Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 | 1 | 2 |
Let $A$ be an abelian variety with ordinary reduction at a rational prime $p$, defined over a number field $K$. We study the growth of Selmer groups of $A$ over the intermediate fields of distinct $\mathbb{Z}_p$-extensions of $K$. Proving that the knowledge of the Selmer group of $A$ over a sufficiently large number of finite layers of a $\mathbb{Z}_p$-extension suffices for bounding the overall growth, we relate the asymptotic growth (i.e., the Iwasawa invariants) of Selmer groups over different $\mathbb{Z}_p$-extensions of $K$.
Freitag, den 1. Februar 2019 um 13:30 Uhr, in INF 205, SR A Freitag, den 1. Februar 2019 at 13:30, in INF 205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Dr. José Ibrahim Villanueva Gutiérrez