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1 Introduction

The Coleman-Mandula Theorem is a no-go theorem stating, that given some physically rea-
sonable assumptions, the symmetry group of the S-matrix is a direct product of the Poincaré
group and an internal symmetry group. We will define these terms in the following section.
The theorem was originally proved in Coleman and Mandula’s paper “All Possible Symmetries
of the S Matrix” in 1967 (see [2]). We however, in section 5, will look at the proof by Weinberg
in [5], which rearranges the original proof and directly considers symmetry (Lie) algebras and
not the groups themselves, but the last step going back to groups is easy. We will look at the
exact statement of the theorem in section 3.

In section 4 we will study Witten’s kinematic argument why the theorem should be true:
Any additional symmetry beyond Poincaré in a relativistically covariant theory overconstrains
the elastic scattering amplitudes and allows non-zero amplitudes only for discrete scattering
angles. The assumption of analyticity of scattering angles therefore rules out such symmetries
(see [6]).
Section 5 will be the rigorous proof and finally in section 6 we will shortly list possible loopholes
of the theorem.

This is an introduction to a supersymmetry seminar, so you might wonder why we are
looking at classical Lie algebras.
The theorem tells us, that all generators of internal symmetries (gauge symmetries in the stan-
dard model) will commute with the generators of the Poincaré group (space-time symmetries)
or as Coleman and Mandula put it: ”We prove a new theorem on the impossibility of combining
space-time and internal symmetries in any but a trivial way.” (see [2])
This means that for a unified theory of Gravity and Gauge interactions, we are forced to look
at a loophole of this theorem which is to consider superalgebras or general graded algebras. So
as long as we do not want to give up field theory as a framework, we must consider supersym-
metry. Because of this, the theorem was the starting point for physicist to try and implement
SUSY into their theories and the general study of SUSY from a mathematical perspective.
In 1975 Haag, Lopuszanski and Sohnius generalised the theorem to constrain possible SUSYs
in their paper “All Possible Generators of Supersymmeties of the S-Matrix” (see [3]).
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2 Relativistic Field Theory and Scattering Theory

We will start with a short summary of important terms in field theory.

We will usually look at our symmetry acting on states. These states form the Hilbert space

H =
⊕
n

H(n), (1)

where H(n) is the n-particle Hilbert space

H(n) '
n⊗
H(1). (2)

The S-matrix is a unitary operator on H that maps “in” to “out” states

|α, in〉 = S |α, out〉 ,
Sβα = 〈β, out |α, in〉 = 〈β, in|S |α, in〉 ,

(3)

where Sαβ is called the S-matrix element. The “in” and “out” states are elements of Hilbert
spaces as above, which are non-interacting in the sense that the states are looked at at past and
future infinity, where they are far apart from each other and can be thought of as asymptotically
free. Any interaction in perturbative scattering theory is then captured by the isomorphism S.
So the matrix elements Sαβ are what physically describes interaction.

This brings us to the definition of a symmetry transformation as a unitary operator U , that
fulfills
(1) U turns one-particle states into one-particle states

U |1-particle〉 = |1-particle’〉 ; (4)

(2) U acts on many-particle states as if they were tensor products of one-particle states

U |α, β〉 = (U ⊗ 1 + 1⊗ U) |α〉 ⊗ |β〉 ; (5)

(3) U commutes with S
[S, U ] = 0, (6)

such that ”the physics is unchanged”

Sβα = 〈β, out |α, in〉 = 〈β, in|SU †U |α, in〉
= 〈β, in|U †SU |α, in〉 = 〈β′, in|S |α′, in〉 = Sβ′α′ .

(7)

Note that the associated element of the algebra (connected by the exponential map) is a Her-
mitian operator.

The S-matrix and therefore the theory is called Lorentz-invariant if it possesses a symmetry
group that contains the Poincaré group as a subgroup (up to isomorphism). Then the states in
H(1) are of the form |α, p, n〉, where p is four momentum, n is the spin and α are all the other
quantum numbers arising from the rest of the symmetry group, where we used the definition
of the Hilbert space as the representation space of the symmetry group.

We call B an internal symmetry transformation if it commutes with the generators of the
Poincaré group and therefore only acts on particle type indices α.

What is actually of interest is the connected S-matrix T , which is the non-trivial part of S

S = 1− i(2π)4δ(4)(Pµ − P ′µ)T. (8)
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Usually one does not care to write T rather than S, but in some steps, where it is of importance
we will make the distinction by actually writing T.

Lastly, we state the fact that generators A of a symmetry are integral operators of the form

A |p, n〉 =
∑
n′

∫
d4p′

(
A (p′, p)

)
n′n
|p′, n′〉 , (9)

where the kernel A is a matrix-valued (we will justify below why the indices n and n′ are discrete
and finite) distribution in momentum space. (Note, if [A,P ] = 0 then A = δ(4)(p− p′)a(p) for
some matrix-valued function a(p).)

3 The Coleman-Mandula Theorem

We now cite the original theorem from [2].

Theorem: Let G be a connected symmetry group of the S-matrix, and let the following five
conditions hold:

1. (Lorentz invariance.) G contains a subgroup locally isomorphic to P .

2. (Particle-finiteness.) All particle types correspond to positive-energy representations of
P . For any finite M , there are only a finite number of particle types with mass less than
M .

3. (Weak elastic analyticity.) Elastic-scattering amplitudes are analytic functions of center-
of-mass energy, s, and invariant momentum transfer, t, in some neighborhood of the
physical region, except at normal thresholds.

4. (Occurence of scattering.) Let |p〉 and |p′〉 be any two one-particle momentum eigenstates,
and let |p, p′〉 be the two-particle state made from these. Then

T |p, p′〉 6= 0, (10)

except perhaps for certain isolated values of s. Phrased briefly, at almost all energies, any
two plane waves scatter.

5. (An ugly technical assumption.) The generators of G, considered as integral operators
in momentum space, have distributions for their kernels. More precisely: There is a
neighborhood of the identity in G such that every element of G in this neighborhood lies
on some one-parameter group g(t). Further if x and y are any two states in D, then

1

i

d

dt
(x, g(t)y) = (x,Ay), (11)

exists at t = 0 and defines a continuous function of x and y, linear in y and antilinear in
x.

Then, G is locally isomorphic to the direct product of an internal symmetry group and the
Poincaré group.

As already alluded to in the beginning, we will not work with a symmetry group, but rather
its generators, i.e. its algebra and therefore already implementing assumption (5) of Coleman
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and Mandula to some extent. The statement of the theorem then reads that for any symmetry
generators B not in the Poincaré algebra and given the assumptions stated above we must have

[B,P ] = 0, (12)

that is to say B commutes with all generators of the Poincaré algebra P (we will use the same
symbol for the group and the algebra).

4 Short, Non-Rigorous Kinematic Proof

The argument by Witten in the introduction, that any additional symmetry beyond Poincaré
overconstrains scattering amplitudes can be made quantitative as follows.
This calculation is taken from a lecture on supersymmetry (see [1]).

Assume there is a symmetry generator Qµν , such that [Qµν , Pρ] 6= 0, Qµν 6= Jµν ∈ so(1, 3)
and Qµν symmetric and traceless.
From its symmetry and tracelessness we know that

〈p|Qµν |p〉 ∝ pµpν −
1

4
ηµνp

2. (13)

It will act on one-particle states as a tensorproduct, so for orthonormal states |p1〉 and |p2〉 we
have 〈

p1, p2
∣∣Qµν

∣∣p1, p2〉 =
〈
p1
∣∣Qµν

∣∣p1〉+
〈
p2
∣∣Qµν

∣∣p2〉 . (14)

Now, for an elastic scattering p1, p2 −→ q1, q2 with Qµν conserved we have〈
p1, p2

∣∣Qµν

∣∣p1, p2〉 =
〈
q1, q2

∣∣Qµν

∣∣q1, q2〉 (15)

and therefore using 13 and 14

p1µp
1
ν + p2µp

2
ν = q1µq

1
ν + q2µq

2
ν . (16)

Since for elastic scattering we know that p1µ + p2µ = q1µ + q2µ we can see that making the ansatz

q1µ = p1µ + aµ, q
2
µ = p2µ + bµ, (17)

that the momentum change has to be aµ = −bµ. Replacing the q’s above this finally gives

aµ(p1ν − p2ν) + aν(p
1
µ − p2µ) + 2aµaν = 0. (18)

If this is to hold for arbitrary p’s we see that we have aµ = 0 and therefore we can only have
trivial scattering.

5 Proof

We now want to prove the theorem rigorously on an infinitesimal level: If G is a symmetry
group of the S-matrix in a relativistic field theory, and the assumptions (2) to (4) hold, then
the generators of G consist only of the generators of the Poincaré group P and the generators
of internal symmetries. Assumption (5) will only be needed to argue why we can work with ele-
ments of an algebra. The main steps of this proof are following [5] with some of the calculations
that Weinberg skipped carried out.

4



5.1 The subalgebra B
Note again that we will use the same symbol for groups and their algebras. We begin with the
subalgebra B of G consisting of symmetry generators Bα who commute with the four-momentum
operator Pµ

[Bα, Pµ] = 0. (19)

These act on multiparticle states as on a tensor product of one-particle states, i.e.

Bα |p,m; q, n; . . .〉 =
∑
m′

(
bα(p)

)
m′m
|p,m′; q, n; . . .〉+∑

n′

(
bα(q)

)
n′n
|p,m′; q, n; . . .〉+ . . . .

(20)

The bα are, for any given momentum p, finite (assumption (2)) Hermitian (symmetry genera-
tors have to be Hermitian, such that their exponentials are unitary operators) representation
matrices, m, n, etc. are discrete indices labelling spin and particle type. The generators obey
a Lie algebra (!) relation

[Bα, Bβ] = i
∑
γ

Cγ
αβBγ. (21)

We will, from now on, use sum convention for greek indices. From this we can calculate by
acting on a state

[Bα, Bβ] |p,m〉 = · · · = i
∑
m′

Cγ
αβ

(
bγ(p)

)
m′m
|p,m′〉

⇒ [bα(p), bβ(p)] = iCγ
αβbγ(p).

(22)

So we can see that the bα(p) also form a Lie algebra.
We now want to use a theorem, proved in [4], chapter 15.2, that any Lie algebra of finite
Hermitian matrices like the bα(p) must be a direct sum of a compact semi-simple Lie algebra
and U(1) algebras. But this can only be applied to the algebra of interest, B, if there is an
isomorphism between the Bα and bα(p), which is not yet apparent (up to now it is only a
homomorphism as can be seen in the shared commutation relations / algebra).
What do we need to look at? For a given momentum p we have the map

Bα → bα(p). (23)

This could be degenerate in the sense that bα(p) = bβ(p) for α 6= β. To ensure that this is not
the case we want to proof that if there exist coefficients cα such that the bα(p) are not linearly
independent, then also the Bα are not linearly independent, i.e.

{Bα} ' {bα(p)} ⇔ (cαbα(p) = 0⇒ cαBα = 0) , (24)

for some momentum p and some coefficients cα. To make it clearer: We want to show that the
map is injective by showing that for any element of the image that is zero, already the preimage
has to be zero, i.e. that the kernel of the map is zero.

Since Bα is completely characterized by its representation on the Hilbert space, bα(k) for
all momenta k, above statement of linear dependence of Bα is equivalent to cαbα(k) = 0 ∀k.
At this point note, that by our particle finiteness assumption there will only be finitely many
different masses in the spectrum of the theory and we only have to look at those momenta that
are on mass-shell, i.e. those momenta for which k2 = m2 for some mass in the spectrum.

5



So let us try to prove this, by looking at two-particle states:

Bα |p,m; q, n〉 =
∑
m′,n′

(
bα(p, q)

)
m′n′,mn

|p,m′; q, n′〉 ,(
bα(p, q)

)
m′n′,mn

=
(
bα(p)

)
m′m

δn′n +
(
bα(q)

)
n′n

δm′m.

(25)

Since Bα are symmetry generators we have for a elastic 2-2-scattering (p, q −→ p′q′) with
p+ q = p′ + q′, p, q, p′, q′ all on mass-shell, p2 = p′2 and q2 = q′2,

〈p′,m′; q′, n′| [Bα, S] |p,m; q, n〉 = 0, (26)

which with quite a lot of work we can rewrite (using orthonormality of states of different particle
type and spin) to

bα(p′, q′)T (p′, q′; p, q) = T (p′, q′; p, q)bα(p, q). (27)

Here note that bα and T are both (finite) matrices:∑
m′′n′′

(
bα(p′, q′)

)
m′n′,m′′n′′

(
T (p′, q′; p, q)

)
m′′n′′,mn

=
∑
m′′n′′

(
T (p′, q′; p, q)

)
m′n′,m′′n′′

(
bα(p, q)

)
m′′n′′,mn

.
(28)

Assumptions (3) and (4) tell us that S (we will now go with the more common notation by
using S rather than T ) is non-singular and non-zero for almost all momenta (this ”almost” will
stick around for some time now, but we will only mention it again later), so it is invertible and
above equation simply is a similarity tranformation of matrices

bα(p′, q′) = S(p′, q′; p, q) bα(p, q) S−1(p′, q′; p, q). (29)

This means that if there are coefficients cα such that cαbα(p, q) = 0 we have

cαbα(p′, q′) = S(p′, q′; p, q) (cαbα(p, q)) S−1(p′, q′; p, q) = 0. (30)

This in turn tells us that

cα
(
bα(p′)

)
m′m

δn′n = −cα
(
bα(q′)

)
n′n

δm′m, (31)

so we can read off that for such p′ and q′ cαbα(p′) and cαbα(q′) are proportional to the identity
matrix.

If they were traceless they would therefore have to be zero, so let’s make them traceless:

Tr
[
bα(p′, q′)

]
= Tr

[
Sbα(p, q)S−1

]
= Tr

[
bα(p, q)

]
. (32)

Tr
[(
bα(p, q)

)
m′n′,mn

]
= Tr

[(
bα(p)

)
m′m

δn′n +
(
bα(q)

)
n′n

δm′m

]
= tr

[(
bα(p)

)
m′m

]
tr
[
δn′n

]
+ tr

[(
bα(q)

)
n′n

]
tr
[
δm′m

]
= N(

√
−qµqµ) tr bα(p) +N(

√
−pµpµ) tr bα(q),

(33)

where N(m) is the multiplicity of particle types and spins with mass m (the trace goes over
particle type and spin quantum numbers for any give momentum p).
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So we have the following conditions for mass-shell momenta p, q, p′, q′

tr bα(p)

N(
√−pµpµ)

+
tr bα(q)

N(
√−qµqµ)

=
tr bα(p′)

N(
√
−p′µp′µ)

+
tr bα(q′)

N(
√
−q′µq′µ)

,

p+ q =p′ + q′,

(34)

which have the solution
tr bα(p)

N(
√−pµpµ)

= aµαpµ. (35)

So the trace is just a linear function of pµ. A possible constant term can be ruled out by looking
at scattering with an unequel amount of states on each side.

With this at hand we can define new symmetry generators B#
α and their one-particle rep-

resentation as
B#
α ≡ Bα − aµαPµ,(

b#α (p)
)
n′n

=
(
bα(p)

)
n′n
− tr bα(p)

N(
√−pµpµ)

δn′n.
(36)

These still commute with Pµ and thus have the same algebra[
B#
α , B

#
β

]
= iCγ

αβBγ = iCγ
αβ[B#

γ + aµγPµ],

[b#α (p), b#β (p)] = iCγ
αβbγ(p) = iCγ

αβ[b#γ (p) + aµγpµ].
(37)

Using that the trace of a commutator of finite matrices is zero

0 = tr[[b#α (p), b#β (p)]] = iCγ
αβ tr[b#γ (p)] + iCγ

αβa
µ
γpµ tr[δ]

= iCγ
αβa

µ
γpµN(

√
−pµpµ),

(38)

we find Cγ
αβa

µ
γ = 0 for non-zero particle multiplicity. The B#

α are also symmetry generators of
the S-matrix and therefore all considerations from before go through and we find

cαb#α (p, q) = 0⇒ cαb#α (p′, q′) = 0⇒ cαb#α (p′) = cαb#α (q′) = 0, (39)

for some coefficients cα and for momenta p, q, p′, q′ as before, since now the tracelessness tells
us that the proportionality constant between cαb#α (p′) and the identity matrix has to be zero.

Now we still need to argue why the last equation holds for any mass-shell momentum k
given that it holds for only one momentum p. If

cαb#α (p, q) = cαb#α (p′, q′) = 0, (40)

then
cαb#α (p) = cαb#α (q) = cαb#α (p′) = cαb#α (q′) = 0, (41)

so also
0 = cαb#α (p, q′) = cαb#α (k, p+ q′ − k), (42)

where the last equality is due to the similarity tranformation of 2-2-scattering p, q′ −→ k, (p+
q′ − k) that holds when k and p + q′ − k are mass-shell momenta. The momentum p + q′ − k
was of course chosen like that to respect momentum conservation. This is the crucial step that
Coleman and Mandula came up with to show that also cαB#

α = 0.

All we need to do is to reassure ourselves that indeed k can take any mass-shell value.
What we start with are p and q, such that m2

p = p2 and m2
q = q2. We first look at the
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scattering p, q −→ p′ = (p + q − q′), q′. We need m2
p = (p + q − q′)2 and m2

q = q′2 for the
scattering to be elastic, which removes two degrees of freedom in our choice of q′. Next we
consider p, q′ −→ k, (p + q′ − k), for which we now need m2

p = k2, which removes one degree
of freedom from k, and m2

q = (p + q′ − k)2, which does not constrain k because we still have
enough freedom in the choice of q′ to fulfill this equation for any k. So we are free to choose k,
the three-vector components of k, to be anything we want.
So we have shown that if for some fixed mass-shell momenta p and q

cαb#α (p, q) = 0, (43)

we have for almost all mass-shell momenta k

cαb#α (k) = 0. (44)

Note: We got rid of momentum conservation!

But we now still need to show that this holds for all momenta k. By considering elastic
scattering we have limited ourselves to momenta k which are on the same mass-shell as p. And
even on this mass-shell we had to use that the scattering matrix is invertible only for almost
all momenta. Luckily by our particle finiteness assumption we now that there are only fintely
many possibilities for the zero component k0 for a general three-momentum k. So let’s see what
happens if, for some particular mass-shell momentum k∗, cαb#α (k∗) does not vanish? Then a
scattering process k∗, k −→ k′, k′′ would be forbidden by the symmetry generated by cαBα

for almost all k, k′ and k′′, since almost all b#α (k′, k′′) are related to b#α (p, q) by a similarity
transformation, so if a scattering k∗, k −→ k′, k′′ would exist, also cαb#α (k∗, k) 6= 0 would be
related to cαb#α (p, q) = 0. This cannot be. So for almost all k, k′ and k′′ this scattering
amplitude must vanish, which is in contradiction to one of our assumptions, and therefore
cαb#α (k∗) must be zero.
In conclusion we find that

cαb#α (k) = 0 ∀k. (45)

So now we know that the mapping of Bα into the b#α (p, q) is an isomorphism, the above
mentioned theorem is applicable and we can decompose B into a semi-simple compact Lie alge-
bra and U(1)’s. What we now need to show for these summands of B individually is that their
elements commute with the generators of Lorentz transformations, since then they commute
with all elements of the Poincaré algebra and are therefore internal symmetries. At this point
you might wonder what happened to the generator of translations Pµ, which by definition of
B should be an element of it. But recall that we subtracted a linear function of Pµ from all
generators to make them traceless. In this step we mapped Pµ to zero and therefore excluded
it from further considerations. So rest assured Pµ itself is not an internal symmetry.

As a corollary, we can see that the number of independent matrices b#α (p, q) cannot exceed
N(
√−pµpµ)N(

√−qµqµ) and therefore also the number of independent generators Bα must be
finite, which we did not need to assume in the beginning.

5.1.1 The U(1)’s

Since the B#
α commute with Pµ and [J, Pµ], which is a linear combination of Pµ and where J is

a generator of Lorentz transformations, the Jacobi identity is

0 = [Pµ, [J,B
#
α ]] + [J, [B#

α , Pµ]] + [B#
α , [Pµ, J ]] = [Pµ, [J,B

#
α ]], (46)
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which tells us, that [J,B#
α ] is a linear combination of B#

α ’s (tracelessness is clear because it is
a commutator). Following the theorem decomposing the algebra B in a direct sum, we know
that any U(1) generator B#

i must commute with all other B#
α ’s, in particular

[B#
i , [J,B

#
i ]] ∼ [B#

i ,
∑
α 6=i

B#
α +B#

i ] = [B#
i , B

#
i ] = 0. (47)

With some effort one can show by taking the expectation value of this commutator (using
J |p,m; q, n〉 = σ(m,n) |p,m; q;n〉), that

0 = 〈p,m; q, n| [B#
i , [J,B

#
i ]] |p,m; q, n〉

= 〈p,m; q, n| (2B#
i JB

#
i − JB

#
i B

#
i −B

#
i B

#
i J) |p,m; q, n〉

= 2 〈p,m; q, n| (B#
i JB

#
i − JB

#
i B

#
i ) |p,m; q, n〉

= 2
∑
m′,n′

(σ(m′, n′)− σ(m,n))

∣∣∣∣(b#i (p, q)
)
m′n′,mn

∣∣∣∣2 ,
(48)

where from going from the second to the third line we used that J† = J and in the fourth
line acted with J once after and once before B#

α on the left state in the first and second term
respectively. We also used the orthonormality of states. So we see that for any m, n, m′ and n′

for which σ(m′, n′) 6= σ(m,n)
(
b#i (p, q)

)
m′n′,mn

has to vanish. Since the b#i (p, q) are isomorphic

to B#
i this is just the statement that

[B#
i , J ] = 0, (49)

which proves the theorem for this subalgebra of the total symmetry algebra.

5.1.2 The semi-simple compact Lie algebra

We will only roughly sketch the idea for this part of the proof. For a full proof see section 24.1
in [5].

We look at U(Λ)BaU(Λ)−1, where Ba is a generator of the compact Lie algebra that resulted
from the decomposition above and U(Λ) is some representation of the Lorentz group. This is
an element of the same algebra and therefore

U(Λ)BaU(Λ)−1 =
∑
b

Db
a(Λ)Bb, (50)

for some function D(Λ) which turns out to also be a representation of the Lorentz group. From
these D(Λ) we can construct a unitary finite-dimensional representation of the non-compact
SO(1, 3). This can therefore only be the trivial representation D(Λ) = 1 ∀Λ. So the Ba also
commute with the generators of the homogeneous Lorentz group.

This concludes the discussion of B: All generators Bα ∈ B commute with both Pµ (by
definition of B) and J (as shown for the U(1) and the compact part separately) and therefore
with all generators of the Poincaré group. They are internal symmetries!

5.2 The subset A
We still have all the generators left, that do not commute with Pµ. These we will call Aα. We
want to show that this setA ofAα’s can only consist of the generators of Lorentz transformations
for which we already know that

[J, Pµ] ∼ Pµ 6= 0. (51)
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The action of a general symmetry generator Aα on a one-particle state is

Aα |p, n〉 =
∑
n′

∫
d4p′

(
Aα(p′, p)

)
n′n
|p′, n′〉 , (52)

where again n and n′ label discrete spin and particle type indices. The kernel Aα(p′, p) must
vanish unless both p and p′ are on the mass-shell.

In the following we will first show that Aα(p′, p) = 0 for p 6= p′.
If Aα is a symmetry generator, then so is

Afα ≡
∫
d4x exp(iP · x)

(
Aα(p′, p)

)
n′n
exp(−iP · x)f(x), (53)

for any function f(x). Acting on one-particle states we can evaluate the momentum operators
Pµ and carry out the Fourier transformation, which gives

Afα |p, n〉 =
∑
n′

∫
d4p′ f̃(p′ − p)

(
Aα(p′, p)

)
n′n
|p, n′〉 , (54)

where we used the Fourier transform f̃(k) of f .

Now suppose there is a scattering process p, q −→ p′, q′ for mass-shell momenta p, q, p′ and
q′. Suppose also there is ∆ 6= 0 such that p+ ∆ is still on the mass-shell and Aα(p, p+ ∆) 6= 0.
For generic values of q, p′ and q′ the momenta q+∆, p′+∆ and q′+∆ will be off-shell. Choose
f̃ to vanish outside of a small region around k = ∆. We then have

Afα |p, n〉 =
∑
n′

f(∆)
(
Aα(p+ ∆, p)

)
n′n
|p+ ∆, n′〉 6= 0,

Afα |q, n〉 = Afα |p′, n〉 = Afα |q′, n〉 = 0,

(55)

where the last line holds because the kernel Aα(q + ∆, q) has to vanish since q + ∆ is not on
mass-shell and a symmetry cannot map a state in the Hilbert space to an unphysical state
outside the Hilbert space, which of course is also true for p′ and q′.
So we find that this symmetry forbids the scattering p, q −→ p′, q′ for generic q, p′ and q′ which
is in contradiction to our assumption that scattering occurs at almost all energies except for
isolated energies!

This leaves us with the options that either Aα(p, p′) commutes with Pµ, which would leave us
with a generator Bα that we already discussed, or that the kernel is proportional to δ(4)(p′− p)
and its derivatives, in which case Afα would only be a symmetry if f̃ has support in k = 0. The
latter being of course the option we have to further investigate.

So we consider(
Aα(p′, p)

)
n′n

=
Dα∑
i=1

(
a(i)α (p′, p)

)µ1...µi
n′n

∂i

∂p′µ1 . . . ∂p′µi
δ(4)(p′ − p), (56)

with the coefficients a
(i)
α of each term being matrix valued functions of momentum. The ”ugly

technical assumption” of Coleman and Mandula now is needed to argue that there is a finite
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number Dα of derivatives in the distributions Aα.

We now look at the Dα-fold commutator of Aα with Pµ’s

Bµ1...µDα
α ≡ [P µ1 , [P µ2 , [. . . [P µDα , Aα] . . . ]]. (57)

To illustrate what happens let’s look at Dα = 1 and act on a one-particle state

Bµ
α |p, n〉 = [P µ, Aα] |p, n〉 =

∑
n′

[P µ,
(
a1(p)

)ν
n′n

∂

∂pν
] |p, n〉

= −
∑
n′

∂

∂pν
P µ
(
a1(p)

)ν
n′n
|p, n〉

= −
∑
n′

δµν

(
a1(p)

)ν
n′n
|p, n〉 ,

(58)

where in the first line we used that the commutator with a function a0 vanishes and evaluated
P µ before carrying out the derivative.
Further we find for the matrix elements

〈p′|[Bµ
α, P

ν ] |p〉 = 〈p′| [[P µ, Aα], P ν ] |p〉
= 〈p′|P µAαP

ν − AαP µP ν − P νP µAα + P νAαP
µ |p〉

= 〈p′| p′µAαpν − Aαpµpν − p′νp′µAα + p′νAαp
µ |p〉

= −(p′ − p)µ(p′ − p)ν 〈p′|Aα |p〉

= −(p′ − p)µ(p′ − p)ν(a′(0)α (p) + a(1)α (p)ν
∂

∂pν
) 〈p′ |p〉 ,

(59)

where a
′(0)
α (p) ≡ a

(0)
α (p) + ∂

∂pν
a
(1)
α (p) and we used

〈p′|Aα |p〉 =

∫
d4p̃ 〈p′|

(
a(0)α (p̃, p)δ(4)(p̃− p) + a(1)α (p̃, p)ν

∂

∂p̃ν
δ(4)(p̃− p)

)
|p̃〉

=

∫
d4p̃ δ(4)(p̃− p)

(
a(0)α (p̃, p)− ∂

∂p̃ν
(a(1)α (p̃, p)ν)− a(1)α (p̃, p)ν

∂

∂p̃ν
)
〈p′ |p̃〉

= (a′(0)α (p) + a(1)α (p)ν
∂

∂pν
) 〈p′ |p〉 ,

(60)

where we partially integrated from the first to the second line and performed the integral using
the delta function. Using the usual normalisation of states 〈p′ |p〉 ∝ δ(3)(p − p′) and noting
that p and p′ must be on the same mass-shell we get

〈p′| [Bµ
α, P

ν ] |p〉 ∝ −(p′ − p)µ(p′ − p)ν(a′(0)α (p) + a(1)α (p)ν
∂

∂pν
)δ(4)(p′ − p). (61)

Generally we will find that the matrix elements 〈p′| [Bµ1...µDα
α , P ν ] |p〉 will be proportional to

Dα+1 factors of p′−p and polynomials of order Dα in derivatives acting on δ(4)(p′−p). The delta
functions set p′ to p such that the prefactors p′ − p vanish, which means that these commuta-
tors vanish. As the notation already suggested we see that the B

µ1...µDα
α are in the subalgebra B.

As proved above the B
µ1...µDα
α act on one-particle states as(

bµ1...µDαα (p)
)
n′n

=
(
b#µ1...µDαα

)
n′n

+ aµµ1...µDαα pµ 1n′n, (62)
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where the matrices b
#µ1...µDα
α are momentum-independent, traceless representations of genera-

tors of internal symmetries and the a
µµ1...µDα
α are momentum-independent constants.

We know by assumption (2) that the mass operator −PµP µ has discrete eigenvalues, so since
Aα cannot take one-particle states off the mass-shell we have [−PµP µ, Aα] = 0 which for Dα ≥ 1
gives

0 = [P µ1Pµ1 , [P
µ2 , [. . . [P µDα , Aα] . . . ]]] = 2Pµ1B

µ1...µDα
α . (63)

We can directly see that the momentum-independent term of b
µ1...µDα
α (p) must vanish since

above equation suggests
b#µ1...µDαα pµ1 + aµµ1...µDαα pµ1pµ = 0, (64)

which must be satisfied for any timelike momentum p, as long as there are massive particles in
the theory, which tells us that the coefficients in each order of p have to vanish individually.
The last equation therefore also tells us in order p2 that

aµµ1µ2...µDαα = −aµ1µµ2...µDαα . (65)

For these coefficients a
µµ1...µDα
α we now have to distinguish between Dα = 0, 1 and Dα ≥ 2.

Note that b
µ1...µDα
α is symmetric in all its indices by definition of B

µ1...µDα
α via the commutator

and therefore a
µµ1...µDα
α is symmetric in the indices µ1, . . . , µDα .

For Dα = 0 we trivially have Aα = Bα since then the kernel is simply a delta function and
the Aα therefore commute with Pµ.
For Dα = 1 we get the condition

aµµ1α = −aµ1µα . (66)

For Dα ≥ 2 we have this anti-symmetry in µ, µ1 as in the case of Dα = 1, but we also get it in
all other indices because of the symmetry in the second to (Dα + 1)th indices, which can only
have the solution

aµµ1...µDαα = 0. (67)

To reassure ourselves we can switch indices to see that

aµµ1µ2...µDαα = −aµ1µµ2...µDαα

= −aµ1µ2µ...µDαα

= aµ2µ1µ...µDαα

= aµ2µµ1...µDαα

= −aµµ2µ1...µDαα

= −aµµ1µ2...µDαα .

(68)

So far we have reduced A to generators for which

[P µ, Aα] = aµνα Pν , (69)

where aµνα is some constant which is anti-symmetric in its indices.
From the Poincaré algebra relation

[P µ, Jρσ] = −iηνρP σ + iηνσP ρ (70)

We can now see that above commutator [P µ, Aα] is simply that of

[P ρ, Aα] = [P ρ,− i
2
aµνα Jµν +Bα], (71)
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where Bα is some generator that commutes with P µ, which is why we can conclude that

Aα = − i
2
aµνα Jµν +Bα. (72)

We have found that Aα is just the sum of some internal symmetry generator (Aα and Jµν are
symmetry generators, so Bα also has to be one) and the generator of Lorentz transformations.

Altogether we have shown that the only possible Lie algebra of symmetry generators con-
sists of the generators of the Poincaré group Pµ and Jµν and the generators of some internal
symmetries Bα. This is just the infinitesimal version of the statement

G = P ⊕ B. (73)

�

6 Loopholes

Finally we will look at loopholes of the theorem.

Continuing in the proof we can see that for purely massless theories (p2 = 0) above argu-
ment of anti-symmetry of a

µµ1µ2...µDα
α does not work. In such theories we can have additional

generators of the conformal group, which indeed do mix with those of the Poincaré group.

There are also symmetries that are not captured by the theorem at all. These symmetries
are for example discrete symmetries and spontaneously broken symmetries. The latter being
symmetries that do not act on the S-matrix level and therefore evading the requirement to
commute with S. Rather, these symmetries are symmetries of the action of the theory and are
spontaneously broken before any calculation.

Another important loophole are 1+1 dimensional theories. In such theories we can only
have forward and backward scattering and therefore scattering cannot satisfy assumption 3
about the analyticity of scattering angles.

Lastly, as was already mentionend in the introduction, this proof heavily depended on
the use of commutation relations. So obviously we can simply replace commutators by other
brackets, so to evade the theorem we can look at graded Lie algebras or Lie superalgebras.
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