Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
28 29 30 31 1 2 3
4 5 6 7 8 9 10
11 12 13 14 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 1
Informationen für
„On algebraic independence of periods of t-modules“
Dr. Andreas Maurischat, Universität Heidelberg

Drinfeld modules and abelian t-modules are function field analogues of elliptic curves and abelian varieties over number fields. The periods of such a t-module are analogues of the periods of abelian varieties, and one is interested in questions about their transcendence and about algebraic relations among them. After giving a brief introduction to t-modules and their associated t-motives, we will explain how one obtains the periods of a t-module from the rigid analytic trivialisation of the t-motive. In the special case of the n-th tensor power of the Carlitz module (n prime to the characteristic), we will show that the coordinates of a fundamental period are algebraically independent.

Freitag, den 29. Juni 2018 um 13:30 Uhr, in INF205, SR A Freitag, den 29. Juni 2018 at 13:30, in INF205, SR A

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Gebhard Böckle