Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 | 1 | 2 |
Informationen für
„A non-vanishing theorem of Rohrlich via Iwasawa theory“
Prof. Dr. John Coates, University of Cambridge
I will discuss some joint work with Yongxiong Li showing that, if q is any prime number with q ≡ 7 mod 16, then L(A/H,1) 6= 0; here K = Q(√−q),H is the Hilbert class field of K, and A is the Gross Q-curve defined over K, with complex multiplication by the ring of integers of K and discriminant ideal generated by −q3. Rohrlich proved this theorem by classical analytic number theory for all primes q ≡ 7 mod 8, but we employ a quite different argument based on Iwasawa theory for the prime p = 2.
Freitag, den 27. April 2018 um 13:30 Uhr, in INF 205, SR A Freitag, den 27. April 2018 at 13:30, in INF 205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Otmar Venjakob