Ruprecht-Karls-Universität Heidelberg
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 19 20 21 22 23
24 25 26 27 28 29 30
Informationen für
„Marked length spectrum rigidity of cubulations“
Jonas Beyrer, Universität Heidelberg

In the last decade CAT(0) cube complexes have gotten a lot of attention in geometric group theory and related areas. This comes from the fact that many groups are “cubulated”, i.e. act proper cocompactly on a CAT(0) cube complex (e.g. RAAGs, RACGs, hyperbolic 3-manifold groups), and that such an action (called “cubulation”) allows to derive interesting algebraic properties of the group; a prominent example of that is the “recent” proof of the virtual Haken conjecture. We want to point out that in general a group admits many non-isomorphic cubulations; which is why we want to consider the following rigidity question of cubulations (called “marked length spectrum rigidity”): Let G be a group that acts cocompactly on two irreducible CAT(0) cube complexes X,Y. Assume that the translation lengths for all g in G are the same for the action on X and on Y. Are X and Y then G-equivariantly isomorphic? In this talk we show that with the right choice of metric and under some natural assumptions (e.g. no free faces) this holds if adding a small assumption on X or Y. If X and Y show low-dimensional behaviour (e.g. square-complexes or particular cubulations of surface groups), then the statement is true in full generality. To proof this, we construct a notion of cross ratio on particular boundaries of the cube complexes - generalising a classical object on boundaries of negatively curved spaces - and show that the boundary equipped with the cross ratio determines the isomorphism type of the cube complex. This is joint work with E. Fioravanti and M. Incerti-Medici.

Dienstag, den 6. November 2018 um 13:00 Uhr, in INF205, SRC Dienstag, den 6. November 2018 at 13:00, in INF205, SRC

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Anna Wienhard, Prof. Dr. Peter Albers