Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
28 29 30 31 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29
30
1
Informationen für
„The cohomological McKay correspondence via Floer theory“
Prof. Alexander F. Ritter, University of Oxford

The goal of my talk is to present joint work with Mark McLean (Stony Brook, NY), which proves the cohomological McKay correspondence using symplectic topology techniques. This correspondence states that given a crepant resolution Y of the singularity \C^n / G, where G is a finite subgroup of SL(n,\C), the conjugacy classes of G are in 1-1 correspondence with generators of the cohomology of Y. This statement was proved by Batyrev (1999) and Denef-Loeser (2002) using algebraic geometry techniques. We instead construct a certain symplectic cohomology group of Y whose generators are Hamiltonian orbits in Y to which one can naturally associate a conjugacy class in G. We then show that this symplectic cohomology recovers the classical cohomology of Y.

Dienstag, den 12. Juni 2018 um 13.00-16.00 Uhr, in Mathematikon, INF 205, SR C Dienstag, den 12. Juni 2018 at 13.00-16.00, in Mathematikon, INF 205, SR C

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Benedetti