Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
30 31 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17
18
19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
Informationen für
„Fundamental Fourier coefficients of Siegel modular forms“
Dr. Soumya Das, z.Zt. Universität Mannheim

Understanding the Fourier coefficients of Siegel modular forms which are `fundamantal' i.e. indexed by matrices with fundamental discriminant has many applications. Generalising A. Saha's work on this topic, we show that if F is a non-zero (possibly non-cuspidal) vector-valued level one Siegel modular form of any degree, then it has infinitely many non-zero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms. As an application of a variant of our result and utilising the work of A. Pollack, this implies an unconditional proof of the standard analytic properties of the spinor L-function of a holomorphic cuspidal Siegel Hecke eigenform of degree 3 and level one. If time permits, we can discuss mod p versions of this, and related results. These are joint works with Siegfried Boecherer.

Mittwoch, den 15. Januar 2020 um 11.15 Uhr, in Mathematikon, INF 205, Seminarraum 4, 3. OG Mittwoch, den 15. Januar 2020 at 11.15, in Mathematikon, INF 205, Seminarraum 4, 3. OG

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Kohnen