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ALEXANDER SCHMIDT

The notion of ramification is classical and important in arithmetic geometry.
There are essentially two different approaches: the valuation theoretic notion of
ramification and the scheme (or ring) theoretic one. In case of an extension of
Dedekind domains, both notions coincide since regular local rings of dimension
one are exactly the valuation rings of discrete rank one valuations. In higher
dimension or without regularity assumptions the two notions of ramification di-
verge.

Let K/k be a finitely generated field extension. A k-valuation of K is a val-
uation v on K which is trivial on k. We call a normal, connected scheme X/k
separated and of finite type with function field K a model of K. The normaliza-
tion of X in a finite, separable extension L/K is denoted by XL. The main result
of this paper is the following

Theorem A (Quasi-purity of the branch locus). Let L/K be a finite separable
extension which is ramified at some k-valuation w of L. Then there exists a
model X of K and a (Weil) prime divisor D ⊂XL which is ramified in the scheme
morphism XL →X.

Assuming the existence of a regular, proper model X of K, Theorem A is
a straight-forward consequence of the Zariski-Nagata theorem on the purity of
the branch locus. The existence of a regular, proper model of K is known if
char(k) = 0 [Hi64]; if char(k) = p > 0 and tr.degkK ≤ 2 [Li78], and if char(k) =
p > 0, [k ∶ kp] < ∞ and tr.degkK = 3 [CP08, CP09]. In this paper we avoid
assumptions on resolution of singularities by using M. Temkin’s inseparable local
uniformization theorem [Te13] instead.

As an application of Theorem A we show the following Theorem B; see [KS10] for
the notion of curve-tameness and [Hü18] for that of tameness for étale morphisms
of adic spaces. We recall the relevant definitions in Sections 4 and 5.

Theorem B. Let k be a field of positive characteristic, X and Y schemes, sep-
arated and of finite type over k and f ∶ Y →X a finite, étale k-morphism. Let

Spa(f) ∶ Spa(Y, k)Ð→ Spa(X,k)
be the associated étale morphism of adic spaces.

Then f is curve-tame if and only if Spa(f) is tame.

Date: November 16, 2018.
1



2 ALEXANDER SCHMIDT

1. Passage to the algebraic closure

Let K be a field (imperfect, otherwise the following discussion is void), K̄ an
algebraic closure of K, Ks the separable closure of K in K̄ and K∞ =K1/p∞ the
perfect closure of K in K̄. Then the natural map Aut(K̄/K) → Aut(Ks/K),
σ ↦ σ∣Ks induces an isomorphism

ϕ ∶ Gal(K̄/K∞)Ð→∼ Gal(Ks/K).

Lemma 1.1. Let v be a valuation on K̄ and let vs be its restriction to Ks. Then
ϕ induces isomorphisms

(∗) Dv →∼ Dvs , Iv →∼ Ivs , Rv →∼ Rvs ,

where the letters D, I and R denote the decomposition, inertia and ramification
groups of the respective valuations.

Proof. Since v is the only extension of vs to K̄ [EP05, Corollary 3.2.10], we have
for σ ∈ Aut(K̄/K) that

σv = v ⇔ σ∣Ks(vs) = vs,
hence ϕ induces an isomorphism Dv →∼ Dvs .

Since K∞/K is purely inseparable, the same is true for the residue field exten-
sion

κ(v∣K∞)/κ(v∣K).
Hence we obtain the commutative diagram

1 Iv Dv Gκ(v∣K∞)
1

1 Ivs Dvs Gκ(v∣K) 1

≀ ≀

inducing the claimed isomorphism Iv →∼ Ivs . Finally, the ramification groups are
the p-Sylow subgroups of the inertia groups, showing that also Rv →∼ Rvs . �

The ramification indices are in general not preserved under inseparable base
change:

Example 1.2. Let K = Fp(X,Y ) and L = K[T ]/(T p −XT − Y ). The valuation
of K associated with X does not split in L/K, the ramification index is equal to
1, and the residue field extension is the inseparable extension Fp(Y 1/p)/Fp(Y ).
Now consider K ′ = K(Y 1/p) = Fp(X,Y 1/p), L′ = K ′L. Over K ′ the polynomial
T p − XT − Y can be written as (T − Y 1/p)p − X(T − Y 1/p) + XY 1/p. Up to a
substitution, it is an Eisenstein polynomial. Hence the valuation of K ′ associated
with X does not split in L′/K ′, the ramification index is equal to p, and the
residue extension is trivial.
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2. Étale versus unramified

The following lemma seems to be well-known but we could not find a reference.

Lemma 2.1. Let L/K be a finite field extension, w a non-archimedean valuation
of L and v = w∣K . Then w/v is unramified (in the valuation-theoretic sense) if
and only if Ov → Ow is étale in the ring-theoretic sense.

Proof. Let Ov,L be the integral closure of Ov in L. Then, for every maximal ideal
m ⊂ Ov,L, the localization (Ov,L)m is a valuation ring of a valuation of L which
extends v and, by [EP05, Theorem 3.2.13], the assignment

mz→ (Ov,L)m
gives a 1:1-correspondence between the maximal ideals of Ov,L and those valu-
ations. In particular, Ov,L is semi-local. As is well known, the inertia group of
the action of G = Gal(L/K) detects ramification in the valuation-theoretic sense.
The same is true for étale by [Ra70, Ch. X, Theorem 1]. �

Example 2.2 (A. Holschbach). Consider the field K = C((T )) and let L =
K(T 1

2 ). Consider
K∞ =

∞

⋃
r=1

K(T 1/3r), L∞ = LK∞.

Then L∞/K∞ is ramified in the valuation-theoretic sense. The associated rings
of integers are

A = C[[T ]][T 1/3r , r ≥ 1], B = C[[T ]][T 1/2⋅3r , r ≥ 1].
Hence the ring extension B/A satisfies mAB = mB. But it is not of finite type,
hence not étale in the ring-theoretic sense.

Lemma 2.3. Let k be a field, X a normal, connected and separated scheme of
finite type over k, K = k(X), L/K a finite, separable field extension and Y the
normalization of X in L. Let w be a k-valuation on L having center y ∈ Y and
let v be the restriction of w to K. Assume that Y → X is étale at y. Then w/v
is unramified.

Proof. Let s be the special point of Spec(Ow) and t its image under Spec(Ow)→
Y ×X Spec(Ov). Since t maps to y in Y and Y → X is étale at y, the base
change Y ×X Spec(Ov) → Spec(Ov) is étale at t. As étale schemes over normal
schemes are normal [Ra70, Ch. VII, Prop. 2], the local ring of Y ×X Spec(Ov)
at t is normal and hence isomorphic to Ow (cf. the proof of Lemma 2.1). Since
Y ×X Spec(Ov)→ Spec(Ov) is étale at t, Ow/Ov is étale. �

3. Quasi-Purity

Let K/k be a finitely generated field extension of transcendence degree d and
let v be a discrete rank one k-valuation on K. By Abhyankar’s inequality (cf.,
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e.g., [KS10, Prop. 3.2]), we have for the residue field Kv of v that

deg.trk(Kv) ≤ d − 1. (∗)
We call v geometric, if equality holds in (∗). By [Li02, §8, Thm. 3.26 (b)] v is
geometric if and only if there exists a model X of K and a Weil prime divisor
D ⊂X with Ov = OX,D. Hence Theorem A is equivalent to

Theorem 3.1. Let k be a field, K/k a finitely generated field extension and
L/K a finite, separable extension. Assume there exists a k-valuation w on L
with restriction v to K such that w/v is ramified. Then there exists a geometric
discrete rank one k-valuation W on L with restriction V to K such that W /V is
ramified.

Proof. We choose a proper model X of K. By M. Temkin’s inseparable local
uniformization theorem [Te13, Cor. 1.3.3], we find a regular, connected k-scheme
X ′ and a k-morphism X ′ →X such that K ′ = k(X ′)/K = k(X) is a finite, purely
inseparable extension and the unique k-valuation v′ of K ′ extending v has center
in X ′. Let L′ = LK ′ be the composite (in some algebraic closure of K) and w′ the
unique k-valuation of L′ lying over w. Then w′∣K′ = v′ and w′/v′ is ramified by
Lemma 1.1. Hence, by Lemma 2.3, the scheme morphism X ′

L → X ′ is not étale.
By Zariski-Nagata purity [SGA2, X, Théorème 3.4], we find a ramified divisor,
hence a geometric rank one k-valuation W ′ of L′ with restriction V ′ to K ′ such
that W ′/V ′ is ramified. Denoting the respective restrictions to L and K by W
and V , another application of Lemma 1.1 shows that W /V is ramified. �

We will use the following mild sharpening of Theorem A in the proof of Theo-
rem 4.4 below.

Corollary 3.2. Under the assumptions of Theorem A let U be a model of K
such that UL → U is étale. Then we can choose the model X of K asserted in
Theorem A in such a way that there is an open k-immersion j ∶ U ↪ X and the
ramified prime divisor D is contained in XL ∖UL.
Proof. We choose a proper model Ū of K containing U as an open subscheme.
By Theorem 3.1, we find a geometric discrete rank one k-valuation W of L with
restriction V to K such that W /V is ramified. Since Ū is proper, V has a
nonempty center on Ū which is contained in Ū∖U since UL → U is étale. Following
[Li02, §8, Exercise 3.14], by successively blowing up Ū in centers contained in Ū∖U
and finally normalizing, we find a normal compactification X of U such that V
is the valuation associated to a point x ∈ X ∖ U of codimension one in X. This
finishes the proof. �

4. Curve-tameness

Let k be a field of positive characteristic. By variety we mean a separated
scheme of finite type over k, a curve C is an integral variety with dimC = 1 and
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by étale covering we mean finite, étale morphism. For a regular curve C there
exists a unique regular curve P (C) which is proper and contains C as a dense
open subscheme. Recall that an étale covering C ′ → C of regular curves is called
tamely ramified along P (C)∖C if for every x ∈ P (C)∖C the associated valuation
vx is tamely ramified in the finite, separable field extension k(C ′)/k(C). This
definition extends to the case of general regular varieties of dimension one by
requiring tameness on every connected component.

Recall the following definitions from [KS10]:

Definition 4.1. An étale covering Y → X of varieties is curve-tame if for any
morphism C →X with C a regular curve, the base change Y ×X C → C is tamely
ramified along P (C) ∖C.

If, in addition, X and Y are normal and connected, we say that Y → X
is valuation-tame if every k-valuation of k(X) is tamely ramified in the field
extension k(Y )/k(X). This definition extends to coverings of general normal
varieties by requiring valuation tameness on every connected component.

By definition, the notions of curve- and valuation-tameness agree for coverings
of regular curves. The statement of the next lemma follows directly from the
definitions.

Lemma 4.2. Let g ∶ Z → Y and f ∶ Y → X be étale coverings. If g and f
are curve-tame, then the same holds for f ○ g. If f ○ g is curve-tame, then g is
curve-tame and if, in addition, g is surjective, then also f is curve-tame.

The same holds for valuation-tame instead of curve-tame. �

Lemma 4.3. (i) An étale covering of connected varieties is curve-tame if and
only if its Galois closure is curve-tame.

(ii) An étale covering of normal, connected varieties is valuation-tame if and
only if its Galois closure is valuation-tame.

Proof. If the Galois closure Ỹ →X of Y →X is curve-tame, then Y →X is curve-
tame by Lemma 4.2. Directly from the definition we see that for curve-tame
coverings Y1 → X, Y2 → X also their fibre product Y1 ×X Y2 → X is curve-tame.
Now the Galois closure Ỹ → X of Y → X occurs as a connected component (of
maximal degree) of the d-fold self product Y ×X ⋯ ×X Y with d = deg(Y /X).
Hence Ỹ →X is curve-tame if Y →X is.

The same arguments apply for valuation-tameness. �

The main result of this section is

Theorem 4.4. Let k be a field of positive characteristic and let f ∶ Y →X be a
finite, étale morphism of regular k-varieties. Then f is curve-tame if and only if
it is valuation-tame.
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Remark 4.5. Theorem 4.4 sharpens [KS10, Theorem 4.4] (which makes an as-
sumption on the existence of regular, proper models) in the case that the base
scheme is the spectrum of a field.

Proof of Theorem 4.4. By Lemma 4.3, we may assume that f ∶ Y →X is a Galois
covering of connected varieties.

Assume that there exists a k-valuation w of k(Y ) which is wildly ramified in
k(Y )/k(X). Let 1 ≠ Rw ⊂ Gal(Y /X) be the ramification group of w and let
G ⊂ Rw be a cyclic subgroup of order p. Setting Z = Y /G, we obtain a cyclic
Galois covering Y /Z of order p in which w is (wildly) ramified. By Corollary 3.2,
we find a normal, connected variety Z̄ containing Z as a dense open subscheme
and a prime divisor D ⊂ Z̄ which ramifies in Z̄k(Y ) → Z̄. By the Key Lemma 2.4
of [KS10], we find a regular curve C and a morphism C → Z such that the
base change Y ×Z C → C is (wildly) ramified along P (C). Hence Y → Z is not
curve-tame and by Lemma 4.2, also Y → X is not curve-tame. This shows that
curve-tameness implies valuation tameness.

The other implication is part of [KS10, Theorem 4.4]. �

5. Tame morphisms of adic spaces

We refer the reader to [Hu96] for basic notions on adic spaces. Following [Hü18,
§3], we call an étale morphism Y → X of adic spaces tame if for every point
y ∈ Y with image x ∈ X the extension of the valuations associated to y and x is
(at most) tamely ramified.

In [Te11] M. Temkin associates with a morphism of schemes X → S a discretely
ringed adic space Spa(X,S). If X = Spec(A) and S = Spec(R) are affine, then
Spa(X,S) coincides with Huber’s affinoid adic space Spa(A,A+), where A is
endowed with the discrete topology and A+ is the integral closure of the image
of R in A.

If S = Spec(k) is the spectrum of a field and X is a variety over k, then the
underlying set of points of Spa(X,k) is the following:

∣Spa(X,k)∣ = ∐
x∈X

Valk(k(x)) (set-theoretically).

Here Valk(k(x)) is the set of k-valuations of k(x).
An étale morphism of k-varieties Y → X induces an étale morphism of adic

spaces Spa(Y, k) → Spa(X,k), cf. [Hu96]. With this preparations we are ready
to prove Theorem B.

Proof of Theorem B. By definition, f is curve-tame if and only if for every point
y ∈ Y1 (i.e. the closure of y is a curve) with image x ∈X, the extension k(y)/k(x)
is tamely ramified at every v ∈ Valk k(y). In other words, the tameness of Spa(f)
trivially implies the curve-tameness of f .



ON QUASI-PURITY OF THE BRANCH LOCUS 7

Conversely, assume that f is curve-tame. Let y ∈ Y be a point with image
x ∈X and v ∈ Valk k(y). We have to show that v is tamely ramified in k(y)/k(x).
Replacing X by the closure of x and using that curve-tameness is stable under
base change, we may assume that x is the generic point of the integral variety X.
Furthermore, after replacing X by an open subscheme, we may assume that X
(and hence also Y ) is regular. Then, by Theorem 4.4, f is valuation-tame, hence
v is tamely ramified in k(y)/k(x). �
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