TENSOR CATEGORIES AND REPRESENTATION THEORY

Seminar at the HU Berlin, Summer 2017

Thomas Kramer

Date and Venue: | Friday, 15-17 h, Room 1.115 / RUD 25

At some Fridays we may start earlier and have a double
session from 13-17 h, to make up for cancellations due
to BMS talks on other Fridays

Prerequisites: Basic knowledge about groups, rings and modules

Inscription: By email to tkraemer@mathi.uni-heidelberg.de

Many problems in algebra, geometry, topology and physics lead to so-called!
tensor categories: Categories with a product similar to the tensor product of vector
spaces. Some simple examples are

e & = Vecy: Vector spaces over a field k,

% = Z — Vecy: Graded vector spaces V = @,z V; over k,

% = MHSy: Mixed k-Hodge structures over kK = Q or k = R,

% = Loc(X): Locally constant k-sheaves on a topological space X,

% = Rep,,(G): Finite-dimensional k-representations of a group G, algebraic
representations of an algebraic group, or continuous representations of a
topological group, etc.

Tensor categories, and more generally the so-called monoidal categories, provide
a common framework for the study of Galois groups, Hodge theory, fundamental
groups and motives. We will begin the seminar with a brief introduction to monoidal
categories and then specialize to the case of tensor categories. As a fundamental
example we then consider the category of representations of an algebraic group. We
will see that the group is essentially determined by this category, which naturally
leads to the question how to see whether a given tensor category % is equivalent
to a category of representations. The crucial ingredient here is the existence of a
fiber functor w : € — Vecy which sends a representation to the underlying vector
space. This leads to the abstract notion of a Tannakian category; at the end of
the seminar we will discuss a general criterion of Deligne which gives an intrinsic
characterization of such categories among all tensor categories. If time permits, we
may conclude with some applications from algebraic geometry or Hodge theory.

IThe notion of a tensor category is not used consistently in the literature. For us it will mean
a rigid symmetric monoidal abelian category with End(1) ~ k as in [4], see section 2.2 below.



1. BASIC NOTIONS OF CATEGORY THEORY

The seminar does not assume any previous knowledge of category theory, the
relevant notions can be developped in a first talk if needed:

1.1. Categories and functors. This talk consists of two parts: The first part
should introduce the notion of categories, functors, natural transformations and
equivalences as in [8, §1]; one might also consult [2, §§1,7,8] but this is much
less concise. As a matter of convention, we only consider covariant functors and
view contravariant functors to a category ¥ as functors to the opposite category
%°P. Some easy examples should fill the abstract concepts with life. Representable
functors and the Yoneda lemma should be explained. The second part of the talk
should introduce in some detail the notions of additive and k-linear categories and
functors [7, §1.2], abelian categories and exact functors 7, §§1.3 — 1.3.5, §1.6.1]. A
good reference for this is [10, chapt. VIII].

2. TENSOR CATEGORIES

The next three talks will give a general introduction to the language of tensor
categories, embedded in the larger context of monoidal categories (= categories
with an associative product ® and a unit object 1):

2.1. Monoidal categories. This talk introduces monoidal categories in the sense
of [7, def. 2.2.8]; the simpler definition 2.1.1 and its equivalence with 2.2.8 can
be omitted. As examples one should cover [7, §§2.3.1 - 2.3.4] and then introduce
monoidal functors [7, §§2.4 - 2.5.2]. We then proceed to MacLane’s coherence
theorem that clarifies the role of the isomorphisms a,l,r in a monoidal category;
while these cannot be ignored naively by choosing one object in every isomorphism
class [10, §VII.1], we will see that any monoidal category is equivalent to one which
is strict in the sense that a,l,r are the identity [7, §2.8]. As a result any diagram
formed by compositions, inverses and ® of a,,r is commutative [7, §2.9].

2.2. Rigid and symmetric monoidal categories. This talk adds two further
notions to a monoidal category: The property of rigidity, which should be explained
in detail [7, §2.10], and the datum of symmetry isomorphisms [7, Def. 8.1.12]. Not
every symmetric monoidal category is equivalent to a strict one, since usually the
symmetry isomorphism ¢: A® A — A ® A is not the identity. But there is still a
coherence theorem for symmetric monoidal categories which may be quoted without
proof from [11, th. 5.1]. After some examples [7, §8.2], one should introduce the
notion of a tensor category as a rigid symmetric monoidal abelian category with
End(1) ~ k, and observe that such categories are automatically k-linear and their
tensor product ® is exact and k-linear in each variable [4, §§2.1 - 2.5].

3. AFFINE GROUP SCHEMES AND REPRESENTATIONS

In the next talks we will introduce the notion of an affine group scheme and its
representations. We will see that the category of these representations, together
with its fiber functor, uniquely determines the group scheme. This motivates the
abstract notion of a neutral Tannakian category, and we will show the main result
of Tannaka duality that any such is equivalent to a category of representations.
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3.1. Affine group schemes. After a short motivating reminder of the notion of
affine varieties over a field [9, §1.1], we define the category of affine schemes over a
commutative ring R to be the opposite of the category of commutative R-algebras.
An affine group scheme over R is then defined as a group object in this category;
one should mention that by Yoneda this is the same as a representable functor from
commutative R-algebras to groups, and explain the description in terms of Hopf
algebras [16, §6.1] [17]. As examples one should consider G, G, Gl,,, Sl,, and p,,.
Finally one should introduce homomorphisms and representations of affine group
schemes over a field k and describe representations via comodules [6, prop. 2.2].

3.2. Reconstruction of a group from its representation category. Here one
should first note that any comodule is a union of sub-comodules of finite dimension,
and give some corollaries as in [6, §§2.3 — 2.7]. The main goal of the talk then is
to reconstruct an affine group scheme from its category of representations with its
fiber functor [6, prop. 2.8, cor. 2.9]. For the proof note that [3, prop. 3.1(b)] remains
valid over a field of positive characteristic.

3.3. Neutral Tannakian categories. Motivated by the above, we now define the
abstract notion of a neutral Tannakian category [6, def. 2.19]. Such categories are
ubiquitous in mathematics, and the main goal of the talk is the proof of Tannaka
duality: Any such category is equivalent to the category of representations of an
affine group scheme [6, th. 2.11].

4. AN INTRINSIC CRITERION BY DELIGNE

How do you see whether a given tensor category admits a fiber functor and
hence is equivalent to the representation category of an affine group scheme? For
the rest of the seminar we assume char(k) = 0. The following talks discuss a simple
intrinsic criterion for the existence of fiber functors due to Deligne, provided k is
algebraically closed or we allow the passage to a finite extension field K D k.

4.1. Deligne’s criterion I. For applications the notion of a neutral Tannakian
category is sometimes too strong, like for motives over Fg2 [1, rem. 6.2.6.1]. So
we define a — not necessarily neutral — Tannakian category to be a tensor category
which has a k-linear exact faithful tensor functor to finite dimensional vector spaces
over some extension field K D k, see [4, §2.8]. One should note without proof that
for finitely generated tensor categories one can always take K/k finite. The goal
of the talk is then to explain the formulation of Deligne’s criterion [13, th. 3.1];
for this one should first introduce the dimension, symmetric and exterior powers of
objects in a symmetric monoidal category as in [13, §1.5].

4.2. Deligne’s criterion II. We now prove Deligne’s criterion: A tensor category
admits a fiber functor over some unspecified extension field K D k iff the dimension
of every non-zero object in it is a natural number, which holds iff every object is
annihilated by a sufficiently high exterior power. For this we need to introduce
algebras and modules in a symmetric monoidal category and study the splitting
of objects and morphisms [13, §§1-2]. One should remark however that not every
tensor category fulfils Deligne’s criterion — see talks 5.1 & 5.2.
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5. FURTHER TOPICS

Depending on the time and motivation of the participants, the seminar may
conclude with a variety of topics from representation theory, algebraic geometry or
Hodge theory such as the following:

5.1. Super representations. An interesting generalization of the above notions
is obtained if one replaces vector spaces and algebras by their Z/2Z-graded cousins,
which leads to the notion of affine super groups and super representations. Note
that for graded objects, the symmetry constraint ¢c: A ® B — B ® A involves an
extra sign given by the Koszul rule; as a consequence, the dimension of objects may
become negative. This talk should explain the basic definitions and some examples
of super groups and then formulate — presumably without proof — the criterion by
Deligne in the super context [12] [5].

5.2. Representations of non-integral dimension. Whereas the dimension of
the objects in the previous talk was at least an integer, this talk will construct
tensor categories with objects whose dimension is any complex number: Deligne’s
categories Rep(6;) or Rep(Gly) for t ¢ N, see [7, §9.12] and the references which
are given therein. In particular, these categories are not equivalent to the category
of super representations of any affine super group!

5.3. Mumford-Tate groups. The Tannakian formalism allows to control Hodge
structures in terms of representation theory; the arising algebraic groups are known
as Mumford-Tate groups and play an important role in algebraic geometry. This
talk could begin with a general introduction to Hodge structures and their geometric
applications, and then explain the link to Tannaka duality as in [14, §3.4].

5.4. Differential Galois theory. Another nice application of Tannaka duality lies
in the Galois theory of differential equations. This talk could give an elementary
introduction to this classical subject following [16, §6.6].
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