothesis H = Hc is isomorphic to
HF/[HF, HF]. By Assumption 2.1, the latter group is of order prime to p. Since H ′F maps

to G der(F) under ρ̄, the restriction of π ◦ ρA to H will factor via MF/MF ∩ G der(F). As in the
proof of Lemma 4.1(d) we find that π ◦ ρA(H) lies in the unique lift of MF/MF ∩ G der(F) to
G (R)/G der(R). Since H maps to HF under ρ̄R, we deduce ρA(H) ⊂ HA. For the last claim
note that under (csc) we have Hc

R = HR by Lemma 4.3.

We have the following generalization of [EM16, Dor16] from GLn to arbitrary G , under
the same basic hypotheses; cf. Remark 5.6.
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Theorem 5.2. Suppose (G ,F, HF, H
′
F) satisfies conditions (ct), (van), (n-s), (l-un) and

one of (csc) or G = G der. Then the canonical inclusion ι : HR → G (R) represents the
universal deformation of Dρ̄R , and in particular Rρ̄R = R.

Recall that (l-un) and (csc) are implied by (l-ge)(ii) and (iii).

Remark 5.3. For tuples (G ,F, HF, H
′
F) as in Theorem 3.2, with G absolutely simple, condition

(van) and (ct) can only hold under (l-ge) and (lie-ad). For tuples (G ,F, HF, H
′
F) as in

Theorem 3.51, where G is connected reductive but G der is absolutely simple, conditions (van)
and (ct) are compatible with (lie-sc).

From Theorem 5.2 and Theorem 3.2 we deduce:

Corollary 5.4. If (G ,F, HF, H
′
F) satisfies Conditions 3.1, then ι : HR → G (R) represents the

universal deformation of Dρ̄R under the conjunction of the following conditions:

(a) (G ,F) is not exceptional in the sense of Notation 3.4, and (type G ,F) /∈ {(A1,F5)}.

(b) G is of Lie-adjoint type.

(c) If type G = Cn, then |F| /∈ {2, 3, 4, 5, 9},

(d) If G is non-split (and hence of types A, D or E6), then |F| ≥ 4.

(e) If G is of type B2 or F4 then p 6= 2, if G is of type G2, then p 6= 3.

From Theorem 5.2 and Theorem 3.51 we deduce:

Corollary 5.5. If (G ,F, HF, H
′
F) satisfies Conditions 3.50, then ι : HR → G (R) represents

the universal deformation of Dρ̄R under the conjunction of the following conditions:

(a) (type G ,F) /∈ {(A1,F?)?∈{2,3,5}, (Cn,F?)n≥2,?∈{2,3,4,5,9}}.

(b) If G der is non-split, then |F| ≥ 4.

(c) If G is of type B2 or F4 then p 6= 2, if G is of type G2, then p 6= 3.

Remark 5.6. For G = GLn and HF = H ′F = SLn(F), Corollary 5.5 shows that Theorem 5.2
completely recovers [Dor16, Theorem 1] and [EM16, Main Theorem].

The proof of Theorem 5.2 consists of the following main steps. First we compute the
dimension of the mod p tangent space of Rρ̄R . From this deformation theory implies Theo-
rem 5.2 in an elementary way in the case where R is formally smooth over W (F). Finally we
reduce the case of general R to that of formally smooth R.

Lemma 5.7. Suppose (G ,F, HF, H
′
F) satisfies conditions (ct), (van), (n-s), (l-un) and one

of (csc) or G = G der. Then the mod p tangent spaces of R and Rρ̄R have the same dimension.

Proof. Define d := dimF mR/(p,m
2
R), and denote by d′ the dimension of the mod p tangent

space of Rρ̄R . From Corollary 4.10 and also Lemma 5.1, which requires (n-s) and (l-un) and

(csc) if G 6= G der, we deduce that any deformation [ρF[ε]] in Dρ̄R(F[ε]) factors via HR/(p,m2
R),

and hence that d′ = dimFH
1(HR/(p,m2

R), g). Now the inflation restriction sequence of group
cohomology yields

0→ H1(HF, g)→ H1(HR/(p,m2
R), g)→ H1(G der,[1](R/(p,m2

R)), g)HF (1)

Because MF is of order prime to p, and again by inflation restriction, the left term H1(HF, g)
is isomorphic to H1(H ′F, g)MF/(MF∩H′F), and thus zero by (van). Moreover the abelian group

G der,[1](R/(p,m2
R)), which as an HF-module is isomorphic to gder⊗mR/(p,m

2
R), acts trivially

on g, and so the right hand side can be identified with

HomFp[HF]((g
der)d, g) = HomFp[HF](g

der, g)d.
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If G = G der, then g = gder. Otherwise (csc) yields HomFp[H′F](g
der,Fp) = 0, so that HomFp[H′F](g

der, g) =

HomFp[H′F](g
der, gder). We conclude d′ ≤ d from (l-un)(ii).

For the converse inequality, consider the diagram

HR

ι
""

ρρ̄R // G (Rρ̄R)

α
zz

G (R)

(2)

provided by the universality of Rρ̄R , that commutes up to conjugation by Ker(G (R)→ G (F)),

and for some unique homomorphism α : Rρ̄R → R in ÂrW (F). Recall that R is the ring used
to define HR. Denote by α2 the homomorphism Rρ̄R/(p,m

2
Rρ̄R

) −→ R/(p,m2
R) induced from

α. Then HR/(p,m2
R) is the image of HR in G (R/(p,m2

R)), and thus it must lie in the image of
the homomorphism

G (Rρ̄R/(p,m
2
Rρ̄R

)) −→ G (R/(p,m2
R))

induced from α2. Since πR,(p,m2
R) : HR → HR/(p,m2

R) is surjective, it follows that α2 must be

surjective. This yields d′ ≥ d by comparing cardinalities.

Corollary 5.8. Theorem 5.2 holds for R = W (F)[[x1, . . . , xd]] for any integer d ≥ 0.

Proof. Consider diagram (2). It implies that the homomorphism

α : Rρ̄R −→ R = W (F)[[x1, . . . , xd]]

is surjective, as it is surjective on mod p tangent spaces. At the same time, we know from
Lemma 5.7 that d is the dimension of the mod p tangent space of Rρ̄R . Hence by the Cohen
structure theorem and Nakayama’s Lemma we have a surjective homomorphism

β : R = W (F)[[x1, . . . , xd]] −→ Rρ̄R .

For dimension reasons it follows that the composite α ◦ β must have trivial kernel, so that
β is an isomorphism. But then the same argument shows that α is an isomorphism. This
completes the proof of Corollary 5.8.

Proof of Theorem 5.2. Choose a surjective ring homomorphism

π : S := W (F)[[x1, . . . , xd]] −→ R

in ÂrW (F), denote the induced map G (S) −→ G (R) by G (π). Let now A ∈ ÂrW (F) and let
ρA represent a G -valued deformation of ρ̄R to A. Then ρA ◦ G (π) is a G -valued deformation
of ρ̄S := ρ̄R ◦ G (π) : HS → G (F). We consider the diagram

HS

G (α) ""

G (π)
// HR

ρA
||

G (A)

(3)

where G (α) : HS −→ G (A) is induced from a unique homomorphism α : S → A in ÂrW (F)

using the universality of the inclusion HS → G (S) for G -deformations of ρ̄S established in
Corollary 5.8. Note that a priori, the diagram commutes only up to strict equivalence, i.a.,
up to conjugation by an element of G (A) that surjects to the identity in G (F). However by
replacing the group homomorphism ρA by a suitable conjugate, we can assume from now on
that (3) commutes.

A priori, ρA is only a group homomorphism. The main point we need to establish is
that it is induced from a unique ring homomorphism R → A in ÂrW (F). We first show that
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kerπ ⊂ kerα. For this consider s ∈ S r Kerα. We need to show that π(s) 6= 0. Let ξ be a
root of G with root group U ξ ⊂ G and let xξ : Ga → U ξ be an isomorphism, all defined over
W (F). Then G (α)(xξ(s)) = xξ(α(s)) is non-zero. This implies that G (π)(xξ(s)) = xξ(π(s)) is
non-zero.

By the previous paragraph we have kerπ ⊂ kerα. This gives a factorization α = βπ for
a unique ring homomorphism β : R → A, by the homomorphism theorem for rings. Hence
G (α) = G (β) ◦ G (π). Because G (π) : HS → HR is a surjective homomorphism of groups,
by the homomorphism theorem for groups, we have ρA = G (β), and this can only hold for

a unique ring homomorphism β in ÂrW (F). Thus we have directly established the universal
property of R, i.e., that R ∼= Rρ̄R .

Remark 5.9. Suppose that (l-un) and (csc) hold on the structure of g as a Lie algebra
and as an H ′F-module. Suppose also that (G ,F, HF, H

′
F) satisfies either Conditions 3.1 or

Conditions 3.50, and that HF = H ′F. If then the assertion of Corollary 5.8 holds for d = 0, then
one can deduce from (1), running backward the argument of Lemma 5.7, that H1(HF

′, g) = 0.
This means that the direct proofs of Theorem 5.2 for G = GLn given in [Dor16] and [EM16]
essentially also reprove, without making this explicit, the vanishing of H1(G der(F), g) for
G = GLn – except for some small values of #F and n.

6 Closed subgroups of HR ⊂ G (R)

Throughout this section, we assume that (G ,F, HF, H
′
F) satisfies Assumption 2.1. By R we

denote a ring in ÂrW (F) and by H ⊂ HR a closed subgroup that under πR surjects onto
HF. We advice the reader to recall the HF-perfection of H defined in Definition 2.11 and the
discussion around it. Note in addition that if (l-ge)(ii) holds, then H = H(∞) by Lemma 4.3.

The following result was motivated by [Man15] and [MW86]. It sheds some light on the

structure of certain closed subgroups of G (R) for R ∈ ÂrW (F), which might be useful for
studying images of Galois representations attached to automorphic forms.

Theorem 6.1. Let H ⊂ HR be a closed subgroup that surjects onto HF. Suppose that (ct),
(n-s) and (van) hold, and that either (l-ge) holds or that (l-cl) and (sch) hold. Then there
exists a closed W (F)-subalgebra A of R such that H(∞) is conjugate to HA ⊂ G (R).

Observe that if R is noetherian, then A need not share this property. Its tangent space
could be infinite dimensional. However if H surjects onto HF and is open in HR, so that H
contains G [i] for some i ≥ 1, then following the proof of Lemma 4.3, Hc still contains G [i],
and hence so does H(∞). From this one easily deduces that in this case A is noetherian if R
is so, and hence that A ∈ ÂrW (F).

The main idea for the proof of Theorem 6.1 is to let deformation theory determine the
sought for ring A. For this we may, and from now on will, assume that H is HF-perfect. Since
the inclusion ι : H ⊂ G (R) factors via the universal pair, we have a diagram

H

ι
!!

ρρ̄H // G (Rρ̄H )

G (α)
zz

G (R)

(1)

that commutes up to strict equivalence, for a unique ring homomorphism α : Rρ̄H → R. After
conjugation of ι by an element of G (R) that reduces to the identity in G (F), we may assume
the diagram commutes. This means that we replace H by a conjugate; this may necessitate a
new choice for MW (F) inside G (W (F)) (and thus of MR and HR). Note that MR ⊂ H, since
H surjects onto HF ⊂MF.
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So from now on, we assume that H lies in G (A) for A := α(Rρ̄H ) ⊂ R, so that Rρ̄H → A
is surjective.7 We let MA be the image of MR ⊂ H under G (α) ◦ ρρ̄H , i.e., it is simply equal
to MR under ι. Then HA = HR ∩ G (A) = MAH

′
R ∩ G (A) and HA contains ι(H).

If we compose ι with the canonical map G (A) −→ G (A/(p,m2
A)), we obtain a homomorph-

ism H → HA/(p,m2
A) such that Rρ̄H → A/(p,m2

A) is again surjective.

Lemma 6.2. The homomorphism H → HA/(p,m2
A) is surjective.

Proof. Let A → F[ε] be any surjection in ÂrW (F). Since A is a quotient of Rρ̄H , the induced

deformation
[
ρF[ε] : H → G (F[ε])

]
is non-trivial. Note also that the image H̄ of H in HF[ε]

satisfies H̄c = H̄ because of Lemma 4.2(b). Since we assume that (van) holds and that
either (l-ge)(ii) holds or that (l-cl) and (sch) hold, we deduce from Lemma 4.5 that ρF[ε] is
surjective. Since A→ F[ε] was arbitrary, the lemma is proved.

Proof of Theorem 6.1. Because of the previous lemma, we are in a position to apply Corol-
lary 4.9(b). Its hypotheses are satisfies, since we assume that (n-s) holds and either (l-ge)
or (l-cl) and (sch) hold. This immediately yields H = HA.

From Theorem 6.1 and Theorem 3.2 we deduce:

Corollary 6.3. Suppose that (G ,F, HF, H
′
F) satisfies Conditions 3.1. Then under the con-

junction of the following conditions, any closed subgroup H ⊂ HR that is residually full is a
conjugate of HA ⊂ G (R) for a closed W (F)-subalgebra A ∈ ÂrW (F) of R:

(a) (G ,F) is not exceptional in the sense of Notation 3.4, and (type G ,F) /∈ {(A1,F5)}.

(b) G is of type An and p - n + 1, or G is of type Bn, Cn, Dn, E7 or F4 and p 6= 2, or G
is of type E6 or G2 and p 6= 3, or G is of type E8; i.e., (l-ge) holds.

(c) If type G = Cn, then |F| /∈ {3, 5, 9}.

(d) If G is non-split (and hence of types A, D or E6), then |F| ≥ 4.

From Theorem 6.1 and Theorem 3.51 we deduce:

Corollary 6.4. Suppose that (G ,F, HF, H
′
F) satisfies Conditions 3.50. Then under the con-

junction of the following conditions, for any residually full closed subgroup H of HR, there
exists a closed W (F)-subalgebra A ∈ ÂrW (F) of R such that H(∞) is conjugate to HA ⊂ G (R).

(a) (type G ,F) /∈ {(A1,F?)?∈{3,5}, (Cn,F?)n≥2,?∈{3,5,9}}.

(b) G is of type An, n ≥ 2, Dn or En, or G is of type A1, Bn, Cn, F4 and p 6= 2, or G is
of type G2 and p 6= 3.

(c) If G der is non-split, then |F| ≥ 4.

Remark 6.5. If (l-ge)(ii) or if (l-cl)(ii) and (sch) are not satisfied, then Example 4.7 shows
that the conclusion of Theorem 6.1 need not hold.

The proof of Theorem 6.1 is built via Corollary 4.9(b) on [gder, gder] = gder. This condition
is satisfied in the setup of Corollary 3.53. However in the particular case G ′ = GL2 and
CharF = 2 the Lie group gder is not perfect – for all other pairs (n,CharF) it is. The following
example shows that the conclusion of Theorem 6.1 does not hold for (n,CharF) = (2, 2):

Example 6.6. Let (G ,CharF) = (GL2, 2), and let R = F[x1, . . . , xd]/(x1, . . . , xd)
3 be in

ÂrW (F). Let m′ ⊂ mR be the F-linear span of {x1, . . . , xd, x
2
1, . . . , x

2
d}. Define H ⊂ SL2(R) as

the subgroup generated by H1 ∪ . . . ∪H4 for

H1 = SL2(F), H2 = {
(

1+a+a2 0
0 1−a

)
| a ∈ mR}, H3 = {

(
1 b
0 1

)
| b ∈ m′}, H4 = {

(
1 0
c 1

)
| c ∈ m′}.

7The non-noetherian context may be avoided below by replacing A by any of its Artinian quotients.
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Then H is a subgroup of SL2(R) which surjects onto SL2(R/m2
R). One can verify that any

element in H can be written in a unique way as a product γ1 · . . . · γ4 with γi ∈ Hi. Then
the order of SL2(R) divided by the order of H is #F2 dimF mR/m

′
= #Fd(d−1). Hence H is a

proper subgroup of SL2(R) unless d = 1. In particular, for d > 1 and |F| > 4, we see that
Theorem 6.1 requires condition (l-cl).

The above counterexample is optimal in the following sense.

Proposition 6.7. Let (G ,CharF) = (GL2, 2) and suppose that F 6= F2. Let R in ÂrW (F)

satisfy dimF mR/m
2
R = 1. Then H = SL2(R) for any closed subgroup H ⊂ SL2(R) that

surjects onto SL2(R/(p,m2
R)).

Proof. If R is a quotient of F[[X]], the result follows from [DP12, Thm. 3.6]; this is a rather
technical proof. If R is a quotient of W (F), the result is a special case of [Man15, Main
Theorem].8 However the second case also has a simple natural direct proof; cf. e.g. [Vas03].
Our conditions imply that (n-s), (sch) and (l-cl)(ii) hold. Then Lemma 4.6 implies that
HR = HW2(F) for R = W2(F). Denote by Γn the kernel of SL2(Wn+1(F))→ SL2(Wn(F)), for
n ≥ 1, with the map being the canonical reduction. Then the p-power map X 7→ Xp induces
an isomorphism Γn → Γn+1. From this one deduces easily that for any quotient Wn(F) of R
the group HR surjects onto HWn(F); the p-power map replaces the use commutators in the
proof of Corollary 4.9(b).

Remark 6.8. The content of [Man15, Main Theorem] is the following result. Let R be in

ÂrW (F). Let H be a closed subgroup of GLn(R) whose image in GLn(F) contains SLn(F).
Suppose that |F| ≥ 4 and F 6= F4 if n = 3 and F 6= F5 if n = 2. Denote by WR the image of
structure map W (F)→ R. Then H contains a GLn(R)- conjugate of SLn(WR).

Our Theorem 6.1 generalizes [Man15, Main Theorem] in all cases, except for (n, p) = (2, 2).
Example 6.6 shows that our theorem cannot be expected to hold for (n, p) = (2, 2).

It is possible to reduce the statement of [Man15, Main Theorem] to the methods treated

here, by reducing it to Proposition 6.7 in the following way: Let R be in ÂrW (F). Choose a
descending filtration by ideals Im of R with I1 = mR such that Im/Im+1

∼= F for m ≥ 1
and so that

⋂
mWR + Im = WR. Then WR + Im/pWR + Im+1

∼= F[ε] for all m ≥ 1. And
by induction on n and up to conjugation, one can find a descending sequence of closed
subgroups Hm ⊂ H such that H∞ :=

⋂
mHm ⊂ SLn(WR) and H∞ surjects onto SLn(F)

under reduction. Now Proposition 6.7 implies [Man15, Main Theorem].

A Appendix. Primer on affine group schemes over a base

In this appendix, we gather definitions and results, frequently used in this article, on various
types of affine group schemes over arbitrary base schemes. For further details we refer to
[Con14]. We assume familiarity with the theory of affine algebraic groups over a field as in
[Bor91, Mil17, Spr09].

Throughout this appendix we fix an arbitrary base scheme S and an affine group scheme
G over S. We write π for the structure morphism G → S. In the main body of this work, S
will typically be the spectrum of a complete discrete valuation ring with finite residue field.

A.1. As the map π : G → S is assumed to be affine, it is separated and quasi-compact; see
[GW10, Prop.-Def. 12.1]. If π is furthermore smooth, then it is also flat and locally of finite
presentation, and hence of finite presentation; see [GW10, Def. 10.34].

A.2 ([DG70, II.4, in part 1.1, 1.2, 1.4, 4.8] or [SGA70, II.3. and II.4].). The Lie Algebra
Lie(G /S) of G over S is the sheaf of OS-modules which on affine S-schemes SpecR takes the
value

Lie(G /S)(SpecR) = Ker(G (R[ε])→ G (R)),

8There appears to be a small error in [Man15, Thm. 3.5]; for SL2(F4) the mod 2 Schur multiplier is
non-trivial.
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where R[ε] is the ring of dual numbers over R. This defines a functor from affine S-schemes
of finite type to coherent OS-modules. Moreover for any affine S-scheme SpecR there is
an obvious action of the abstract group G (R) on the abelian subgroup Lie(G /S)(SpecR)
of G (R[ε]), and this induces the adjoint action Ad: G → AutS(Lie(G /S)). Passing to Lie
algebras defines a morphism

Lie(G /S)→ End(Lie(G /S)), X 7→ [X, ·].

In fact the latter defines a Lie bracket on Lie(G /S) by (X,Y ) 7→ [X,Y ]. One can also iden-
tify Lie(G /S) with the OS-module of invariant derivations in the relative tangent sheaf
DerOS (OG ,OG ), and then the Lie bracket is identified with the commutator bracket in
DerOS (OG ,OG ). If S = Spec k, we write Lie(G ) for Lie(G /S).

If Lie(G /S) is locally free of finite rank, the formation of Lie(G /S) commutes with any
base change; otherwise one has to require that S → S′ is flat. If G is smooth over S, then
Lie(G /S) is a locally free OS-module of rank the relative dimension of G over S.

A finitely presented closed subgroup scheme H ⊂ G over S is called normal, if for all
S′ ∈ SchS the subgroup H (S′) ⊂ G (S′) is normal.

Proposition A.3 (Identity component, [Gro66, 15.6.5] and [Con14, bottom p. 81]). Suppose
G is smooth over S. Then there exists a unique open subgroup scheme G o ⊂ G such that (G o)s
is the identity component of G s for all s ∈ S. The subgroup scheme G o is normal in G . The
formation G 7→ G o commutes with any base change.

Definition A.4 (Identity component). If G is smooth over S, it is called connected over S,
and π is called connected, if G = G o.

For a finitely generated Z-module (M,+, 0M ), let Z[M ] be the Hopf algebra with multi-
plication defined by m1⊗m2 7→ m1 +m2, comultiplication by m 7→ m⊗m, counit 1Z 7→ 0M ,
coinverse m 7→ −m, and let D(M) be the corresponding affine group scheme over Z; it is flat
and of finite type.

Definition A.5 (Multiplicative type and tori, [Con14, App. B]).

(a) The group scheme G is called of of multiplicative type over S, and π is of multiplicative
type, if there is an fppf covering {Si} of S such that for all i there are finitely generated
abelian groups Mi and isomorphisms G ×S Si ∼= D(Mi)×SpecZ Si.

(b) The group scheme G is called a torus if it is of multiplicative type and if there is a
covering as in (a) with all Mi free over Z.9

(c) The group scheme G is called a split torus if G is a torus and if the condition in (a)
holds for a Zariski covering {Si} and for free finitely generated Z-modules Mi.

[GW10, Prop. 14.51(6)] shows that group schemes of multiplicative type are affine.

Definition A.6 (Reductivity and semisimplicity). The group scheme G 10 is called reductive
or semisimple over S, and π is called reductive or semisimple, if π is smooth and if for all
geometric points s of S the fiber G o

s is reductive or semisimple, respectively.

The definition of reductivity in SGA3 is more restrictive than Definition A.6(b), as noted
in [Con14, § 3.1]. It also requires G to be connected. The more general definition above is
justified by the following result:

Proposition A.7 ([Con14, Prop. 3.1.3]). Suppose π is smooth. Then G is reductive if and
only if G o is reductive. In this case G o is clopen in G , the quotient G /G o exists and it is étale
over S and of finite presentation.

9Equivalently: G is a torus if and only if π is smooth, connected and of multiplicative type.
10Recall that we assume that π is affine.
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Since being smooth and being affine are preserved under any base change, and since
geometric fibers of any base change are geometric fibers of a given scheme we also have:

Proposition A.8. If π is reductive or semisimple, then the respective property is preserved
under any base change.

Let SchS be the category of schemes over S and Gps that of abstract groups.

Proposition A.9 (Center, [Con14, Rem. 2.2.5 and Thm. 3.3.4]). Suppose π is smooth and
has connected geometric fibers, i.e., for all geometric point s of S the fiber G s is connected.
Then the functor

SchS → Gps, S′ 7→ {g ∈ G (S′) | ∀g′ ∈ G (S′) : gg′ = g′g}

is representable by a finitely presented closed subgroup scheme ZG of G over S.
If in addition π is connected reductive, then ZG is of multiplicative type, affine and flat

over S, and the formation of ZG commutes with any base change.

Definition A.10 (Center). The group scheme ZG is called the center of G .

Even if π is reductive, the scheme ZG need not be smooth over S, as is witnessed for
instance by G = SLp and S = SpecFp, in which case ZG is the finite flat group scheme µp
which is not smooth over Fp.

Definition A.11 (Tori and splitness). Let π be reductive and let S and G be connected.11

(a) A maximal torus in G is a closed S-subgroup T ⊂ G such that for any geometric point
s of S the fiber T s is a maximal torus in the reductive group G s.

(b) One calls G split reductive over S if it contains a maximal torus T that is split over S
and if for each root α ∈ Hom(T ,Gm,S) the root space Lie(G /S)α is free over OS of
rank 1.

Definition A.12. Suppose G and G ′ are connected semisimple over S.

(a) A homomorphism ϕ : G → G ′ is called an isogeny if f is finite, flat and surjective, and
it is called a central isogeny if in addition Kerϕ lies in the center of G .

(b) G is called of adjoint type if ZG = 1.

(c) G is called simply connected if all its geometric fibers are simply connected.

Since for G reductive the formation of ZG commutes with any base change, a connected
semisimple group G is of adjoint type if and only if all its geometric fibers are of adjoint type.

Theorem A.13 ([Con14, Exer. 6.5.2, Prop. 3.3.5]). For π semisimple the following hold:

(a) There exists a semisimple, simply connected group scheme π̃ : G̃ → S and a central

isogeny ϕsc : G̃ → G over S, and the pair (G̃ , ϕsc) is unique up to unique isomorphism.

(b) The maps ϕad : G → G /Z(G ) and ϕ : G̃ → G̃ /Z(G̃ ) are central isogenies, the S-group

schemes G /Z(G ) and G̃ /Z(G̃ ) are isomorphic and semisimple of adjoint type, and under
any isomorphism, the map ϕ factors uniquely via ϕad.

(c) The map ϕsc induces a short exact sequence of finite flat S-group schemes

1→ Kerϕsc ϕ
sc

→ Z(G̃ )→ Z(G )→ 1.

Proposition A.14 ([Con14, Prop. 3.3.5]). Let ϕ : G → G ′ be a central isogeny of connected
reductive groups. Then T ′ 7→ ϕ−1T defines a bijection between maximal tori of G ′ and
maximal tori of G .

11For S not connected, the definition is more complicated, but we do not need it.
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Given an S-scheme X carrying a G -action, an important construction is that of a quotient
X/G. The course taken in SGA3 is as follows: embed the category SchS via Yoneda into the
category of functors Schopp

S → Sets by sending X to hX : T 7→ HomS(T,X). Equip the latter
category with the fppf-topology; we write Sh(SchS)fppf . It turns out that that any hX lie in
Sh(SchS)fppf . One calls F ∈ Sh(SchS)fppf representable if it is isomorphic to hX for some
X ∈ SchS . Now given X, G as above, consider the presheaf hX/hG : T 7→ hX(T )/hG (T ) and
let (hX/hG )sh be the associated sheaf in Sh(SchS)fppf .

Definition A.15. One calls Y ∈ SchS an fppf-quotient of X by G if hY ∼= (hX/hG )sh.

In general Y need not exist. If it exists, an important result of Raynaud gives a comparison
with (universal) geometric quotients: if G is smooth and affine, if X is locally of finite type
and if the action is strictly free, i.e., G ×S X → X ×S X, (g, x) 7→ (gx, x) is an immersion,
then geometric and fppf-quotients agree; see [EvdGM14, Ch. 4].

A special case is when X itself is an S-group scheme H and G is a closed normal subgroup
of H . Then hH /hG carries a group law, a unit section and an inversion. This passes to the
fppf-sheafification. Hence if H /G exists as an fppf-quotient, it is automatically an S-group
scheme.

Proposition A.16 (Derived subgroup, [Con14, Thm. 5.3.1]). If π is connected and re-
ductive, then the following hold: (a) The fppf-sheafification of the commutator subfunctor
S′ 7→ [G (S′),G (S′)] on SchS is representable by a semisimple closed normal S-subgroup
G der ⊂ G . (b) The fppf-quotient G /G der is representable by a torus. (c) The quotient map
G → G /G der is initial among all homomorphisms from G to an abelian sheaf, and the forma-
tion of G der commutes with any base change on S.

Hence if π is connected and semisimple, then G = G der, since a non-trivial torus quotient
would violate the required semisimplicity of all fibers of G .

Definition A.17. Suppose that π is reductive. Then we define G der as (G o)der.

If π is reductive, then the S-subgroup scheme G der is closed and normal in G : By Propo-
sition A.3, the group scheme G o is closed and normal in G . To conclude observe that G der

is closed in G o and that normality is a property of the underlying functor of points, so that
one can use that for an abstract group G and a normal subgroup N of G the commutator
subgroup [N,N ] is normal in G.

Proposition A.18. If π is reductive and G /G o is finite étale, then the following hold:

(a) The quotient G /G der is fppf-representable by a smooth affine S-group scheme.

(b) The S-group scheme G /G der is an extension of the finite étale S-group scheme G /G o

by the torus G o/G der.

Proof. Consider the fppf-sheaf G := (hG /hG der)sh on SchS . To prove (a) we need to show that
it is representable by a smooth affine group scheme. Let S′ → S be an fppf-cover over which
π0 := G /G o becomes a finite constant group scheme and each component has an S′-point.
Then G S′ is a disjoint union

⊔
g∈π0

ĝG o
S′ where each ĝ is a representative in G (S′) of g ∈ π0.

Now G o
S′/G

der
S′ exists as a smooth affine fppf-quotient by Proposition A.16. Hence so does

G S′/G
der
S′ =

⊔
g∈π0

ĝG o
S′/G

der
S′ . It follows that G after restriction to SchS′ is representable by

a smooth affine S′-scheme. By descent, see the proof of [Sti09, Thm. 14, § 5.4], it follows that
G is representable by a scheme over S, and this proves (a).

For the proof of (b) observe that it suffices to show that the natural diagram

1→ G o/G der → G /G der → G /G o → 1

of fppf-presheaves is a short exact sequence of groups under any evaluation at T ∈ SchS . This
remains true under fppf-sheafification, and hence also for the representing schemes that exist
by (a), Proposition A.16 and the hypotheses. This proves (b).
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[Gir71] Jean Giraud. Cohomologie non abélienne. Springer-Verlag, Berlin-New York,
1971. Die Grundlehren der mathematischen Wissenschaften, Band 179.

[Gri80] Robert L. Griess, Jr. Schur multipliers of the known finite simple groups. II.
In The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz,
Calif., 1979), volume 37 of Proc. Sympos. Pure Math., pages 279–282. Amer.
Math. Soc., Providence, R.I., 1980.

[Gro66] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des
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