Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
28 29 30 31 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22
23
24
25 26 27 28 29 30 1
Informationen für
„The Mumford-Tate conjecture for products of K3 surfaces“
Johan M. Commelin, Radboud Universiteit Nijmegen

The Mumford-Tate conjecture relates the Hodge structure on the singular cohomology of an algebraic variety (over a number field) with the Galois representation on the etale cohomology of that variety. In this talk we explain a new technique that allows us to prove this conjecture for products of K3 surfaces. Along the way we also prove that the system of l-adic realisations of an abelian motive form a compatible system.

Freitag, den 28. April 2017 um 13:30 Uhr, in INF205, SR A Freitag, den 28. April 2017 at 13:30, in INF205, SR A

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Alexander Schmidt