Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 24 25 26 27 28
29 30 31 1 2 3 4
Informationen für
„Lower complexity bounds for positive contactomorphisms“
Lucas Dahinden, Université de Neuchâtel, Schweiz

There are various results that connect topological properties of special contact manifolds with the topological entropy of their Reeb flows, see for example Macarini--Schlenk, Frauenfelder--Labrousse--Schlenk, Alves or Alves--Meiwes. The proof of results of this type uses growth (in various senses) of symplectic homology or Rabinowitz--Floer homology. I will explain how to push one of these results from the realm of Reeb flows to positive contactomorphisms (i.e. time-dependent Reeb flows). I will also explain why positive contactomorphisms seem to be the maximal class of maps for which such a kind of result holds true.

Mittwoch, den 22. November 2017 um 16.15 Uhr, in Mathematikon, INF 205, SR 4 Mittwoch, den 22. November 2017 at 16.15, in Mathematikon, INF 205, SR 4

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. P. Albers