Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14
15
16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Informationen für
„Locally analytic vectors and overconvergent (phi, tau)-module“
Dr. Hui Gao, University of Helsinki

In $p$-adic Hodge theory, we use various ``linear algebra" objects to study $p$-adic Galois representations of $G_K$ (where $K$ is for example a finite extension of $\mathbb{Q}_p$, and $G_K$ the Galois group). In this talk, we discuss the so-called $(\varphi, \tau)$-modules which are constructed by Caruso; they are analogues of the more well-known $(\varphi, \Gamma)$-modules, and they also classify $p$-adic Galois representations. We will study locally analytic vectors in some period rings and in the $(\varphi, \tau)$-module; this enables us to establish the overconvergence property of the $(\varphi, \tau)$-modules. This is joint work with L\'eo Poyeton.

Freitag, den 19. Oktober 2018 um 13:30 Uhr, in INF 205, SR A Freitag, den 19. Oktober 2018 at 13:30, in INF 205, SR A