Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 | 1 | 2 |
Take $q$ to be any prime number congruent to $7$ modulo $8$, and let $K=Q(sqrt{-q})$. The prime $2$ splits in $K$, and we take $\mathfrak{p}$ to be one of the primes of $K$ above $2$. Let $H$ be the Hilbert class field of $K$ and write $K_\infty$ for the unique $Z_2$-extension of $K$ unramified outside $\mathfrak{p}$. We will show, by proving an analogue of Iwasawa's $\mu=0$ conjecture, that the weak $\mathfrak{p}$-adic Leopoldt conjecture holds for the compositum $J_\infty=JK_\infty$ for an arbitrary quadratic extension $J$ of $H$. This is a joint work with J. Choi and Y. Li.
Freitag, den 25. Januar 2019 um 13:30 Uhr, in INF 205, SR A Freitag, den 25. Januar 2019 at 13:30, in INF 205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Dr. Michael Fütterer