Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 | 1 | 2 |
Informationen für
„The Mumford-Tate conjecture for products of K3 surfaces“
Johan M. Commelin, Radboud Universiteit Nijmegen
The Mumford-Tate conjecture relates the Hodge structure on the singular cohomology of an algebraic variety (over a number field) with the Galois representation on the etale cohomology of that variety. In this talk we explain a new technique that allows us to prove this conjecture for products of K3 surfaces. Along the way we also prove that the system of l-adic realisations of an abelian motive form a compatible system.
Freitag, den 28. April 2017 um 13:30 Uhr, in INF205, SR A Freitag, den 28. April 2017 at 13:30, in INF205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Alexander Schmidt