Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 | 1 | 2 |
The André-Oort conjecture states that an irreducible subvariety of a Shimura variety containing a Zariski dense subset of special points is a special subvariety. In this talk, I consider the analogue of this conjecture for Drinfeld modular varieties in the function field case. I will first introduce Drinfeld modular varieties and explain the notion of special subvariety. Then I will explain how the methods of Edixhoven, Klingler and Yafaev in the classical case can be adapted to the function field case. This leads to a proof of the conjecture for special points with separable reflex field over the base field. Finally, I will provide an outlook about possible future work to tackle the case of inseparable reflex fields.
Freitag, den 28. Oktober 2011 um 13:30 Uhr, in INF 288, HS2 Freitag, den 28. Oktober 2011 at 13:30, in INF 288, HS2
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. G. Böckle