On the degeneration of some spectral sequences

Alexander Schmidt

September, 2005

The following is my compilation of arguments given in [CE], [Gr], [De] and [Ja]. Maybe it is also useful for other people. I do not claim any originality. This material will very likely be contained in the second edition of Neukirch/Schmidt/Wingberg: Cohomology of Number Fields.

1 Spectral sequences

Let \mathcal{A} be an abelian category. Recall that a (decreasing) filtration F of an object A of \mathcal{A} is a family $(F^n A)_{n \in \mathbb{Z}}$ of subobjects of A such that $F^m A \subset F^n A$ for $n \leq m$. By convention, we put $F^{\infty}A = 0$ and $F^{-\infty}A = A$. We say that the filtration is finite if there exist $n, m \in \mathbb{Z}$ with $F^m A = 0$ and $F^n A = A$. Let (X^{\bullet}, d) be a cochain complex consisting of objects of \mathcal{A} and let $F^{\bullet}X^{\bullet}$ be a filtration of X^{\bullet} by subcomplexes, i.e. for each $n, F^n X^{\bullet}$ is a subcomplex of X^{\bullet} . We say that $F^{\bullet}X^{\bullet}$ is biregular, if, for each $n \in \mathbb{Z}$, the filtration $F^{\bullet}X^n$ is finite.

A biregular filtration induces a spectral sequence

$$E_1^{pq} \Rightarrow H^{p+q}(X^{\bullet})$$

by defining for $r \in \mathbb{Z} \cup \{\infty\}$

$$Z_r^{pq} = \ker \left(F^p X^{p+q} \to F^p X^{p+q+1} / F^{p+r} X^{p+q+1} \right),$$
$$B_r^{pq} = d(F^{p-r} X^{p+q-1}) \cap F^p X^{p+q},$$
$$E_r^{pq} = Z_r^{pq} / B_{r-1}^{pq} + Z_{r-1}^{p+1,q-1}$$

and

$$F^{p}H^{p+q}(X^{\bullet}) = \operatorname{im}\left(F^{p}H^{p+q}(X^{\bullet}) \to H^{p+q}(X^{\bullet})\right).$$

One easily verifies that this spectral sequence converges, i.e. for fixed $p, q \in \mathbb{Z}$ there is an r_0 such that

$$E_{r_0}^{pq} = E_{r_0+1}^{pq} = \dots = E_{\infty}^{pq}$$

and

$$E^{pq}_{\infty} = \operatorname{gr}_p H^{p+q}(X^{\bullet}).$$

We say that a spectral sequence degenerates at E_{r_0} if the differentials d_r are zero for all $r \ge r_0$, i.e. $E_{r_0}^{pq} = E_{\infty}^{pq}$ for all p, q.

Proposition 1.1. For the above spectral sequence, the following assertions are equivalent

- (i) The spectral sequence degenerates at E_1 .
- (ii) For all n, p we have $F^p X^n \cap d(X^{n-1}) = d(F^p X^{n-1})$.
- (iii) For all n, p the natural map $F^p H^{p+q}(X^{\bullet}) \to H^{p+q}(X^{\bullet})$ is injective.

If, moreover, the maps in (iii) are split-injections, we obtain a splitting

$$H^n(X^{\bullet}) \cong \bigoplus_{p+q=n} E_1^{pq}.$$

Proof. [De] Proposition 1.3.2.

If $A^{\bullet\bullet}$ is a double complex, with total complex

$$X^{\bullet} = \operatorname{tot}(A^{\bullet \bullet})$$

then we consider the filtration

$$F^p X^n = \bigoplus_{\substack{i+j=n\\i \ge p}} A^{ij}.$$

If there exists an $m \in \mathbb{Z}$ with $A^{ij} = 0$, for i < m or j < m, this filtration is biregular and induces a spectral sequence converging to the cohomology of X^{\bullet} . We will refer to this this spectral sequence as the spectral sequence associated to the double complex $A^{\bullet \bullet}$.

2 Displacing

By a formal reindexing procedure, we can displace a spectral sequence in the following sense: Assume we are given a spectral sequence $E_r^{pq} \Rightarrow E^{p+q}$. Putting $\tilde{E}_r^{pq} = E_{r+1}^{2p+q,-p}$, we obtain a new spectral sequence converging to the same end terms, but with shifted indices. It is a remarkable fact that, if the spectral sequence E arises from a biregular filtered cochain complex as in the last section, then the spectral sequence \tilde{E} arises from another filtration of the same complex. This will be useful in showing that a spectral sequence degenerates at E_2 , just by showing that the displaced spectral sequence \tilde{E} satisfies the conditions of Proposition 1.1.

Let $F^{\bullet}X^{\bullet}$ be a biregular filtered cochain complex. Consider the "displaced filtration" 1

$$\operatorname{Dis}(F)^p X^n = Z_1^{p+n,-p}$$

where the term on the right hand side has been formed with respect to the filtration F. We denote the complex X^{\bullet} together with the filtration Dis(F) by $\text{Dis}(X^{\bullet})$. We have the

Proposition 2.1. There are natural isomorphism for all $r \ge 1$ commuting with the corresponding differentials

$$E_r^{pq}(Dis(X^{\bullet})) \xrightarrow{\sim} E_{r+1}^{2p+q,-p}(X^{\bullet}).$$

Proof. [De] Proposition 1.3.4.

Now we consider a special example. Let C^{\bullet} and K^{\bullet} be bounded below complexes of abelian groups and put $A^{\bullet\bullet} = C^{\bullet} \otimes K^{\bullet}$.

Theorem 2.2. If C^{\bullet} consists of flat (i.e. torsion-free) abelian groups, then the spectral sequence of the double complex $A^{\bullet\bullet}$ degenerates at E_2 . Furthermore, we have a splitting

$$H^n(X^{\bullet}) \cong \bigoplus_{p+q=n} E_2^{pq}.$$

Proof. Let F be the standard filtration on $X^{\bullet} = \text{tot}(A^{\bullet \bullet})$ as in the last section, i.e. $F^p X^n = \bigoplus_{\substack{i+j=n \ i \ge p}} A^{ij}$. Then, using the flatness of C^{\bullet} , one verifies that

 $\operatorname{Dis}^{p}(X^{\bullet}) = \operatorname{tot}(C^{\bullet} \otimes \tau_{\leq -p} K^{\bullet}),$

¹Deligne use the name "filtration décalée" in [De]

where $\tau_{\leq -p}$ is the canonical truncation functor. By Propositions 1.1 and 2.1, it therefore remains to show that for all n, m the natural homomorphism

$$H^n(C^{\bullet} \otimes \tau_{\leq m} K^{\bullet}) \to H^n(C^{\bullet} \otimes \tau_{\leq m+1} K^{\bullet})$$

is a split-injection. The complex $\tau_{\leq m+1}K^{\bullet}$ is bounded in both directions and therefore we find a complex Y^{\bullet} bounded in both directions and consisting of free \mathbb{Z} -modules together with a quasi-isomorphism $Y^{\bullet} \to \tau_{\leq m+1}K^{\bullet}$. The inclusion

$$\tau_{\leq m} Y^{\bullet} \to Y^{\bullet}$$

has a section and, by the flatness of C^{\bullet} , we obtain a compatible quasiisomorphisms

$$C^{\bullet} \otimes \tau_{\leq m} Y^{\bullet} \to C^{\bullet} \otimes \tau_{\leq m} K$$

and

 $C^{\bullet} \otimes Y^{\bullet} \to C^{\bullet} \otimes \tau_{\leq m+1} K^{\bullet}.$

Finally, the inclusion $C^{\bullet} \otimes \tau_{\leq m} Y^{\bullet} \to C^{\bullet} \otimes Y^{\bullet}$ has a section, showing the result. \Box

3 The Hochschild-Serre spectral sequence

Let G be a profinite group and let $H \subset G$ be a closed normal subgroup. Let A be a G-module. To the standard resolution $0 \to A \to X^{\bullet}$ of the G-module A, we apply the functor $H^0(H, -)$, and get the complex

$$H^0(H, X^0) \to H^0(H, X^1) \to H^0(H, X^2) \to \cdots$$

of G/H-modules. For each $H^0(H, X^q)$, we consider the cochain complex

$$H^0(H, X^q)^{G/H} \to C^{\bullet}(G/H, H^0(H, X^q))$$

and obtain a double complex

$$C^{pq} = C^p(G/H, H^0(H, X^q)) = X^p(G/H, X^q(G, A)^H)^{G/H}, \quad p, q \ge 0.$$

We define the Hochschild-Serre spectral sequence as the spectral sequence

$$E_2^{pq} \Longrightarrow E^n$$

associated with this double complex. One calculates

$$E_2^{pq} = H^p(G/H, H^q(H, A))$$

The functor 'homogeneous cochain complex' is a 'resolving functor' in the sense of [Gr], §2.5, and, by loc.cit. Proposition 2.5.3, the Hochschild-Serre spectral sequence as defined above coincides with the spectral sequence for the composition of the derived functors of $H^0(H, -)$ and $H^0(G/H, -)$.

Theorem 3.1. Let G and H be profinite groups, and let B be a discrete H-module, regarded as a $(G \times H)$ -module via trivial action of the group G.

Then the Hochschild-Serre spectral sequence

$$E_2^{pq} = H^p(G, H^q(H, B)) \Rightarrow H^n(G \times H, B)$$

degenerates at E_2 . Furthermore, it splits in the sense that there is a decomposition

$$H^n(G \times H, B) \cong \bigoplus_{p+q=n} H^p(G, H^q(H, B)).$$

Lemma 3.2. Let A be a trivial G-module. Then we have a natural isomorphism of complexes

$$C^{\bullet}(G, A) \cong C^{\bullet}(G, \mathbb{Z}) \otimes A.$$

Proof. This is easily verified for a finite group G. The result for profinite G follows by a straightforward limit process.

Proof of the theorem. By our construction of the Hochschild-Serre spectral sequence and by the last lemma, it is the spectral sequence associated to the double complex

$$C^{\bullet}(G,\mathbb{Z})\otimes X^{\bullet}(G\times H,B)^H$$

Our result follows from Theorem 2.2.

References

- [CE] Cartan, E., Eilenberg, S.: Homological Algebra. Princeton Math. Ser. 19, Princeton 1956
- [De] Deligne, P.: Théorie de Hodge II. Publ. Math. IHES 40 (1971), 5–57
- [Gr] Grothendieck, A.: Sur quelques points d'algèbre homologique. Tôhoku Math. J. 9 (1957) 119-221
- [Ja] Jannsen, U.: The splitting of the Hochschild-Serre spectral sequence for a product of groups. Canad. Math. Bull. 33 (1990) 181-183