Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14
15
16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Informationen für
„A flexible generalization of complex structures on surfaces“
Alexander Thomas, IRMA, Université de Strasbourg

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Prof. Dr. Anna Wienhard Prof. Dr. Peter Albers Heidelberg, 29.05.2019 Hauptseminar Geometrie "A "flexible" generalisation of complex structures on surfaces" Alexander Thomas, IRMA, Université de Strasbourg Abstract: The theory of the moduli space of complex structures on a surface, the classical Teichmüller space, is a rich interplay between Riemannian, symplectic and complex geometry. Its algebraic generalisation to other character varieties, especially Hitchin components, admits much less geometric insights for the moment. We present a new geometric structure on surfaces, mixing concepts from symplectic and algebraic geometry (punctual Hilbert schemes), which generalizes the complex structure and whose moduli space is conjecturally Hitchin's component. Joint work with Vladimir Fock. Dienstag, den 18. Juni 2019 um 13.00 Uhr, SR C, EG, INF 205 Um 12.15 Uhr gemeinsamer Imbiss im Besprechungsraum 03.414, 3.OG, INF 205

Dienstag, den 18. Juni 2019 um 13.00 Uhr, in INF 205, SR C Dienstag, den 18. Juni 2019 at 13.00, in INF 205, SR C

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Anna Wienhard