Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27
28
29 30 1 2 3 4 5
Informationen für
„The equivariant local epsilon constant conjecture for unramified twists of Zp(1)“
Dr. Alessandro Cobbe, Universität der Bundeswehr München

We study the equivariant local epsilon constant conjecture, denoted by $C_{EP}^{na}(N/K, V)$, as formulated in various forms by Kato, Benois and Berger, Fukaya and Kato and others, for certain $1$-dimensional twists $T = \mathbb{Z}_p(\chi^{\mathrm{nr}})(1)$ of $\mathbb{Z}_p(1)$. Following ideas of recent work of Izychev and Venjakob it is possible to prove that for $T = \mathbb{Z}_p(1)$ a conjecture of Breuning is equivalent to $C_{EP}^{na}(N/K,V)$. Our main result is the validity of $C_{EP}^{na}(N/K, V)$ for certain wildly and weakly ramified abelian extensions $N/K$. A crucial step in the proof is the construction of an explicit representative of $R\Gamma(N, T)$. This is a joint work with Werner Bley.

Freitag, den 10. Juni 2016 um 13:30 Uhr, in INF205, SR C Freitag, den 10. Juni 2016 at 13:30, in INF205, SR C

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Otmar Venjakob