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The objective of this paper is to investigate tame fundamental groups of
schemes of finite type over Spec(Z). More precisely, let X be a connected
scheme of finite type over Spec(Z) and let X̄ be a compactification of X, i.e. a
scheme which is proper and of finite type over Spec(Z) and which contains X
as a dense open subscheme. Then the tame fundamental group of X classifies
finite étale coverings of X which are tamely ramified along the boundary X̄−X,
in particular, the tame fundamental group πt

1(X̄, X̄ − X) is a quotient of the
étale fundamental group π1(X). Our interest in the tame fundamental group
arises from the observation that it seems to be the maximal quotient of π1(X)
which is ‘visible’ via class field theory by algebraic cycle theories (see [S-S1], [S]
and [S-S2] for more precise statements on ‘tame class field theory’).

Coverings of a regular scheme which are tamely ramified along a normal
crossing divisor have been studied in [SGA1], [G-M]. In this paper we consider
tame ramification along an arbitrary Zariski-closed subset. The main reason
for this is the lack of good desingularization theorems in positive and mixed
characteristics. A simple imitation of the definition of tame ramification in
the normal crossing case proves to be not useful in the more general situation.
We give a definition of tameness in the general situation in section 1 and we
show that it coincides with the previous one in the normal crossing case. For
Galois coverings of normal schemes our definition of tameness coincides with
that proposed by Abbes [Ab] and with the notion of “numerical tameness”
defined by Chinburg/Erez [C-E].

Naturally, the question arises whether the tame fundamental group πt
1(X̄, X̄−

X) is independent of the choice of the compactification X̄. At the moment, we
can answer this question only for the maximal pro-nilpotent quotient. In sec-
tion 2, we consider discrete valuations of higher rank associated to Parshin
chains. We investigate the connection between the tameness of a covering and
the behaviour of the associated higher dimensional henselian fields and we show
that a finite covering of a regular arithmetic scheme with nilpotent Galois group
is tamely ramified if and only if all associated extensions of higher dimensional
henselian fields are tame. Then we use this fact in the proof of the following

Theorem 1 Let X be a regular and connected scheme of finite type over Spec(Z)
and assume that there exists a regular scheme X̄ which is proper over Spec(Z)
and which contains X as an open subscheme. Then πt

1(X̄, X̄−X)pro-nil depends
only on X and not on the choice of X̄.
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If X is a smooth quasiprojective variety over a finite field F, then its abelian-
ized tame fundamental group πt

1(X)ab = πt
1(X̄, X̄ − X)ab is infinite, but its

degree-zero part, i.e. the kernel of the natural homomorphism

πt
1(X)ab −→ G(F̄ |F) ∼= Ẑ

is finite (see [S-S1]). In the arithmetic case, i.e. when X is flat over Spec(Z), we
show the following theorem in which X̄ is not assumed to be proper.

Theorem 2 Let O be the ring of integers in a finite extension k of Q. Let
X̄ be a flat O-scheme of finite type whose geometric generic fibre X̄ ⊗O k̄ is
connected. Assume that X̄ is normal and that the morphism X̄ → Spec(O)
is surjective. Let X be an open subscheme of X̄. Then the abelianized tame
fundamental group πt

1(X̄, X̄ −X)ab is finite.

In the special case X = X̄, we obtain the finiteness of the étale fundamental
group π1(X̄)ab which sharpens a theorem of Katz and Lang ([K-L], th.3) by
weakening the assumption ‘smooth’ to ‘normal’.

1 Tame coverings

The concept of tame ramification stems from number theory: A finite extension
of number fields L|K is called tamely ramified at a prime P of L if the associated
extension of completions LP|KP is a tamely ramified extension of local fields.
The latter means that the ramification index is prime to the characteristic of the
residue field. It is a classical result that composites and towers of tamely ramified
extensions are again tamely ramified. This concept generalizes to arbitrary
discrete valuation rings by requiring that the associated residue field extensions
are separable.

As is well known, the concept of unramified extensions has found its general-
ization to arbitrary schemes by the notion of étale coverings. Tame ramification
along a normal crossing divisor of a regular scheme has been studied in [SGA1],
[G-M]. Let us first recall the definition given there. We assume throughout this
paper that all schemes under consideration are noetherian.

Let X be a regular and connected scheme and let D =
∑

Di be a divisor on
X. We say that D has normal crossings, if étale locally around every point
x ∈ supp(D) ⊂ X, we have

Di =
∑

j

div(sij),

where (sij)i,j ∈ OX,x is part of a regular system of parameters of the regular
local ring OX,x.

Let X be regular and connected, D ⊂ X a divisor with normal crossings and
U = X−D. Let Pi, i = 1, . . . , n, be the generic points of the irreducible compo-
nents D1, . . . , Dn of D. Then the local rings OX,Pi are discrete valuation rings,
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inducing discrete valuations v1, . . . , vn on the function field of X. Let U ′ → U
be a finite étale morphism and assume for simplicity that U ′ is connected. Let
X ′ be the normalization of X in the function field K ′ of U ′.

Definition 1.1 ([G-M], 2.2.2.) The finite étale covering U ′ → U is called
tamely ramified (or tame, for short) along D if the extension of function fields
K ′|K is tamely ramified at the discrete valuations associated to D1, . . . , Dn.

Étale locally, tame coverings are of a very simple structure by the following
theorem which is known under the name Generalized Abhyankar’s Lemma.

Theorem 1.2 ([SGA1], Exp. XIII, 5.3.0) Let X be a strictly henselian local
regular scheme of residue characteristic p > 0, D =

∑r
i=1 div(fi) a divisor

with normal crossings on X and U = X − D. Then every connected finite
étale covering of U which is tamely ramified along D is a quotient of a (tamely
ramified) covering of the form

U ′ = U [T1, . . . , Tr]/(Tn1
1 − f1, . . . , T

nr
r − fr),

where the ni are natural numbers prime to p.

Tame coverings as defined above satisfy the axioms of a Galois theory, so
(omitting the base point) there exists a profinite group πt

1(X, D), which is a
quotient of π1(U) and which classifies étale coverings of U which are tame along
D.

If X is strictly local and D =
∑r

i=1 div(fi) a normal crossing divisor, then
theorem 1.2 yields a natural isomorphism

πt
1(X, D) ∼=

( ∏

6̀=p

Z`(1)
)r notation=

(
Ẑ(p′)(1)

)r

.

If, more generally, D ⊂ X is an arbitrary divisor on X, then (as already
remarked in [G-M], 2.2.3.4, without further elaboration) the above definition of
tame ramification is not the ‘correct’ one. For example, it is not stable under
base change.

Example 1.3 Let X = Spec(Z[T ]) be the affine line over Spec(Z) and consider
the divisor

D = div(T + 4) + div(T − 4),

which is not a normal crossing divisor. Let K = Q(T ) be the function field of X
and U = X−D. Put f = (T +4)(T−4) = T 2−16, L = K(

√
f) and consider the

normalization XL of X in L. The ramification locus of XL → X is either D or
D∪X2, where X2 is the unique vertical divisor on X over characteristic 2. Let us
show that XL → X is unramified at the generic point of X2. This is equivalent
to the statement that L|K is unramified at the unique discrete valuation v2 of K
which corresponds to the prime ideal 2Z[T ] ⊂ Z[T ]. Therefore it suffices to show
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that f is a square in the completion K2 of K with respect to v2. Consider the
polynomial F (X) = X2−f = X2−T 2 +16. We have F (T ) ≡ 0 mod 16 and the
derivative F ′(T ) = 2T has the exact 2-valuation 1. By the usual approximation
process (cf. [Se] 2.2. th.1), we see that f has a square root in K2. Hence the
ramification locus of XL → X is exactly D, and since D is the sum of horizontal
prime divisors, the morphism UL → U is tame along D (in the naive sense).

Now consider the closed subscheme Y ⊂ X given by the equation T = 0, so
Y ∼= Spec(Z). Then DY = D ∩ Y is the point on Y which corresponds to the
prime number 2. Let V = U∩Y = Y −DY . The base change V ′ = UL×U V → V
is the normalization of V ∼= Spec(Z[ 12 ]) in Q(

√−1). But 2 is wildly ramified in
Q(
√−1), and so V ′ → V is not tame along DY .

Let us now give a definition of tame ramification in the general situation
which will be shown in proposition 1.14 to generalize definition 1.1. Let X be a
scheme, Y ⊂ X a closed subscheme and U = X−Y the open complement. For a
point y ∈ Y we write Xsh

y for Spec(Osh
X,y), where sh means strict henselization.

By abuse of notation, we write U sh
y for the base change U ×X Xsh

y . The scheme
U sh

y is empty if y /∈ Ū .

Definition 1.4 We say that a finite étale covering U ′ → U is tamely ramified
along Y if for every point y ∈ Y such that U sh

y is nonempty, the base change

U ′ ×U U sh
y −→ U sh

y

can be dominated by an étale covering of the form

V1 ∪. · · · ∪. Vr −→ U sh
y ,

such that each Vi is a connected étale Galois covering of its image in U sh
y and

the degree of Vi over its image is prime to the characteristic of k(y).

The next lemma follows in a straightforward manner from the definition of
tame ramification.

Lemma 1.5 Let X be a scheme, U ⊂ X an open subscheme and Y = X − U .
Let f : X1 → X be a morphism of schemes, U1 = f−1(U) and Y1 = f−1(Y ). If
U ′ → U is a finite étale morphism which is tamely ramified along Y , then the
base change

U ′
1 = U ′ ×U U1 −→ U1

is tamely ramified along Y1.

The notion of a finite étale morphism U ′ → U which is tamely ramified along
Y = X − U is independent from X in the following sense.
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Lemma 1.6 Suppose that U is contained as an open subscheme in schemes X̃
and X with closed complements Ỹ and Y , respectively. Assume that there exists
a finite morphism π : X̃ → X making the diagram

U ↪−→ X̃∥∥∥
yπ

U ↪−→ X

commutative. Then a finite étale morphism U ′ → U is tamely ramified along Ỹ
if and only if it is tamely ramified along Y .

Proof: Let y ∈ Y be a point and consider the cartesian diagram

X̃ ×X Xsh
y −→ Xsh

y

6
∪

6
∪

U ×X Xsh
y == Uy

Since π : X̃ → X is finite, X̃ ×X Xsh
y is strictly henselian, and

X̃ ×X Xsh
y
∼= ⋃.

i

Xsh
ỹi

,

where the ỹi are the finitely many points of X̃ lying above y. Therefore, π
induces a natural isomorphism

⋃.
i

U sh
ỹi
−→∼ U sh

y .

Now the statement of the lemma follows easily from the definition of tame
ramification. ¤

Remark 1.7 Assume that X is excellent or, slightly weaker, that all local rings
of X are Nagata rings. Then there exists a unique maximal scheme X̃ satisfying
the conditions of lemma 1.6: the normalization of X in U . This scheme is
constructed in the following way. Denoting the open immersion by j : U ↪→ X,
the sheaf j∗(OU ) is quasicoherent and contains OX . The integral closure of A
of OX in j∗(OU ) is then a coherent sheaf of OX -algebras and the normalization
of X in U is defined as Spec(A) (cf. [Mi], I, §1, proof of th. 1.8).

If U ′ → U is a tame covering, then, by Zariski’s main theorem, the morphism
U ′ → X factors in the form U ′ j−→ X ′ π−→ X with π finite and j an open
embedding. In general, X ′ is not unique but if X ′

1 and X ′
2 are such schemes, we

find a third scheme X ′
3 dominating X ′

1 and X ′
2. If X is normal and connected,

then the normalization of X in the function field of U ′ is maximal among the
schemes which are finite over X and contain U ′ as an open dense subscheme.
The following lemma follows easily by the same considerations as in the proof
of lemma 1.6.
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Lemma 1.8 Let
X1

π1−→ X2
π2−→ X3

be finite surjective morphisms, let U3 ⊂ X3 be an open subscheme and denote
by U2 and U1 the corresponding inverse images. Suppose that π1|U1 : U1 → U2

and π2|U2 : U2 → U3 are étale. Furthermore, let Yi, 1 ≤ i ≤ 3, be the closed
complement of Ui in Xi.

Then (π2 ◦ π1)|U1 : U1 → U3 is tamely ramified along Y3 if and only if
π1|U1 : U1 → U2 is tamely ramified along Y2 and π2|U2 : U2 → U3 is tamely
ramified along Y3.

Consider the category FEtT/(X, Y ) of U -schemes, finite and étale over U
with tame ramification along Y . It is a full subcategory of the category FEt/U
of U -schemes, finite and étale over U . If x̄ → U is a geometric point of U , we
consider the fibre functor

F : FEtT/(X, Y ) −→ (Sets); (V → U) 7−→ MorU (x̄, V ),

which is just the restriction of the usual fibre functor induced by x̄ on FEt/U to
FEtT/(X, Y ). One observes that the category FEtT/(X,Y ) together with this
fibre functor satisfies the axiomatic conditions for a Galois theory (see [SGA1]
Exp.V,4). Thus one obtains a profinite fundamental group

πt
1(X,Y ; x̄)

which we call the tame fundamental group of U with base point x̄ and with
respect to the embedding U ↪→ X. It is a quotient of the étale fundamental
group π1(U ; x̄). If x̄′ ↪→ U is another base point in the same connected compo-
nent of U , then the fundamental group πt

1(X, Y ; x̄′) is isomorphic to πt
1(X, Y ; x̄),

the isomorphism is determined up to an inner automorphism. In the following,
U will always be connected and we will omit the base point from the notation.
If X is a scheme of characteristic 0 (i.e. all residue fields have characteristic 0),
then

πt
1(X, Y ) = π1(U).

If X is normal and connected, then the functor FEt/X → FEt/U is fully
faithful, and we obtain surjections

π1(U) ³ πt
1(X, Y ) ³ π1(X).

The next proposition follows in a straightforward manner from the theorem on
the purity of the branch locus of Zariski-Nagata ([SGA2], Exp.X, th. 3.4).

Proposition 1.9 Assume that X is regular and connected, and that Y is of
codimension ≥ 2 in X. Then we have natural isomorphisms

π1(U) −→∼ πt
1(X, Y ) −→∼ π1(X).
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Let U ′ → U be a finite étale morphism. The wild locus W(U ′→U), i.e. the
set of points y ∈ Y such that U ′ → U is not tamely ramified at y, is a closed
subscheme of Y . The theorem of Zariski-Nagata on the purity of the branch
locus says that if X is regular, the ramification locus of a quasifinite dominant
morphism to X is always pure of codimension 1 in X. The same is not true of
the wild locus, since in example 1.3 we constructed a cyclic cover of a regular
scheme of dimension 2 whose wild locus consists of a single closed point, i.e. is
of codimension 2. But if X is equicharacteristic, we have the

Proposition 1.10 Assume that X is regular and connected and that all points
of X have the same residue characteristic. Let U ′ → U be a finite nilpotent
étale covering. Then W(U ′→U) is either empty or pure of codimension 1 in X.

Proof: We may assume that all points on X have the common residue charac-
teristic p > 0, because otherwise the wild locus is empty. Let K be the function
field of X and L the function field of U ′. Then L|K is a finite nilpotent extension
and U ′ = UL is the normalization of U in L. Writing L as a composite L = L1L2,
where [L1 : K] is prime to p and [L2 : K] is a p-power, then UL1 → U is tamely
ramified along Y . The ramification locus of XL2 → X is the same as the wild
locus WUL2→U since G(L2|K) is a p-group and all points of X have residue
characteristic p. Since X is regular, the ramification locus of XL2 → X is either
empty or pure of codimension 1 and coincides with W(UL2→U) = W(U ′→U).

¤

Remark 1.11 Under the assumptions of proposition 1.10, let D1, . . . , Dr be
the irreducible components of Y = X − U which are of codimension 1 in X.
Then a finite nilpotent covering U ′ → U is tamely ramified along Y if and
only if the discrete valuations v1, . . . , vr of K(X) = K(U) which are associated
to D1, . . . , Dr are tamely ramified in K(U ′)|K(U). This justifies the ‘naive’
definition of tame ramification used in [S-S1].

¿From now on assume that X is a normal connected scheme and we denote
the function field of X by K. Every connected finite étale covering X̃ → X
coincides with the normalization of X in some finite separable extension L of K.
Therefore (omitting suitable chosen base points from the notation), we obtain
a natural surjection G(K̄|K) = π1(Spec(K)) −³ π1(X) and an isomorphism

G(K̄|K) = lim
←−

U⊂X

π1(U),

where U runs through the open subschemes of X.

Let us collect some facts on decomposition and inertia of integrally closed
domains (see [B-Co] Ch. V, §§2,3). Let A be an integrally closed domain with
quotient field K, L a Galois extension of K and B the integral closure of A in
L. Let P be a prime ideal of B and p = P∩A the prime ideal in A lying under
P. Let k(P) = BP/PBP and k(p) = Ap/pAp be the residue fields of P and p,
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respectively. Let G = G(L|K) be the Galois group. Then G acts transitively on
the set of prime ideals of B lying over p. Then one has the following subgroups
in the Galois group.

- Z = ZP(L|K) = {σ ∈ G |σ(P) = P} - the decomposition group,

- T = TP(L|K) = {σ ∈ GP | σ̄ = id : B/P → B/P} - the inertia group.

T is a normal subgroup in Z. Let AT and AZ be the integral closures of A in
LT and LZ respectively. Put PT = P ∩ AT and PZ = P ∩ AZ . For a proof of
the following proposition see [Ra], X, th.2.

Proposition 1.12 If L = K̄ is the separable closure of K, then

(i) P is the only prime ideal in B extending the prime ideal PZ in AZ ,

(ii) (AZ
PZ ,PZ) is the henselization of (Ap, p), in particular, k(PZ) = k(p),

(iii) (AT
PT , PT ) is the strict henselization of (Ap, p), in particular, k(PT )

is the separable closure of k(p).

Assume that X is normal and connected. Then the normalization of X in a
finite separable extension of its function field is finite over X. As is well known,
for every point x on X, the scheme Xsh

x is noetherian, normal and connected.

Corollary 1.13 Let X be a normal connected scheme, U ⊂ X an open sub-
scheme and Y = X − U the closed complement. Let L be a finite Galois exten-
sion of the function field K of X and let UL, XL be the normalizations of U
and X in L. Then the following are equivalent

(i) UL → U is étale and tamely ramified along Y ,

(ii) For each point P ∈ XL the following holds, where p denotes the residue
characteristic of P:

a) TP(L|K) is of order prime to p

b) TP(L|K) = 0 if P ∈ UL.

Proof: The only nontrivial point is to see that UL → U is flat, but this is well
known (cf. [Mi], I,§3, th.3.21). ¤

Proposition 1.14 Let X be a regular connected scheme and D ⊂ X a normal
crossing divisor. Then both notions of tame ramification coincide.

Proof: Let (notation as above) UL → U be tame in the sense of definition
1.4 and assume that v is a discrete valuation on K which corresponds to the
generic point P of an irreducible component of D. Let (for any embedding to
the separable closure of K) Ksh

P be the quotient field of the strict henselization
of the discrete valuation ring OX,P . Then, by definition, LKsh

P is a product of
fields each of which is contained in a finite Galois extension of degree prime to
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p = char k(P ) of Ksh
P . Therefore v is tamely ramified in L|K. On the other

hand, if all these discrete valuations are tamely ramified in L|K, then it follows
from the Generalized Abhyankar’s lemma (theorem 1.2) that UL → U is tamely
ramified in the sense of definition 1.4. ¤

Remark: Corollary 1.13 asserts that for coverings of normal schemes our defini-
tion of tameness coincides with that given in [Ab]. Furthermore (in the situation
of corollary 1.13), if UL → U is tame, then XL → X is numerically tame in the
sense of [C-E]. It is also not difficult to show the inverse implication.

2 Valuations and tame ramification

The aim of this section is to relate tame covers of schemes of finite type over
Spec(Z) to discrete valuations of higher rank. The quotient fields of the henseliza-
tions of such valuation rings are called higher dimensional henselian fields and
are the basic constituents of Kato’s and Saito’s higher dimensional class field
theory [K-S].

Let us recall some facts from valuation theory (see [B-Co], [Z-S], Ch. VI). Let
K be a field. A subring V ⊂ K is called valuation ring if x ∈ K−V =⇒ x−1 ∈ V .
A valuation ring is local with maximal ideal mV = {x ∈ V |x−1 6∈ V } and is
integrally closed in K. The quotient ΓV = K×/V × is a totally ordered abelian
group (x̄ ≤ ȳ ⇔ x−1y ∈ V ) and is called the value group of V . Usually, one
extends the natural map v : K× −→ ΓV , to K by setting v(0) = ∞. As is
well known, the valuation ring V represents an equivalence class of abstractly
defined valuations of K; the valuation v is a natural representative of this class.

If L|K is a finite separable field extension, then there are at least one and
at most finitely many valuations w of L extending v, i.e. such that W ∩ K =
V , where W ⊂ L is the valuation ring of w. We have an induced injective
homomorphism ΓV ↪→ ΓW . The index of ΓV in ΓW is called the ramification
index and is usually denoted by e = ew|v. We also have an associated field
extension k(v) = V/mV ↪→ k(w) = W/mW whose degree is denoted by f = fw|v.
The inequality

(1)
∑

w|v
ew|vfw|v ≤ [L : K],

(see [B-Co] Ch.6, §8.3. th.1) shows, in particular, that all these numbers are
finite. v is called defectless in L if equality holds in (1). By [B-Co], VI, §8.5,
cor.2, a discrete valuation is defectless in a finite separable extension.

Let L be a Galois extension of K, W a valuation ring of L and V = W ∩
K. Let P be the unique maximal ideal of W . Then, besides the inertia and
decomposition group, we have the ramification group

RP = RP(L|K) = {σ ∈ TP(L|K) | σx

x
≡ 1 mod P for all 0 6= x ∈ L}.

A proof of the following proposition can be found in [End], §20.
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Proposition 2.1 If the residue characteristic of V is zero, then RP = 0 and
TP is abelian. If the residue characteristic of V is p > 0, then

(i) RP is a normal subgroup in ZP,
(ii) RP is the unique p-Sylow subgroup in TP,
(iii) TP/RP is an abelian group of order prime to p.

The decomposition, inertia, ramification groups of different valuation rings
W of L extending V are conjugate in G(L|K). One says that W |V (resp. w|v)
is tamely ramified if the ramification group is trivial. V is tamely ramified in
L|K if W |V is tamely ramified for one (every) valuation ring W of L extending
V . One says that V is tamely ramified in a separable extension if it is tamely
ramified in the Galois closure of this extension.

If V is tamely ramified in L|K, then it is defectless in L|K (see [End], cor.
20.22). A valuation v on K is called discrete valuation of rank n if its value
group is (as an ordered group) isomorphic to Z × · · · × Z (n factors) with the
lexicographic order. By the unspecified term discrete valuation we always mean
discrete valuation of rank 1, i.e. a discrete valuation in the usual sense.

Let V be a discrete valuation ring of rank n of K. Then V has n distinct
prime ideals p0 % p1 % · · · % pn. For 0 ≤ i ≤ n, let Vi be the localization of
V at pi and let ki = k(πi) be the residue field of Vi. The Vi are also discrete
valuation rings (of rank n− i) of K and

V = V0 ⊂ V1 ⊂ · · ·Vn = K.

For 0 ≤ i < j ≤ n the image of Vi in kj is a discrete valuation ring of rank j− i.
For 0 ≤ i < n, we denote the image of Vi in ki+1 by V̄i. Then V̄i is a usual (i.e.
rank 1) discrete valuation ring with quotient field ki+1 and residue field ki. By
[B-Co], Ch. VI, §7, ex.6d, the ring V is henselian if and only if all V̄i, 0 ≤ i < n
are henselian (see also [Ri], ch. F, prop.9).

Let V ⊂ K be a discrete valuation ring of rank n and let L|K be a finite
separable extension. Let w|v be a valuation of L extending v. Then also w is
a discrete valuation of rank n. Assume that the residue characteristic of v is
p > 0.

Lemma 2.2 Let v be a discrete valuation of rank n of a field K and let L|K
be a separable extension of K. Then v is tamely ramified in L|K if and only if
for every extension w of v to L the ramification index ew|v is prime to p and
the successive residue extensions of W̄i|V̄i are separable for 0 ≤ i < n.

Proof: We may assume that v is strictly henselian and that L|K is finite. In
particular, v has a unique extension w to L. Assume that v is tamely ramified in
L|K. By proposition 2.1, (iii), L|K is an abelian extension of degree prime to p.
Since v is defectless in L|K, the ramification index is prime to p. Furthermore,
the degrees of the successive residue extensions are prime to p, and so these
extensions are separable.
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It remains to show the other direction. Since the successive residue exten-
sions are separable, and since discrete valuations of rank 1 are defectless in
separable extensions, one shows inductively (cf. [B-Co] Ch.VI §7 ex.5 or [Ri],
G th.5) that v is defectless in L|K. In particular, [L : K] = ew|v is prime to
p. By proposition 2.1 (ii),(iii), we conclude that L|K is contained in a Galois
extension of degree prime to p and is therefore tamely ramified. ¤

We call a field k an n-dimensional henselian field if it is the quotient
ring of a henselian discrete valuation ring of rank n with finite residue field.
Equivalently, one can give an inductive definition: A 0-dimensional henselian
field is just a finite field. An (n + 1)-dimensional henselian field is a field which
is henselian under a discrete (rank 1) valuation whose residue field is an n-
dimensional henselian field. So an n-dimensional henselian field κ comes along
with a sequence κn−1, . . . , κ0 of residue fields, where each κi, i = n− 1, . . . , 0 is
an i-dimensional henselian field. In particular, κ0 is finite.

We call (by abuse of notation) an extension of n-dimensional henselian fields
tamely ramified, if it is tamely ramified with respect to the discrete valuations
of rank n. The next result follows easily by induction from the corresponding
1-dimensional result.

Proposition 2.3 Let κ be a n-dimensional henselian field with last residue field
κ0 of characteristic p > 0 and let κt be the maximal tamely ramified extension
of κ. Then there is a natural isomorphism

G(κt|κ) ∼=
(
Ẑ(p′)(1)× · · · × Ẑ(p′)(1)︸ ︷︷ ︸

n −times

)
oG(κ̄0|κ0),

where (Ẑ)(p
′) denotes the prime-to-p part of Ẑ and (1) means the first Tate-twist

with respect to the cyclotomic character.

¿From now on let X be a reduced, separated, equidimensional scheme of
finite type over Spec(Z), in particular ([Ma], Ch.13, no.34), X is excellent.
Let d = dim(X) = dimKrull(X). A Parshin-chain P on X is a sequence
(P0, P1, . . . , Pd) of points on X such that

{P0} ⊂ {P1} ⊂ · · · ⊂ {Pd} = X

and dim {Pi} = i for i = 0, . . . , d.
An inductive localization-henselization procedure, which was proposed by

Parshin with completion instead of henselization and which is described in [K-S],
§3, provides us with a functor (X, P ) 7−→ κh

P




Reduced schemes X of
finite type over Spec(Z)
with a Parshin-chain P

of length d = dim X


 −→




finite products
of d-dimensional
henselian fields


 .
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Let us briefly recall this construction. First one takes the henselization O h
X,P0

of the local ring of X at P0. Then one considers the finitely many prime ideals
in this ring which lie over P1, passes to the product of the henselizations of the
localizations with respect to this prime ideals, and so on.

If in the Parshin-chain P each Pi is a regular point of {Pi+1}, then κh
P is a

d-dimensional henselian field rather than a finite product of such fields.

Assume that X is integral and let K be the function field of X. We say that
a discrete valuation ring V of rank d in K dominates a Parshin-chain P if Vi

dominates OX,Pi
for i = 1, . . . , d. For a proof of the following proposition see

[K-S], prop.3.3.

Proposition 2.4 Under the above assumptions,

κh
P =

∏

V

Quot(V h),

where V ranges over all discrete valuations of rank d which dominate P and
Quot(V h) denotes the quotient field of the henselization V h of V .

Proposition 2.5 Let X be a d-dimensional, regular, connected scheme of finite
type over Spec(Z). Let U ⊂ X be an open subscheme and Y = X − U the
complement. Let L be a finite nilpotent extension of the function field K of X.
Then the following are equivalent.

(i) UL −→ U is étale and tamely ramified along Y .

(ii) Every discrete valuation v of rank d in K which dominates a Parshin chain
on X is tamely ramified in L, and unramified if the dominated chain in
contained in U .

(iii) For every Parshin-chain P on X the extension of (finite products of) d-
dimensional henselian fields κh

P L|κh
P is tamely ramified, and unramified if

P is contained in U .

Proof: The implication (i)⇒(ii) is obvious and the equivalence (ii)⇔(iii) fol-
lows from proposition 2.4. Suppose that (ii) holds. Let Pd−1 be a point of
codimension 1 on U . We extend Pd−1 to a Parshin-chain (P0, . . . , Pd−1, Pd) on
U . Let V be a discrete valuation ring in K dominating P . Then (notation as
above), Vd−1 dominates and hence is equal to OU,Pd−1 . Since V is unramified in
L|K, so is Vd−1. By the theorem of Zariski-Nagata on the purity of the branch
locus, we conclude that UL → U is étale.

It remains to show that UL → U is tamely ramified along Y . Since L|K
is nilpotent, we can easily reduce to the case that the Galois group is a finite
p-group for some prime number p. Let x1, . . . , xn be the finitely many codi-
mension 1 points which ramify in XL → X. Since the set of points in X where
UL → U is not tame is closed, it suffices to show that it is tamely ramified at
every closed point y ∈ Y .

12



UL → U is tamely ramified at every point of residue characteristic different
from p and at every point which is not contained in ∪n

i=1{xi}.
We show that a closed point y of residue characteristic p and with y ∈ {xi}

for some 1 ≤ i ≤ n does not exist. Assume that y is such a point. Choose
a Parshin-chain P = (P0, . . . , Pd) on X with P0 = y and Pd−1 = xi (we find
such a chain because X is catenary). Choose a discrete valuation ring V of
rank d in K dominating P . Then (for appropriately chosen embeddings to K̄)
the quotient field Ksh

xi
of the strict henselization of OX,xi contains Quot(V sh).

By assumption LQuot(V sh)|Quot(V sh) is a field extension of degree prime to
p, hence trivial. But, since xi is ramified in the p-extension L|K, LKsh

xi
|Ksh

xi
is

nontrivial. This yields the required contradiction. ¤

¿From the proof of the last proposition, we obtain the

Corollary 2.6 Assume X is connected but only normal. Let L|K be a finite
Galois extension of p-power degree. If UL → U is étale and tamely ramified
along Y , then L|K is unramified at every discrete valuation associated to a
codimension 1 point of X which either lies on U or whose closure in X contains
a point of residue characteristic p. If X is regular, the inverse implication is
also true.

Proposition 2.7 Suppose that U is regular and let X1 and X2 be regular
schemes which are proper over Spec(Z) and which contain U as an open sub-
scheme. Let Yi = Xi−U , i = 1, 2, be the closed complements. Let U ′ → U be a
finite nilpotent étale covering. Then U ′ → U is tamely ramified along Y1 if and
only if it is tamely ramified along Y2.

Proof: We may suppose that the degree of U ′ → U is a power of some prime
number p. Let X3 be a normal scheme which is proper over Spec(Z), contains
U as an open subscheme and has proper surjective morphisms πi : X3 → X1,
i = 1, 2 making the diagrams

U ↪−→ X3∥∥∥
yπi

U ↪−→ Xi

commutative. (The existence of such a X3 is well known, for instance, take X3

as the normalization of the closure of the image of U in X1 ×Z X2.) If U ′ → U
is tamely ramified along Y1, then it is tamely ramified along Y3 = X3 − U
(see lemma 1.5). Let L be the function field of U ′. Then, by corollary 2.6,
L|K is tamely ramified at every discrete valuation on L which is defined by a
codimension 1 point of X3 which lies on Y3 and whose closure contains a point
of residue characteristic p. This set of valuation contains the set of discrete
valuation on L which are defined by a codimension 1 point of X2 which lies
on Y2 and whose closure contains a point of residue characteristic p. Applying
corollary 2.6 again, we conclude that U ′ → U is tamely ramified along Y2. ¤
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Theorem 1 of the introduction follows immediately from proposition 2.7. In
particular, the abelianized tame fundamental group of a regular scheme of finite
type over Spec(Z) does not depend on the choice of a compactification. So it is
justified to use the notation πt

1(X)ab for πt
1(X̄, X̄ −X)ab for this group.

3 A finiteness result

The aim of this section is to prove the following theorem 3.1 (=th.2 from the
introduction). In the proof we essentially use a finiteness result of N. Katz and
S. Lang on relative étale fundamental groups ([K-L], th.1).

Theorem 3.1 Let O be the ring of integers in a finite extension k of Q. Let
X be a flat O-scheme of finite type whose geometric generic fibre X ⊗O k̄ is
connected. Assume that X is normal and that the morphism X → Spec(O)
is surjective. Let U be an open subscheme of X. Then the abelianized tame
fundamental group πt

1(X, X − U)ab is finite.

For the proof of theorem 3.1 we need the following

Lemma 3.2 Let A be a strictly henselian discrete valuation ring with perfect
(hence algebraically closed) residue field and with quotient field k. Let k∞|k be
a Zp-extension. Let K|k be a regular field extension and let B ⊂ K be a discrete
valuation ring dominating A. Then B is ramified in Kk∞|K.

Proof: For each n ≥ 0, let kn|k be the unique subextension of degree pn in
k∞|k. Let An (resp. Bn) denote the normalization of A (resp. B) in kn (resp.
Kkn). An is again a strictly henselian discrete valuation ring. Bn is a semi-local
Dedekind domain.

Suppose that B is unramified in Kk∞. Fix an n. Let p be the prime ideal
of B and let p1, . . . , pg be the prime ideals of Bn. Since Bn|B is Galois, all pi

have a common inertia index f = fn, so NBn|B(pi) = pf for i = 1, . . . , g. Since
Bn|B is étale, we have pn = [kn : k] = gf .

Let πn be a uniformizer of An. Since An|A is totally ramified, we have

vA(Nkn|k(πn)) = 1.

Considered as an element of Bn, the pi-valuation of πn is positive and indepen-
dent of i, 1 ≤ i ≤ g. Denoting this positive number by a, we have the following
equality of ideals in Bn

(πn) = (p1 · · · pg)a.

Hence NBn|B((πn)) = pafg and therefore

vB(Nkn|k(πn)) = apn ≥ pn.

On the other hand, we have

vB(Nkn|k(πn)) = vB(π0) · vA(Nkn|k(πn)) = vB(π0),
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where π0 is any uniformizer in A = A0. Since n was arbitrary, the inequality
vB(π0) ≥ pn yields a contradiction. ¤

Proof of theorem 3.1: Since X is normal, for any open subscheme V of U
the natural homomorphism π1(V ) → π1(U) is surjective. Therefore also the
homomorphism

πt
1(X, X − V )ab −→ πt

1(X, X − U)ab

is surjective and so we may replace U by a suitable open subscheme and assume
that U is smooth over S̄ = Spec(O). Let S ⊂ S̄ be the image of U . Consider
the commutative diagram

0 −→ Ker(U/S) −→ π1(U)ab −→ π1(S)ab

y ↓
y ↓

y
0 −→ Kert(U/S) −→ πt

1(X, X − U)ab −→ πt
1(S̄, S̄ − S)ab

where the groups Ker(U/S) and Kert(U/S) are defined by the exactness of the
corresponding rows, and the two right vertical homomorphisms are surjective.
By a theorem of N. Katz and S. Lang ([K-L], th.1), the group Ker(U/S) is
finite. By classical one-dimensional class field theory, the group πt

1(S̄, S̄ − S)ab

is finite (it is the Galois group of the ray class field of k with modulus
∏

p/∈S p).
The kernel of π1(S)ab → πt

1(S̄, S̄ −S)ab is generated by the ramification groups
of the primes of S̄ which are not in S. Denoting the product of the residue
characteristics of these primes by N , we see that π1(S)ab is the product of a
finite group and a topologically finitely generated pro-N group. Therefore the
same is also true for π1(U)ab and for πt

1(X, X−U)ab. By the snake lemma, it will
suffice to show that the cokernel C of the induced map Ker(U/S) → Kert(U/S)
is a torsion group.

Let K be the function field of X and let k1 be the maximal abelian extension
of k such that the normalization UKk1 of U in the composite Kk1 is étale over
U and tamely ramified along Y . By [K-L], lemma 2, (2), the normalization of
S in k1 is ind-étale over S. Let k2|k be the maximal subextension of k1|k such
that the normalization Sk2 of S in k2 is étale over S and tamely ramified along
S̄−S. Then G(k2|k) = πt

1(S̄, S̄−S)ab and, by the snake lemma, C ∼= G(k1|k2).
In order to show that C is a torsion group, we therefore have to show that

k1|k2 does not contain a Zp-extension of k2 for any prime number p. Since k2|k
is a finite extension and k1|k is abelian, this is equivalent to the assertion that
k1|k contains no Zp-extension of k for any prime number p. Let p be a prime
number and suppose that k∞|k is a Zp-extension such that the normalization
UKk∞ is ind-étale over U and ind-tamely ramified along Y . A Zp-extension
is unramified outside p and at least ramified at one prime dividing p, see e.g.
[NSW], (10.3.20)(ii). Since the normalization of S in k1 is ind-étale, we may
suppose that p|N . Let k′ be the maximal unramified subextension of k∞|k and
let S̄′ be the normalization of S̄ in k′. Then the base change X ′ = X ×S̄ S̄′ →
X is étale. Hence X ′ is normal and the pre-image U ′ of U is smooth and
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geometrically connected over k′. So, after replacing k by k′, we may suppose
that k∞|k is totally ramified at a prime p|p, p ∈ S̄ − S.

Let Op be the local ring of S̄ at p. After a base change to the strict henseliza-
tion A of Op, we arrive at the following situation (several letters get a new
meaning):

(1) a strictly henselian discrete valuation ring A with perfect residue field of
characteristic p and with quotient field k of characteristic 0

(2) a flat connected and normal A-scheme of finite type X which projects
surjectively to Spec(A)

(3) the function field K of X is a regular extension of k (i.e. k is algebraically
closed in K)

(4) an open subscheme U ⊂ X which is smooth over K

(5) a Zp-extension k∞|k (in which A is totally ramified)

(6) The normalization of U in Kk∞ is ind-étale over U and ind-tamely rami-
fied along Y = X − U .

Let us show that such a situation cannot occur. Let P be the generic point of
an irreducible component of the special fibre of X over A. Then B = OXP is
a discrete valuation ring dominating A. Now lemma 3.2 shows that B ramifies
in Kk∞. Therefore the order of the inertia group of P in Kk∞ is divisible by
p = char k(P ). By corollary 1.13, this contradicts assumption (6). ¤

In the special case U = X we obtain the following corollary.

Corollary 3.3 Let O be the ring of integers in a finite extension k of Q. Let
X be a flat O-scheme of finite type whose geometric generic fibre X ⊗O k̄ is
connected. Assume that X is normal and that the morphism X → Spec(O) is
surjective. Then the abelianized étale fundamental group π1(X)ab is finite.
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