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Abstract

We investigate the Galois group GS(p) of the maximal p-extension un-
ramified outside a finite set S of primes of a number field in the (tame)
case, when no prime dividing p is in S. We show that the cohomol-
ogy of GS(p) is ‘often’ isomorphic to the étale cohomology of the scheme
Spec(Ok r S), in particular, GS(p) is of cohomological dimension 2 then.

1 Introduction

We call a Y a ‘K(π, 1)’ for a prime number p if the higher homotopy groups of
the p-completion Y

(p)
et of its étale homotopy type Yet vanish. In this paper we

consider the case of an arithmetic curve, where the K(π, 1)-property is linked
with open questions in the theory of Galois groups with restricted ramification
of number fields:

Let k be a number field, S a finite set of nonarchimedean primes of k and p a
prime number. For simplicity, we assume that p is odd or that k is totally imag-
inary. By a p-extension we understand a Galois extension whose Galois group
is a (pro-) p-group. Let kS(p) denote the maximal p-extension of k unramified
outside S and put GS(p) = Gal(kS(p)|k). A systematic study of this group had
been started by Šafarevič, and was continued by Koch, Kuz’min, Wingberg and
many others; see [NSW], VIII, §7 for basic properties of GS(p). In geometric
terms (and omitting the base point), we have

GS(p) ∼= π1

(
(Spec(Ok) rS)(p)

et

)
.

As is well known to the experts, if S contains the set Sp of primes dividing p,
then Spec(Ok) rS is a K(π, 1) for p (see Proposition 2.3 below). In particular,
if S ⊃ Sp, then GS(p) is of cohomological dimension less or equal to 2.

The group GS(p) is most mysterious in the tame case, i.e. when S ∩Sp = ∅.
In this case, examples when Spec(Ok) rS is not a K(π, 1) are easily constructed.
On the contrary, until recently not a single K(π, 1)-example was known. The
following properties of the group GS(p) were known so far:
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• GS(p) is a ‘fab-group’, i.e. Uab is finite for each open subgroup U ⊂ G.
• GS(p) can be infinite (Golod-Šafarevič).
• GS(p) is a finitely presented pro-p-group (Koch).

A conjecture of Fontaine and Mazur [FM] asserts that GS(p) has no infinite
p-adic analytic quotients.

In 2005, Labute considered the case k = Q and found finite sets S of prime
numbers (called strictly circular sets) with p /∈ S such that GS(p) has cohomo-
logical dimension 2. In [S1] the author showed that, in the examples given by
Labute, Spec(Z) rS is a K(π, 1) for p.

The objective of this paper is a systematic study of the K(π, 1)-property.
Our focus is on the tame case, where we conjecture that rings of integers of type
K(π, 1) are cofinal in the following sense:

Conjecture 1. Let k be a number field and let p be a prime number. Assume
that p 6= 2 or that k is totally imaginary. Let S be a finite set of primes of k with
S ∩Sp = ∅. Let, in addition, a set T of primes of Dirichlet density δ(T ) = 1 be
given. Then there exists a finite subset T1 ⊂ T such that Spec(Ok) r (S ∪ T1)
is a K(π, 1) for p.

Of course we may assume that T ∩ Sp = ∅ in the conjecture. Our main
result is the following

Theorem 1. Conjecture 1 is true if the number field k does not contain a
primitive p-th root of unity and the class number of k is prime to p.

Explicit examples of rings of integers of type K(π, 1) can be found in [La],
[S1] (for k = Q) and in [Vo] (for k imaginary quadratic).

The K(π, 1)-property has strong consequences. We write X = Spec(Ok) and
assume in all results that p 6= 2 or that k is totally imaginary. Primes p ∈ SrSp
with µp 6⊂ kp are redundant in the sense that removing these primes from S

does not change (X rS)(p)
et , see section 4. In the tame case, we may therefore

restrict our considerations to sets of primes whose norms are congruent to 1
modulo p. These are the results.

Theorem 2. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. If X rS is a K(π, 1) for p and GS(p) 6= 1, then the
following hold.

(i) cdGS(p) = 2, scdGS(p) = 3.

(ii) GS(p) is a duality group.

The dualizing module D of GS(p) is given by D = torpCS(kS(p)), i.e. it is the
subgroup of p-torsion elements in the S-idèle class group of kS(p).

Remarks: 1. If X rS is a K(π, 1) for p and GS(p) = 1, then k is imaginary
quadratic, #S = 1 and p = 2 or 3. See Proposition 7.4 for a more precise
statement.
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2. We have a natural exact sequence

0→ µp∞(kS(p))→
⊕
p∈S

IndGp(kS(p)|k)

Gal(kS(p)|k) µp∞(kS(p)p)→

torpCS(kS(p))→ O×kS(p),S ⊗Qp/Zp → 0 ,

where O×kS(p),S is the group of S-units of kS(p) and µp∞(K) denotes the group
of all p-power roots of unity in a field K. Note that µp∞(kS(p)) is finite, while,
by Theorem 3 below, for p ∈ S the field kS(p)p contains all p-power roots of
unity.
3. In the wild case S ⊃ Sp, where X rS is always a K(π, 1) for p, GS(p)
is of cohomological dimension 1 or 2. The strict cohomological dimension is
conjecturally equal to 2 (=Leopoldt’s conjecture for each finite subextension of
k in kS(p)). In the wild case, GS(p) is often, but not always a duality group,
cf. [NSW] Prop. 10.7.13.

Allowing ramification at a prime p does not mean that the ramification is
realized globally. Therefore it is a natural and interesting question how far we
get locally at the primes in S when going up to kS(p). See [NSW] X, §3 for
results in the wild case. In the tame case, we have the following

Theorem 3. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. If X rS is a K(π, 1) for p and GS(p) 6= 1, then

kS(p)p = kp(p)

for all primes p ∈ S, i.e. kS(p) realizes the maximal p-extension of the local
field kp.

Remark: Under the assumptions of the theorem, let q /∈ S. Then either q
splits completely in kS(p), or kS(p) realizes the maximal unramified p-extension
knr

q (p). We do not know whether the completely split case actually occurs.

The next result addresses the question of enlarging the set S without de-
stroying the K(π, 1)-property.

Theorem 4. Let S′ be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p and let S ⊂ S′ be a nonempty subset. Assume that
X rS is a K(π, 1) for p and that GS(p) 6= 1. If each q ∈ S′rS does not
split completely in kS(p), then X rS′ is a K(π, 1) for p. Furthermore, in this
case, the arithmetic form of Riemann’s existence theorem holds: the natural
homomorphism

∗
p∈S′\S(kS(p))

Tp(kS′(p)|kS(p)) −→ Gal(kS′(p)|kS(p))

is an isomorphism, i.e. Gal(kS′(p)|kS(p)) is the free pro-p product of a bundle
of inertia groups.
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Finally, we deduce a statement on universal norms of unit groups.

Theorem 5. Let S be a finite non-empty set of primes of k whose norms
are congruent to 1 modulo p. Assume that X rS is a K(π, 1) for p and that
GS(p) 6= 1. Then

lim←−
K⊂kS(p)

O×K ⊗ Zp = 0 = lim←−
K⊂kS(p)

O×K,S ⊗ Zp,

where K runs through all finite subextensions of k in kS(p), O×K and O×K,S are
the groups of units and S-units of K, respectively, and the transition maps are
the norm maps.

The structure of this paper is as follows. First we give the necessary def-
initions and make some calculations of étale cohomology groups for which we
couldn’t find an appropriate reference. In section 4, we deal with the first ob-
struction against the K(π, 1)-property, the h2-defect. Then we recall Labute’s
results on mild pro-p-groups, which we use in the proof of Theorem 1 given in
section 6. In the last three sections we prove Theorems 2–5.

The author thanks Denis Vogel for valuable comments on a preliminary
version of this paper.

2 First observations

We tacitly assume all schemes to be connected and omit base points from the
notation. Let Y be a locally noetherian scheme and let p be a prime number.
We denote by Y (p)

et the p-completion of the étale homotopy type of Y , see [AM],
[Fr]. By Ỹ (p) we denote the universal pro-p-covering of Y . The projection
Ỹ (p) → Y is Galois with group πet

1 (Y )(p) = π1(Y (p)
et ), cf. [AM], (3.7). Any

discrete p-torsion πet
1 (Y )(p)-module M defines a locally constant sheaf on Yet,

which we denote by the same letter. The Hochschild-Serre spectral sequence
defines natural homomorphisms

φM,i : Hi(πet
1 (Y )(p),M) −→ Hi

et(Y,M), i ≥ 0.

Since H1
et(Ỹ (p),M) = 0, the map φM,i is an isomorphism for i = 0 and 1, and

is injective for i = 2. For a pro-p-group G we denote by K(G, 1) the associated
Eilenberg-MacLane space ([AM], (2.6)).

Proposition 2.1. The following conditions are equivalent:

(i) The classifying map Y
(p)

et −→ K(πet
1 (Y )(p), 1) is a weak equivalence.

(ii) πi(Y
(p)

et ) = 0 for all i ≥ 2.

(iii) Hi
et(Ỹ (p),Z/pZ) = 0 for all i ≥ 1.
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(iv) φZ/pZ,i : Hi(πet
1 (Y )(p),Z/pZ) −→ Hi

et(Y,Z/pZ) is an isomorphism for all
i ≥ 0.

(v) φM,i : Hi(πet
1 (Y )(p),M) −→ Hi

et(Y,M) is an isomorphism for all i ≥ 0
and any discrete p-torsion πet

1 (Y )(p)-module M .

Proof. The equivalences (i)⇔(ii)⇔(v) are the content of [AM], (4.3), (4.4). The
equivalence (iii)⇔(iv) follows in a straightforward manner from the Hochschild-
Serre spectral sequence. The implication (v)⇒(iv) is trivial.

Assume that (iv) holds. As πet
1 (Y )(p) is a pro-p-group, any finite p-primary

πet
1 (Y )(p)-module M has a composition series with graded pieces isomorphic to

Z/pZ with trivial πet
1 (Y )(p)-action ([NSW], Corollary 1.7.4). Hence, if M is

finite, the five-lemma implies that φM,i is an isomorphism for all i. An arbi-
trary discrete p-primary πet

1 (Y )(p)-module is the filtered inductive limit of finite
p-primary πet

1 (Y )(p)-modules. Since group cohomology ([NSW], Proposition
1.5.1) and étale cohomology ([AGV], VII, 3.3) commute with filtered inductive
limits, φM,i is an isomorphism for all i and all discrete p-torsion πet

1 (Y )(p)-
modules M . This implies (v) and completes the proof.

Definition. We say that Y is a K(π, 1) for p if the equivalent conditions of
Proposition 2.1 are satisfied.

Now let k be a number field, S a finite set of nonarchimedean primes of k
and p a prime number. We put X = Spec(Ok). The following observation is
straightforward.

Corollary 2.2. Let k′ be a finite subextension of k in kS(p) and let X ′ =
Spec(Ok′), S′ = S(k′). Then the following are equivalent.

(i) X rS is a K(π, 1) for p,

(ii) X ′rS′ is a K(π, 1) for p.

Proof. Both schemes have the same universal pro-p-covering.

We denote by Sp and S∞ the set of primes of k dividing p and the set of
archimedean primes of k, respectively. For a set S of primes (which may contain
archimedean places), let kS(p) be the maximal p-extension of k unramified out-
side S and GS(p) = Gal(kS(p)|k). For a finite set S of nonarchimedean primes
of k we have the identification

πet
1 ((X rS)(p)

et ) = GS∪S∞(p).

If p is odd or k is totally imaginary, then GS(p) = GS∪S∞(p). The following
proposition is given for sake of completeness. It deals with the ‘wild’ case
S ⊃ Sp, and is well known.

Proposition 2.3. If S contains Sp, then X rS is a K(π, 1) for p.
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Proof. We verify condition (v) of Proposition 2.1. Let kS∪S∞ be the maximal
extension of k unramified outside S∪S∞ and put GS∪S∞ = Gal(kS∪S∞ |k). For
any p-primary discrete GS∪S∞(p)-module M the homomorphism φM,i factors
as

Hi(GS∪S∞(p),M)→ Hi(GS∪S∞ ,M)→ Hi
et(X rS,M).

By [NSW], Cor. 10.4.8, the left map is an isomorphism. That also the right map
is an isomorphism follows in a straightforward manner by using the Kummer
sequence, the Principal Ideal Theorem and known properties of the Brauer
group, see for example [Zi], Prop. 3.3.1. or [Mi], II Prop. 2.9.

Remark: If p = 2 and k has real places it is useful to work with the modified
étale site defined by T. Zink [Zi], which takes the real archimedean places of k
into account. Proposition 2.3 holds true also for the modified étale site, see [S2],
Thm. 6.

3 Calculation of étale cohomology groups

As a basis of our investigations, we need the calculation of the étale cohomology
groups of open subschemes of Spec(Ok) with values in the constant sheaf Z/pZ.
Let p be a fixed prime number. All cohomology groups are taken with respect
to the constant sheaf Z/pZ, which we omit from the notation. Furthermore, we
use the notation

hi(−) = dimFp
Hi

et(−) (= dimFp
Hi

et(−,Z/pZ) )

for the occurring cohomology groups. We start with some well-known local
computations.

Proposition 3.1. Let k be a nonarchimedean local field of characteristic zero
and residue characteristic `. Let X = Spec(Ok) and let x be the closed point
of X. Then the étale local cohomology groups Hi

x(X) vanish for i ≤ 1 and
i ≥ 4, and

h2
x(X) =

{
δ, if ` 6= p,

δ + [k : Qp], if ` = p,

where δ = 1 if µp ⊂ k and zero otherwise. Furthermore, h3
x(X) = δ. In

particular, we have the Euler-Poincaré characteristic formula

3∑
i=0

(−1)ihix(X) =
{

0, if ` 6= p,
[k : Qp], if ` = p.

Proof. As X is henselian, we have isomorphisms Hi
et(X) ∼= Hi

et(x) for all i, and
therefore

hi(X) =
{

1 for i = 0, 1,
0 for i ≥ 2.
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Furthermore, X r {x} = Spec(k), hence Hi
et(X r {x}) ∼= Hi(k). The local

duality theorem (cf. [NSW], Theorem 7.2.15) shows h2(X r {x}) = δ, and by
[NSW], Corollary 7.3.9, we have

h1(X r {x}) =
{

1 + δ if ` 6= p,
1 + δ + [k : Qp] if ` = p.

Furthermore, the natural homomorphism H1
et(X) → H1

et(X r {x}) is injective.
Therefore the result of the proposition follows from the exact excision sequence

· · · → Hi
x(X)→ Hi

et(X)→ Hi
et(X r {x})→ Hi+1

x (X)→ · · · .

Now let k be a number field, S a finite set of nonarchimedean primes of k
and X = Spec(Ok). We assume for simplicity that p is odd or that k is totally
imaginary, so that we can ignore the archimedean places of k for cohomological
considerations. We introduce the following notation

r1 the number of real places of k
r2 the number of complex places of k
r = r1 + r2, the number of archimedean places of k
Sp the set of places of k dividing p
δ equal to 1 if µp ⊂ k and zero otherwise
δp equal to 1 if µp ⊂ kp and zero otherwise
Cl(k) the ideal class group of k
ClS(k) the S-ideal class group of k
hk = #Cl(k), the class number of k
nA = ker(A ·n→ A), where A is an abelian group and n ∈ N
A/n = coker(A ·n→ A), where A is an abelian group and n ∈ N.

Proposition 3.2. Assume that p 6= 2 or that k is totally imaginary. Then
Hi

et(X rS) = 0 for i ≥ 4, and

χ(X rS) :=
3∑
i=0

(−1)ihi(X rS) = r −
∑

p∈S∩Sp

[kp : Qp] .

In particular,

χ(X rS) =
{

r, if S ∩ Sp = ∅ ,
−r2, if S ⊃ Sp .

Proof. The assertion for S = Sp is well known, see [Mi], II Theorem 2.13 (a).
Consider the exact excision sequence

· · · →
⊕
p∈S

Hi
p(Xp)→ Hi

et(X)→ Hi
et(X rS)→

⊕
p∈S

Hi+1
p (Xp)→ · · · ,

where Xp = Spec(Ok,p) is the spectrum of the completion of Ok at p. Using this
excision sequence for S = Sp, Proposition 3.1 implies the result for S = ∅, not-
ing that

∑
p∈Sp

[kp : Qp]−r2 = [k : Q]−r2 = r. The result for arbitrary S follows
from the case S = ∅, the above excision sequence and from Proposition 3.1.
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In order to give formulae for the individual cohomology groups, we consider
the Kummer group (cf. [NSW], VIII, §6)

VS(k) := {a ∈ k× | a ∈ k×pp for p ∈ S and a ∈ Upk
×p
p for p /∈ S}/k×p,

where Up denotes the unit group of the local field kp (convention: Up = k×p if p
is archimedean).1 VS(k) is a finite group. More precisely, we have the following

Proposition 3.3. There exists a natural exact sequence

0 −→ O×k /p −→ V∅(k) −→ pCl(k) −→ 0 .

In particular,

dimFp V∅(k) = dimFp pCl(k) + dimFp O×k /p = dimFp pCl(k) + r − 1 + δ.

If S is arbitrary and p /∈ S is an additional prime of k, then we have a natural
exact sequence

0 −→ VS∪{p}(k)
φ−→ VS(k) −→ Upk

×p
p /k×pp .

For p /∈ Sp, we have dimFp coker(φ) ≤ δp.

Proof. Sending an a ∈ V∅(k) to the class in Cl(k) of the fractional ideal a
with (a) = ap yields a surjective homomorphism V∅(k) → pCl(k) with kernel
O×k /p. This, together with Dirichlet’s Unit Theorem, shows the first statement.
The second exact sequence follows immediately from the definitions. There are
natural isomorphisms

Upk
×p
p /k×pp

∼= Up/Up ∩ k×pp = Up/U
p
p .

For p /∈ Sp we have dimFp
Up/U

p
p = δp, showing the last statement.

The étale cohomology groups of X rS have the following dimensions.

Theorem 3.4. Let S be a finite set of nonarchimedean primes of k. Assume
p 6= 2 or that k is totally imaginary. Then Hi

et(X rS) = 0 for i ≥ 4 and

h0(X rS) = 1 ,

h1(X rS) = 1 +
∑
p∈S

δp − δ + dimFp
VS +

∑
p∈S∩Sp

[kp : Qp]− r,

h2(X rS) =
∑
p∈S

δp − δ + dimFp
VS + θ ,

h3(X rS) = θ .

Here θ is equal to 1 if δ = 1 and S = ∅, and zero in all other cases.

1In terms of flat cohomology, we have VS(k) = ker
(
H1

fl (X rS, µp)→
⊕

p∈S H
1(kp, µp)

)
.
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Proof. The statement on h0 is trivial and the vanishing of Hi for i ≥ 4 was
already part of Proposition 3.2. Artin-Verdier duality (see [Ma], 2.4 or [Mi],
Theorem 3.1) shows

H3
et(X)∨ ∼= HomX(Z/pZ,Gm) = µp(k).

Consider the exact excision sequence⊕
p∈S

H3
p(Xp) α→ H3

et(X)
β→ H3

et(X rS)→
⊕
p∈S

H4
p(Xp).

By Proposition 3.1, the right hand group is zero, hence β is surjective. By the
local duality theorem (see [Ma], 2.4, [Mi], II Corollary 1.10), the dual map to α
is the natural inclusion

µp(k)→
⊕
p∈S

µp(kp),

which is injective, unless δ = 1 and S = ∅. Therefore h3(X rS) = 1 if δ = 1 and
S = ∅, and zero otherwise. Using the isomorphism H1(GS(p)) ∼→ H1

et(X rS),
the statement on h1 follows from the corresponding formula for the first coho-
mology of GS(p), see [NSW], Theorem 8.7.11. Finally, the result for h2 follows
by using the Euler-Poincaré characteristic formula in Proposition 3.2.

Corollary 3.5. Assume that δ = 0 or S 6= ∅. Then X rS is a K(π, 1) for p if
and only if the following conditions (i) and (ii) are satisfied.

(i) φ2 : H2(GS(p)) ↪→ H2
et(X rS) is an isomorphism,

(ii) cdGS(p) ≤ 2.

Proof. The given conditions are obviously necessary. Furthermore, φ0 and φ1

are isomorphisms and Hi
et(X rS) = 0 for i ≥ 3 by Theorem 3.4. Therefore

(i) and (ii) imply that φi is an isomorphism for all i. Hence condition (iv) of
Proposition 2.1 is satisfied for X rS and p.

Let F be a locally constant sheaf on (X rS)et. For each prime p the com-
posite map Ok,S → k → kp induces natural maps Hi

et(X rS, F ) → Hi(kp, F )
for all i ≥ 0.

Definition. For any locally constant sheaf F on (X rS)et we put

Xi(k, S, F ) := ker
(
Hi

et(X rS, F ) −→
∏
p∈S

Hi(kp, F )
)
.

Assume a prime number p is fixed. Then we write Xi(k, S) := Xi(k, S,Z/pZ)
and, following historical notation, we put BS(k) := VS(k)∨, where ∨ denotes
the Pontryagin dual.
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The next theorem is sharper than [NSW], Thm. 8.7.4, as the group X2(GS),
which was considered there, is a subgroup of X2(k, S). If p = 2 and k has real
places, then Theorem 3.6 remains true after replacing étale cohomology with its
modified version.

Theorem 3.6. Assume p 6= 2 or that k is totally imaginary. Then there exists
a natural isomorphism

X2(k, S) ∼−→ BS(k).

Proof. The proof of [NSW], Thm. 8.7.4 can be adapted to show also the stronger
statement here. However, we decided to take the short cut by using flat duality.
For any prime p of k one easily computes the local cohomology groups for the
flat topology as H1

fl ,p(X,µp) = 0 and H2
fl ,p(X,µp) ∼= k×p /Upk

×p
p . Therefore

excision and Kummer theory imply an exact sequence

0→ H1
fl (X,µp)→ k×/k×p →

⊕
p

k×p /Upk
×p
p .

As H1
fl (Xh

p , µp) ∼= Up/p, we obtain the exact sequence

(∗) 0→ VS(k)→ H1
fl (X,µp)→

⊕
p∈S

H1
fl (Xh

p , µp).

By excision, and noting H3
p(X,Z/pZ) ∼= H2(kp,Z/pZ), we have an exact se-

quence

(∗∗)
⊕
p∈S

H2
p(X,Z/pZ)→ H2

et(X,Z/pZ)→X2(k, S)→ 0.

Comparing sequences (∗) and (∗∗) via local and global flat duality, we obtain
the asserted isomorphism.

We provide the following lemma for further use.

Lemma 3.7. Let K ⊂ kS(p) be an extension of k inside kS(p) and let (X rS)K
be the normalization of X rS in K. If δ = 0, or S 6= ∅ or K|k is infinite, then

H3
et((X rS)K) = 0.

Proof. We denote the normalization of X rS in any algebraic extension field k′

of k by (X rS)k′ . Étale cohomology commutes with inverse limits of schemes
if the transition maps are affine (see [AGV], VII, 5.8). Therefore

H3((X rS)K) = lim−→
k′⊂K

H3((X rS)k′),

where k′ runs through all finite subextensions of k in K. If δ = 0 or S 6= ∅,
then, by Theorem 3.4, H3

et((X rS)k′) = 0 for all k′ and the limit is obviously
zero. Assume δ = 1 and S = ∅. Then, by Artin-Verdier duality,

H3
et(Xk′) ∼= µp(k′)∨.
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For k′ ⊂ k′′ ⊂ K, the transition map

H3
et(Xk′)→ H3

et(Xk′′)

is the dual of the norm map Nk′′|k′ : µp(k′′) → µp(k′), hence the zero map if
k′ 6= k′′. As K|k is infinite, the limit vanishes.

4 Removing the h2-defect

We start by extending the notions introduced before to infinite sets of primes S.
Let k be a number field and S a set of nonarchimedean primes of k. We set
X = Spec(Ok) and

X rS = Spec(Ok,S),

which makes sense also if S is infinite. Let F be a sheaf on X rS which comes
by restriction from X rT for some finite subset T ⊂ S. As each open subscheme
of X is affine, we have

Hi
et(X rS, F ) ∼= lim−→

T⊂S′⊂S
S′ finite

Hi
et(X rS′, F )

for all i ≥ 0.

We fix a prime number p and put the running assumption that k is totally
imaginary if p = 2. Hence we may ignore archimedean primes for cohomological
considerations. The notion of being aK(π, 1) for p extends in an obvious manner
to the case when S is infinite. Also the isomorphism

X2(k, S) ∼−→ BS(k)

generalizes to infinite S by passing to the limit over all finite subsets S′ ⊂ S.
In particular, X2(k, S) is finite.

For the remainder of this paper, we assume that S ∩ Sp = ∅. We also keep
the running assumption p 6= 2 or k is totally imaginary.

For shorter notation, we drop p wherever possible. We write GS instead of
GS(p), kS for kS(p), and so on. Unless mentioned otherwise, all cohomology
groups are taken with values in Z/pZ. We keep this notational convention
for the rest of this paper.

If p - p is a prime with µp 6⊂ kp, then every p-extension of the local field kp

is unramified (see [NSW], Proposition 7.5.1). Therefore primes p /∈ Sp with
N(p) 6≡ 1 mod p cannot ramify in a p-extension. Removing all these redundant
primes from S, we obtain a subset Smin ⊂ S which has the property that
GS = GSmin . Moreover, we have the

11



Lemma 4.1. The natural map

(X rS)(p)
et −→ (X rSmin)(p)

et

is a weak homotopy equivalence.

Proof. By [AM], (4.3), it suffices to show that for every discrete p-primary
GS-module M the natural maps Hi

et(X rSmin,M) → Hi
et(X rS,M) are iso-

morphisms for all i. By the same argument, as in the proof of Proposition 2.1,
(iv)⇒(v), we may suppose that M = Z/pZ. Using the excision sequence, it
therefore suffices to show that the group Hi

p(X rSmin,Z/pZ) vanishes for all
p ∈ SrSmin. This follows from Proposition 3.1.

Therefore we can replace S by Smin and make the following notational con-
vention for the rest of this paper.

The word ‘prime’ means nonarchimedean prime with norm ≡ 1 mod p.

At this point it is useful to redefine the notion of Dirichlet density.

Definition. Let S be a set of primes of k (of norm ≡ 1 mod p). The p-density
∆p(S) is defined by

∆p(S) = δk(µp)

(
S(k(µp))

)
,

where S(k(µp)) is the set of prolongations of primes in S to k(µp) and δk(µp)

denotes the Dirichlet density on the level k(µp). In other words,

∆p(S) = d · δk(S), where d = [k(µp) : k].

The set of all primes (of norm ≡ 1 mod p) has p-density equal to 1.

Proposition 4.2. Let S be a set of primes of p-density ∆p(S) = 1. Then
there exists a finite subset T ⊂ S with BT (k) = 0. In particular, BS(k) = 0 =
X2(k, S).

Proof. By the Hasse principle for the module µp, see [NSW], Thm. 9.1.3 (ii),
and Kummer theory, the natural map

k×/k×p −→
∏
p∈S

k×p /k
×p
p

is injective, hence VS(k) = 0. Furthermore V∅(k) is finite. Choosing to each
nonzero element α of V∅(k) a prime p ∈ S with α /∈ k×pp , we obtain a finite
subset T ⊂ S with VT (k) = 0.

Theorem 4.3. Let k be a number field and let S be a set of primes of k of
p-density ∆p(S) = 1. Then X rS is a K(π, 1) for p.

12



Proof. Let T ⊂ S be a finite subset. By [NSW], Thm. 9.2.2 (ii), the natural
map

H1
et(X r (S ∪ Sp)) −→

∏
p∈T∪Sp

H1(kp)

is surjective. A class in H1
et(X r (S ∪ Sp)) which maps to zero in H1(kp) for all

p | p is contained in H1
et(X rS). Therefore, also the map

H1
et(X rS) −→

∏
p∈T

H1(kp)

is surjective. Hence the maximal elementary abelian extension of k in kS realizes
the maximal elementary abelian extension of kp in kp(p) for all p ∈ S. Applying
the same argument to each finite subextension of k in kS , we conclude that kS
realizes kp(p) for all p ∈ S. In particular,∏

p∈S(kS)

H2((kS)p) = 0.

Furthermore, by Proposition 4.2, X2(K,S(K)) = 0 for all finite subextensions
K of k in kS . We obtain

H2
et((X rS)kS

) = 0.

As there is no cohomology in dimension greater or equal 3, condition (iii) of
Proposition 2.1 is satisfied.

In order to proceed, we make the following definitions.

Definition. Let S be a finite set of primes (of norm ≡ 1 mod p).

(i) We say that S is p-large if BS(k, p) = 0.

(ii) We put
δ2
S(k) = h2(X rS)− h2(GS)

and call this number the h2-defect of S (with respect to p).

(iii) We denote by kelS the maximal elementary abelian p-extension of k in-
side kS .

If S is p-large, then X2(k, S) = 0, and so, for any set T ⊃ S, the natural maps
H2(GS)→ H2(GT ) and H2

et(X rS)→ H2
et(X rT ) are injective.

Lemma 4.4. Let S be p-large and let p be a prime (of norm ≡ 1 mod p) which
does not split completely in kelS |k. Then

δ2
S∪{p}(k) ≤ δ2

S(k).

Furthermore, the natural map H2(GS∪{p}) −→ H2(kp) is surjective.

13



Proof. Put S′ = S ∪ {p}. By Theorem 3.4, the extension kelS′ |k is ramified at p.
Therefore kelS′ realizes the maximal elementary abelian p-extension kelp of the
local field kp, i.e. the map

H1(GS′(p)) −→ H1(kp)

is surjective. As the cup-product H1(kp)×H1(kp)→ H2(kp) is surjective, the
natural map

H2(GS′) −→ H2(kp)

is also surjective. The statement of the lemma now follows from the commutative
and exact diagram

0 −→ H2(GS) −→ H2
et(X rS)

?

∩

?

∩

0 −→ H2(GS′) −→ H2
et(X rS′)

↓
y

H2(kp).

Lemma 4.5. Let S be p-large and let p be a prime. Let T be a set of primes
of p-density ∆p(T ) = 1. Then there exists a prime p′ ∈ T such that

(i) p′ does not split completely in kelS |k.

(ii) p does not split completely in kelS∪{p′}|k.

In particular, δ2
S∪{p,p′}(k) ≤ δ2

S(k).

Proof. If p does not split completely in kelS |k, then condition (ii) is void. By
assumption, ∆p(T ) = δk(µp)(T (k(µp)) = 1. By Čebotarev’s density theorem, we
can find a prime P′ ∈ T (k(µp)) which does not split completely in kelS (µp)|k(µp).
Then p′ = P′|k satisfies (i). Therefore we may assume that p splits completely
in kelS |k. By class field theory, there exists an s ∈ k× with

(a) vp(s) ≡ 1 mod p,
(b) vq(s) ≡ 0 mod p for all q /∈ S, q 6= p, and
(c) s ∈ k×pq for all q ∈ S.

Since S is p-large, s is well-defined as an element in k×/k×p. Now consider
the extensions k(µp, p

√
s) and kelS∪{p}(µp) of k(µp). The first one might be

contained in the second (only if ζp ∈ k) but this does not matter. Using
Čebotarev’s density theorem, we find P′ ∈ T (k(µp)) such that FrobP′ is non-
zero in Gal(k(µp, p

√
s)|k(µp)) and non-zero in Gal(kelS∪{p}(µp)|k(µp)). We put

p′ = P′|k. Then p′ does not split completely in kelS |k and s /∈ k×pp′ = k(µp)
×p
P′ .
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We claim that p does not split completely in kelS∪{p′}|k: Otherwise there
would exist a t ∈ k× satisfying conditions (a) – (c) above and with t ∈ k×pp′ . Since
s/t ∈ BS(k) = 0, we obtain s/t ∈ k×p. Hence s ∈ k×pp′ giving a contradiction.
Hence condition (i) and (ii) are satisfied.

Lemma 4.6. Let S be a finite set of primes and let T be a set of primes of
p-density ∆p(T ) = 1. Then there exists a finite subset T1 ⊂ T such that S ∪ T1

is p-large and such that the natural inclusion

H2(GS∪T1(k)) ↪−→ H2
et(X r (S ∪ T1))

is an isomorphism.

Proof. We first move finitely many primes from T to S to achieve that S is
p-large. If δ2

S(k) is zero, we are ready. Otherwise, consider the commutative
diagram

H2(GS) ↪−→ H2(GS∪T )

?

∩ yo
H2

et(X rS) ↪−→ H2
et(X r (S ∪ T ))

in which the right hand isomorphism follows from Theorem 4.3. Let x ∈
H2

et(X rS) but x /∈ H2(GS). Then there exists a finite subset T0 ⊂ T such
that x ∈ H2(GS∪T0). Let T0 = {p1, . . . , pn}. We choose p′1, . . . , p

′
n ∈ T ac-

cording to Lemma 4.5 and put T1 = {p1, . . . , pn, p
′
1, . . . , p

′
n}. Then the natural

map

H2(GS∪T1)
φ−→

n∏
i=1

H2(kpi
)×

n∏
i=1

H2(kp′i
)

is surjective. We have H2(GS) ⊂ ker(φ) and also x ∈ ker(φ). Hence δ2
S∪T1

(k) <
δ2
S(k). Iterating this process, we obtain a set with trivial h2-defect.

5 Review of mild pro-p-groups

In the following we recall definitions and results from J. Labute’s paper [La].
Only interested in our application, we are slightly less general than Labute.

Let R be a principal ideal domain and let L be the free R-Lie algebra over
ξ1, . . . , ξn, n ≥ 1. We view L as graded algebra where the degree of ξi is 1. Let
ρ1, . . . , ρm, m ≥ 1, be homogeneous elements in L with ρi of degree hi and let
r = (ρ1, . . . , ρm) be the ideal of L generated by ρ1, . . . , ρm. Let g = L/r and Ug

be the universal enveloping algebra of g. Then M = r/[r, r] is a Ug-module via
the adjoint representation.

Definition. The sequence ρ1, . . . , ρm is called strongly free if Ug is a free
R-module and M = r/[r, r] is the free Ug-module on the images of ρ1, . . . , ρm
in M .
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Let us consider the special case when R = k[π] is the polynomial ring in one
variable π over a field k. Then L̄ = L/π is a free k-Lie algebra and the next
theorem shows that we can detect strong freeness by reduction. We denote the
image in L̄ of an element ρ ∈ L by ρ̄.

Theorem 5.1. ([La], Th. 3.10) The sequence ρ1, . . . , ρm in L is strongly free if
and only if the sequence ρ̄1, . . . , ρ̄m is strongly free in L̄.

Over fields, we have the following criterion for strong freeness. Let R = k
be a field, X a finite set and S ⊂ X a subset. Let L(X) be the free Lie algebra
over X and let a be the ideal of L(X) generated by the elements ξ ∈ X rS.
Put

T = { [ξ, ξ′] | ξ ∈ X rS, ξ′ ∈ S} ⊂ a.

Theorem 5.2. ([La], Th. 3.3, Cor. 3.5) If ρ1, . . . , ρm are homogeneous elements
of a which lie in the k-span of T modulo [a, a] and which are linearly independent
over k modulo [a, a] then the sequence ρ1, . . . , ρm is strongly free in L.

Let p be an odd prime number and let G be a pro-p-group. We consider the
descending p-central series (Gn)n≥1, which is defined recursively by

G1 = G, Gn+1 = Gpn[G,Gn].

The quotients grn(G) = Gn/Gn+1, denoted additively, are Fp-vector spaces.
The graded vector space

gr(G) =
⊕
n≥1

grn(G)

has a Lie algebra structure over the polynomial ring Fp[π], where multiplication
by π is induced by x 7→ xp and the bracket operation for homogeneous elements
is induced by the commutator operation in G, see [NSW], III, §8. For g ∈ G,
g 6= 1, let the natural number h(g) be defined by

g ∈ Gh(G), g /∈ Gh(G)+1.

This definition makes sense because
⋂
nGn = {1}, see [NSW], Prop. 3.8.2. The

image ω(g) of g in grh(g)(G) is called the initial form of g.

Let F be the free pro-p-group over elements x1, . . . , xn, n ≥ 1. Then h(xi) =
1, i = 1, . . . , n, and

L = gr(F )

is the free Fp[π]-Lie algebra over ξ1, . . . , ξn, where ξi = ω(xi), i = 1, . . . , n, see
[Lz]. Let r1, . . . , rm, m ≥ 1, be a sequence of elements in F2 = F p[F, F ] ⊂ F
and let R = (r1, . . . , rm)F be the closed normal subgroup of F generated by
r1, . . . , rm. Put ρi = ω(ri) ∈ L.

Definition. A pro-p-group G is called mild if there exists a presentation

1 −→ R −→ F −→ G −→ 1

with F a free pro-p-group on generators x1, . . . , xn and R = (r1, . . . , rm)F such
that the associated sequence ρ1, . . . , ρm is strongly free in L = gr(F ).
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Essential for our application is the following property of mild pro-p-groups.

Theorem 5.3. ([La], Th. 1.2(c)) If G is a mild pro-p-group, then cdG = 2.

Now let G be a finitely presented pro-p-group and let

1 −→ R −→ F −→ G −→ 1

be a minimal presentation, i.e. F is the free pro-p-group on generators x1, . . . , xn
where n = dimFp H

1(G) and R = (r1, . . . , rm)F with m = dimFp H
2(G), cf.

[NSW], (3.9.5). Then the images ξi = ω(xi), i = 1, . . . , n, of x1, . . . , xn are a
basis of the Fp-vector space F/F2 = H1(F ) = H1(G) = G/G2. For y ∈ Fn and
a ∈ Zp the class of ya modulo Fn+1 only depends on the residue class ā ∈ Fp
of a. Every element r ∈ R ⊂ F2 has a representation

r ≡
n∏
j=1

(xpj )
aj ·

∏
1≤k<l≤n

[xk, xl]akl mod F3,

where aj , ak,l ∈ Fp. These coefficients are uniquely defined and can be calculated
as follows. As F is free, we have an isomorphismH2(G) = Rab

G /p. Let r̄ ∈ H2(G)
be the image of r and let χ1, . . . , χn ∈ H1(G) be the dual Fp-basis of ξ1, . . . , ξn.

Theorem 5.4. akl = −r̄(χk ∪ χl) for k < l.

For a proof see [NSW], Prop. 3.9.13, which also gives a description of the aj
using the Bockstein operator.

Using the results above, we obtain a criterion for mildness.

Theorem 5.5. Let G be a finitely presented pro-p-group. Assume there exists
a basis χ1, . . . , χn of H1(G), a basis r̄1, . . . , r̄m of H2(G) and a natural number
a, 1 ≤ a < n, such that the following conditions are satisfied

(i) r̄i(χk ∪ χl) = 0 for a < k < l ≤ n and i = 1, . . . ,m.

(ii) The m×a(n− a) matrix(
r̄i(χk ∪ χl)

)
i,(k,l)

, 1 ≤ i ≤ m, 1 ≤ k ≤ a < l ≤ n

has rank m.

Then G is a mild pro-p-group.

Proof. Let ξ1, . . . , ξn ∈ H1(G) be the dual basis of χ1, . . . , χn. We choose a
minimal presentation

(∗) 1 −→ R −→ F −→ G −→ 1

and generators x1, . . . , xn ∈ F mapping to ξ1, . . . , ξn ∈ H1(F ) = H1(G). Then
we choose elements r1, . . . , rm ∈ R mapping to r̄1, . . . , r̄m ∈ Rab

G /p = H2(G).
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Let X = {ξ1, . . . , ξn}. Then L = gr(F ) is the free Fp[π]-Lie algebra over X and
L̄ = L/π is the free Fp-Lie algebra over X. In order to show that G is mild, we
have to show that the initial forms ρ1, . . . , ρm of r1, . . . , rm are a strongly free
sequence in L. By Theorem 5.1 it suffices to show that ρ̄1, . . . , ρ̄m ⊂ L̄ are a
strongly free sequence. By condition (ii) and Theorem 5.4, we have ρ̄1, . . . , ρ̄m ∈
gr2(L̄) = F2/F3F

p.
Now we apply Theorem 5.2 with S = {ξa+1, . . . , ξn} ⊂ X. In the notation

of this theorem, a is the ideal generated by ξ1, . . . , ξa in L̄ and

T = {[ξi, ξj ] | 1 ≤ i ≤ a, a+ 1 ≤ j ≤ n}.

By condition (i) and Theorem 5.4, we have ρ̄i in the Fp-span H of T mod-
ulo [a, a]. The elements of T are a basis of H and the coefficient matrix of
ρ̄1, . . . , ρ̄m is up to sign the transpose of the matrix written in condition (ii).
Hence ρ̄1, . . . , ρ̄m are linearly independent and, by Theorem 5.2, a strongly free
sequence. This concludes the proof.

6 Existence of K(π, 1)’s

Let k be a number field and let p be a prime number with µp 6⊂ k and assume
that Cl(k)(p) = 0. The exact sequence

0 −→ O×k −→ k×
(vq)q−→

⊕
q

Z −→ Cl(k) −→ 0

implies the exactness of

0 −→ O×k /p −→ k×/k×p −→
⊕

q

Z/pZ −→ 0.

Let S = {p1, . . . , pm} be a finite set of primes of norm ≡ 1 mod p. We choose for
i = 1, . . . ,m elements si ∈ k×/k×p with vpi

(si) ≡ 1 mod p and vq(si) ≡ 0 mod p
for all primes q 6= pi of k. Let furthermore, e1, . . . , er, r = r1 + r2−1, be a basis
of O×k /p.

Consider the field

K = k(µp, p
√
s1, . . . , p

√
sm, p
√
e1, . . . , p

√
er).

An inspection of the ramification behaviour shows that Gal(K|k(µp)) has the
Galois group (Z/pZ)m+r: Indeed, k(µp, p

√
e1, . . . , p

√
er)|k(µp) is unramified out-

side Sp and has Galois group (Z/pZ)r by Kummer theory. Adjoining p
√
si,

i = 1, . . . ,m, yields a cyclic extension of degree p which is unramified outside
Sp ∪ {pi} and ramified at pi.

Since µp 6⊂ k, the extensions kelS (µp)|k(µp) and K|k(µp) lie in different
eigenspaces for the action of Gal(k(µp)|k). Therefore KkelS |k(µp) has Galois
group (Z/pZ)m+r+n, with n = dimFp

Gal(kelS |k) = dimFp
H1(GS).

Assume now that we are given
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• a set of primes T of k with T ∩ S = ∅ and with p-density ∆p
k(T ) = 1,

• a nonzero element F ∈ Gal(kelS |k) = Gal(kelS (µp)|k(µp)),
• to each pi, i = 1, . . . ,m, a condition Ci which says “split” or “inert”.

By Čebotarev’s density theorem applied to the extension KkelS (µp)|k(µp), we
find a prime P ∈ T (KkelS (µp)) such that

• the image of FrobP in Gal(k(µp, p
√
e1, . . . , p

√
er)|k(µp)) is trivial,

• the image of FrobP in Gal(k(µp, p
√
si)|k(µp)) is trivial if Ci is “split” and

nontrivial otherwise, and
• the image of FrobP in Gal(kelS (µp)|k(µp)) is equal to F .

Let p ∈ T be the restriction of P to k. Then the natural map O×k /p→ k×p /k
×p
p

is the zero map. Since pCl(k) = 0, we obtain O×k /p
∼→ V∅(k) = V{p}(k). By

Theorem 3.4, kel{p}|k is cyclic of order p and p is ramified in this extension.
Recall that H1

nr (Gp) is defined as the exact annihilator of the inertia group
Tp(kelp |kp) ⊂ H1(Gp) in the natural pairing

H1(Gp)×H1(Gp) −→ Fp.

Dually, Tp(kelp |kp) is the exact annihilator ofH1
nr (Gp). The equation Tp(kel{p}|k) =

Gal(kel{p}|k) yields an isomorphism

H1(G{p})
∼−→ H1(Gp)/H1

nr (Gp).

By class field theory, pi splits in kel{p}|k if and only if there exists an element
s′i ∈ k×/k×p with vpi

(s′i) ≡ 1 mod p, vq(s′i) ≡ 0 mod p for all q 6= pi and
s′i ∈ k

×p
p . Then s′i/si lies in O×k /p, and therefore si ∈ k×pp . Hence pi splits in

kel{p}|k if and only if si is a p-th power in kp. On the other hand, by our choice
of P, si is a p-th power in kp if and only if Ci is “split”. Therefore the following
holds:

• the natural map O×k /p→ k×p /k
×p
p is the zero map,

• Frobp = F ∈ Gal(kelS |k),
• kel{p}|k is cyclic of order p,
• each pi, i = 1, . . . ,m, satisfies condition Ci in kel{p}|k.

Now assume that BSr {q}(k) = 0 for all q ∈ S, in particular, S is p-large.
Then all pi ∈ S ramify in kelS |k and the 1-dimensional subspaces Tpi(k

el
S |k),

i = 1, . . . ,m, in H1(GS) are pairwise different and generate H1(GS). Further-
more assume that δ2

S(k) = 0. As p does not split completely in kelS |k, Lemma 4.4
implies δ2

S∪{p}(k) = 0. Since µp 6⊂ k and by Theorem 3.4, the natural maps
H2(GS) →

∏
q∈S H

2(Gq) and H2(GS∪{p}) →
∏

q∈S∪{p}H
2(Gq) are isomor-

phisms. We denote the q-component of a global cohomology class α by αq.

Next we fix a primitive p-th root of unity in k(µp) and to each p1, . . . , pm
a prolongation to k(µp). After this choice we have identifications µp(kp) =
µp((KkelS )P) ∼= Fp and µp(kpi) ∼= Fp, i = 1, . . . ,m. In particular, we have an
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isomorphism H2(Gp) = H2(Gp, µp) = Fp, and similarly for the pi. Via these
isomorphisms we consider the q-component αq of a class α ∈ H2(GS∪{p}) as an
element in Fp. Let

πp ∈ H1(Gp)/H1
nr (Gp) = H1(Gp, µp)/H1

nr (Gp, µp) = k×p /Upk
×p
p

be the image of a uniformizer and let χp ∈ H1(G{p}) be the unique pre-image.
We denote the image of χp in H1(GS∪{p}) by the same letter. Thus χp maps
to πp under the natural map H1(GS∪{p}) → H1(Gp)/H1

nr (Gp). Consider the
exact pairing

H1
nr (Gp)×H1(Gp)/H1

nr (Gp)→ H2(Gp) = Fp,

which is induced by local Tate duality, see [NSW], Thm. 7.2.15. Let δ : k×p /k
×p
p
∼→

H1(Gp) be the boundary isomorphism of the Kummer sequence and let rec :
k×p /k

×p
p
∼→ H1(Gp) be the mod-p reciprocity map. Put ϕ = rec ◦ δ−1. Then the

image of χp under the composition

H1(GS) −→ H1(Gp)
φ−→ H1(Gp) −→ H1(GS)

is Frobp, the Frobenius automorphism of the unramified prime p in kelS |k. By
[NSW], Prop. 7.2.13 2), the diagram

H1(Gp) × H1(Gp) ∪−→ H2(Gp)∥∥∥ yo ϕ yo inv

H1(Gp) × H1(Gp) can−→ Fp

commutes. We obtain for any χ ∈ H1(GS) ⊂ H1(GS∪{p}) the following formula
for the p-component of χ ∪ χp ∈ H2(GS∪{p}):

(χ ∪ χp)p = χ(Frobp).

The image of χp in H1(Gpi
) obviously lies in the subgroup H1

nr (Gpi
). By the

same argument, noting that the cup-product is anti-symmetric, we obtain the
equality

(χ ∪ χp)pi = −χp(Frobpi),

for any χ ∈ H1(GS) mapping to πpi ∈ H1(Gpi)/H
1
nr (Gpi), where Frobpi is

the Frobenius automorphism of the unramified prime pi in kel{p}|k. As χp is
unramified at pi, the element (χ ∪ χp)pi

depends only on the image of χ in the
one-dimensional Fp-vector space H1(Gpi)/H

1
nr(Gpi). Since pi ramifies in kelS |k,

the map H1(GS) → Fp, χ 7→ (χ ∪ χp)pi is the linear form associated to an
element ti ∈ Tpi

(kelS |k) ⊂ H1(GS).

Summing up and using the notation and choices above, we obtain the
2This proposition contains a sign error, see the errata file on the author’s homepage.
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Lemma 6.1. Let k be a number field and let p be a prime number with µp 6⊂ k
and Cl(k)(p) = 0. Let S = {p1, . . . , pm} be a finite p-large set of primes and
assume δ2

S(k) = 0. Let for i = 1, . . . ,m elements εi ∈ {0, 1} and for i = 1, . . . , n
elements di ∈ Fp be given, where not all di are zero. Let χ1, . . . , χn be a basis
of H1(GS). Furthermore, let T be a set of primes of p-density ∆p(T ) = 1 and
with T ∩ S = ∅.

Then there exists a prime p ∈ T such that the following conditions hold with
respect to the identifications H2(Gpi

) = Fp, i = 1, . . . ,m, and H2(Gp) = Fp.

• p does not split completely in kelS |k,
• kel{p}|k is cyclic of order p,

• χ1, . . . , χn, χp is a basis of H1(GS∪{p}),
• (χi ∪ χp)p = di for i = 1, . . . , n,
• For i = 1, . . . ,m we have ci = 0 if and only if εi = 0, where ci ∈
Tpi

(kelS |k) ⊂ H1(GS) represents the map H1(GS)→ Fp, χ 7→ (χ ∪ χp)pi
.

Now we are able to prove the following result, which is unessentially sharper
than Theorem 1 of the introduction.

Theorem 6.2. Let k be a number field and let p be a prime number such that

µp 6⊂ k and Cl(k)(p) = 0.

Let S be a finite set of primes of k and let T be a set of primes of p-density
∆p(T ) = 1. Then there exists a finite subset T1 ⊂ T such that Spec(Ok) r (S ∪
T1) is a K(π, 1) for p.

Proof. We may suppose that T ∩ S = ∅. After moving finitely many primes of
T to S, we may assume that the following conditions hold:

• BSr {p}(k) = 0 for all p ∈ S,
• δ2

S(k) = 0.

Now let S = {p1, . . . , pm}. Then m = h2(GS). Let n = m − r = h1(GS). We
will achieve the K(π, 1)-situation by adding m further primes to S.

We choose any basis χ1, . . . , χn of H1(GS). Let t1, . . . , tm be generators
of the inertia groups Tpi

(kelS |k) ⊂ H1(GS). Now we add a prime pm+1 in the
following way:

Let i1 ∈ {1, . . . , n} be an index such that χi1(t1) 6= 0, and let i′1 ∈ {1, . . . , n},
i′1 6= i1, be any other index. Now, according to Lemma 6.1, we put the conditions

ε1 = 1 and εi = 0 for i ∈ {2, . . . ,m},

di′1 = 1 and di = 0 for i ∈ {1, . . . , n}, i 6= i′1

to choose a prime pm+1 ∈ T such that for i = 1, . . . , n

(χi ∪ χpm+1)p1 = λ1χi(t1), λ1 ∈ F×p , (χi ∪ χpm+1)pj
= 0, j = 2, . . . ,m

and (χi ∪ χpm+1)pm+1 = di.
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Then in the matrix (
(χi ∪ χpm+1)pj

)
i=1,...,n

j=1,...,m+1

the i1-line has entry 6= 0 at (i1, 1) and all other entries zero, while the i′1-line
has some entry at (i′1, 1), the entry 1 at (i′1,m+ 1) and all other entries zero.

In order to proceed, we put χn+1 = χpm+1 and choose an index i2 ∈
{1, . . . , n} with χi2(t2) 6= 0 and any i′2 ∈ {1, . . . , n} with i′2 6= i2. We choose
conditions as before, completed by εm+1 = 0 and dn+1 = 0. Then we choose
pm+2 according to Lemma 6.1 and such that in the matrix(

(χi ∪ χpm+2)pj

)
i=1,...,n

j=1,...,m+2

the i2-line has entry 6= 0 at (i2, 2) and all other entries zero, while the i′2-line
has some entry at (i′2, 2), the entry 1 at (i′2,m + 2) and all other entries zero.
In addition, our choice implies

(χpm+1 ∪ χpm+2)pm+1 = 0 = (χpm+1 ∪ χpm+2)pm+2

As χpm+1 and χpm+2 are unramified at p1, . . . , pm by construction, we have
furthermore (χpm+1 ∪ χpm+2)pi

= 0 for i = 1, . . . ,m.

Now we proceed to construct pm+3, . . . , p2m in a similar way, and apply
Theorem 5.5 with a = m. For each j, the j-th of the m-steps in the construction
produced the two lines ((ij , j),−) and ((i′j , j),−) in the nm×2m-matrix(

(χi ∪ χpj
)pk

)
i=1,...,n,j=m+1,...,2m

k=1,...,2m

According to our choices these 2m lines are linearly independent, hence the ma-
trix has rank 2m. Putting T1 = {pm+1, . . . , p2m}, we conclude by Theorem 5.5
that GS∪T1 is a mild pro-p-group. Hence cd GS∪T1 = 2 by Theorem 5.3. By
Lemma 4.4, we didn’t produce new h2-defect during our construction, hence
δ2
S∪T1

(k) = 0. As the étale cohomology is trivial in dimension ≥ 3, we conclude
that the homomorphisms

φi : Hi(GS∪T1 ,Z/pZ) −→ Hi
et(Spec(Ok) r (S ∪ T1),Z/pZ)

are isomorphisms for all i ≥ 0. Hence condition (v) of Proposition 2.1 is satisfied.

7 Consequences of the K(π, 1)-property

In this section we assume that S is finite and we exclude the case S = ∅ from
our considerations. Keeping all conventions made before, we assume

p 6= 2 or k is totally imaginary and S is a non-empty finite set of nonar-
chimedean primes p with norm N(p) ≡ 1 mod p.
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Lemma 7.1. GS is a fab-group, i.e. the abelianization Uab of every open sub-
group U of GS is finite.

Proof. Let U ⊂ GS be an open subgroup. The abelianization Uab of U is
a finitely generated abelian pro-p-group. If Uab were infinite, it would have a
quotient isomorphic to Zp, which by Galois theory corresponds to a Zp-extension
K∞ of the number field K = kUS inside kS . By [NSW], Theorem 10.3.20 (ii), a
Zp-extension of a number field is ramified at at least one prime dividing p. This
contradicts K∞ ⊂ kS and we conclude that Uab is finite.

The group theoretical structure of the local Galois groups is well known.

Proposition 7.2. Let p ∈ S. Then Gal(kp(p)|kp) is the pro-p-group on two
generators σ, τ subject to the relation στσ−1 = τ q. The element τ is a generator
of the inertia group, σ is a Frobenius lift and q = N(p).

Proof. This follows from [NSW], Thm. 7.5.2 by passing to the maximal pro-p-
factor group.

We obtain the following corollary.

Corollary 7.3. Assume that GS is infinite. Then, for each p ∈ S, the decom-
position group Gp of p in GS has infinite index.

Proof. The decomposition group Gp is a quotient of the local Galois group
Gal(kp(p)|kp). If Gp ⊂ GS would have finite index, it would be an infinite fab-
group by Lemma 7.1. By Proposition 7.2, each infinite quotient of Gal(kp(p)|kp)
has a surjection to Zp and is therefore not a fab-group. This contradiction shows
that Gp has infinite index in GS .

The next proposition classifies the degenerate K(π, 1)-case.

Proposition 7.4. X rS is a K(π, 1) and GS = 1 if and only if S = {p} consists
of a single prime and one of the following cases occurs.

(a) p = 2, k 6= Q(
√
−1) is imaginary quadratic, 2 - hk and N(p) 6≡ 1 mod 4,

(b) p = 2, k = Q(
√
−1) and N(p) 6≡ 1 mod 8,

(c) p = 3, k = (Q
√
−3) and N(p) 6≡ 1 mod 9.

Proof. Assume GS = 1 and that X rS is a K(π, 1). Then Hi
et(X rS) = 0 for

all i ≥ 1. In particular, p - hk. By Theorem 3.4, h2(X rS) = 0 implies δ = 1,
#S = 1 and VS = 0. Then, using h1(X rS) = 0, we obtain r = 1. As δ = 1,
the following possibilities remain

(a) p = 2, k 6= Q(
√
−1) is imaginary quadratic and 2 - hk,

(b) p = 2, k = Q(
√
−1),
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(c) p = 3, k = (Q
√
−3).

In all cases, Proposition 3.3 yields an isomorphism O×k /p
∼→ V∅. The second

exact sequence of Proposition 3.3 and the isomorphism Up/p ∼= Upk
×p
p /k×pp

imply
0 = VS = ker

(
O×k /p→ Up/p

)
.

Note that O×k /p is one-dimensional. In case (a), the unit −1 is a generator of
O×k /2 which must not be a square in Up, implying N(p) 6≡ 1 mod 4. In case (b),√
−1 is a generator, and in case (c), a generator is given by ζ3 = 1

2 (−1 +
√
−3).

The assertions in the cases (b) and (c) follow similarly. Conversely, assume we
are in case (a), (b) or (c). Then we can reverse the given arguments and obtain
hi(X rS) = 0 for all i ≥ 1.

Theorem 7.5. AssumeGS 6= 1 and thatX rS is aK(π, 1). Then the following
holds.

(i) cdGS = 2, scdGS = 3.

(ii) GS is a duality group (of dimension 2).

Proof. By Lemma 7.1 and Corollary 3.5, GS is a fab-group and cd GS ≤ 2. Now
the assertions follow in a purely group-theoretical way:

As GS 6= 1 and Gab
S is finite, GS is not free, and we obtain cd GS = 2. By

[NSW], Proposition 3.3.3, it follows that scd GS ∈ {2, 3}. Assume scd G = 2.
We consider the GS-module

D2(Z) := lim−→
U

Uab,

where the limit runs over all open normal subgroups U �GS and for V ⊂ U the
transition map is the transfer Ver : Uab → V ab, i.e. the dual of the corestriction
map cor : H2(V,Z) → H2(U,Z) (see [NSW], I, §5). By [NSW], Theorem 3.6.4
(iv), we obtain Gab

S = D2(Z)GS . On the other hand, Uab is finite for all U
and the group theoretical version of the Principal Ideal Theorem (see [Ne],
VI, Theorem 7.6) implies D2(Z) = 0. Hence Gab

S = 0 which implies GS = 1
producing a contradiction. Hence scdGS = 3.

It remains to show that GS is a duality group. By [NSW], Theorem 3.4.6,
it suffices to show that the terms

Di(GS ,Z/pZ) := lim−→
U

Hi(U,Z/pZ)∨

are zero for i = 0, 1. Here U runs through the open subgroups of GS , ∨ denotes
the Pontryagin dual and the transition maps are the duals of the corestriction
maps. For i = 0, and V $ U , the transition map

cor∨ : Z/pZ = H0(V,Z/pZ)∨ → H0(U,Z/pZ)∨ = Z/pZ
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is multiplication by (U : V ), hence zero. Therefore D0(GS ,Z/pZ) = 0, as GS is
infinite. Furthermore,

D1(GS ,Z/pZ) = lim−→
U

Uab/p = 0

by the Principal Ideal Theorem. This finishes the proof.

In order to proceed, we introduce some notation in order to deal with the
case of infinite extensions. For a (possibly infinite) algebraic extension K of
k we denote by S(K) the set of prolongations of primes in S to K. The set
S(K) carries a profinite topology in a natural way. Now assume that M |K|k is
a tower of Galois extensions. We denote the inertia group of a prime p ∈ S(K)
in the extension M |K by Tp(M |K). For i ≥ 0 we write⊕′

p∈S(K)

Hi(Tp(M |K),Z/pZ)
df
= lim−→
k′⊂K

⊕
p∈S(k′)

Hi(Tp(M |k′),Z/pZ),

where the limit on the right hand side runs through all finite subextensions k′

of k in K. The Gal(K|k)-module
⊕′

p∈S(K)H
i(Tp(M |K),Z/pZ) is the maximal

discrete submodule of the product
∏

p∈S(K)H
i(Tp(M |K),Z/pZ).

Whenever we deal with local terms associated to the elements of S(K) (e.g.
étale cohomology groups) we use restricted sums, which are, in the same manner
as above, defined as the inductive limit over the similar terms associated to all
finite subextensions of k in K.

A natural question is how far we get locally at the primes in S when going
up to kS .

Proposition 7.6. Assume that X rS is a K(π, 1) and that GS 6= 1. Then kS
realizes the maximal unramified p-extension of kp for all p ∈ S, i.e.

knrp (p) ⊂ (kS)p for all p ∈ S.

If p ∈ S ramifies in kS , then (kS)p = kp(p), i.e. kS realizes the maximal p-
extension of kp.

Proof. For an integral normal scheme Y we write YL for the normalization of Y
in an algebraic extension L of its function field. Then (X rS)kS

is the universal
pro-p covering of X rS. We consider the following part of the excision sequence
for the pair (XkS

, (X rS)kS
)

H2
et((X rS)kS

)→
⊕′

p∈S(kS)

H3
p((XkS

)p)→ H3
et(XkS

).

As GS is infinite, Lemma 3.7 implies H3
et(XkS

) = 0. By condition (iii) of
Proposition 2.1 we have H2

et((X rS)kS
) = 0. Hence H3

p((XkS
)p) = 0 for all

p ∈ S(kS). As Hi
et((XkS

)p) = 0 for i ≥ 2, we obtain

H3
p((XkS

)p) ∼= H2((kS)p),
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where the group on the right hand side is Galois cohomology with values in
Z/pZ. As µp ⊂ kp by assumption, the vanishing of H2((kS)p) implies p∞ |
[(kS)p : kp]. In other words, the decomposition group Gp(kS |k) of each p ∈ S
is infinite. As a subgroup of GS , it has cohomological dimension ≤ 2. Further-
more, Gp(kS |k) is a factor group of the local Galois group Gal(kp(p)|kp), which,
by Proposition 7.2, has only three quotients of cohomological dimension less or
equal to 2: itself, the trivial group and the Galois group of the maximal unram-
ified p-extension of kp. Hence knrp (p) ⊆ (kS)p and (kS)p = kp(p) if p ramifies in
kS .

In order to deduce Theorem 3, it remains to show that each p ∈ S ramifies
in kS . The following lemma provides a first step.

Lemma 7.7. Let p ∈ S be a prime and let S′ = Sr {p}. Assume that the
natural injection VS ↪→ VS′ is an isomorphism. Then p ramifies in kS .

Proof. Since the map H1(GS) → H1
et(X rS) is an isomorphism, Theorem 3.4

implies
dimFp

H1(GS) = 1 + #S − δ + dimFp
VS − r,

and the same formula holds with S replaced by S′. Hence

dimFp H
1(GS) = dimFp H

1(GS′) + 1 .

In particular, GS′ is a proper quotient of GS and therefore p ramifies in kS .

Corollary 7.8. Assume that X rS is a K(π, 1) and that GS 6= 1. Let p ∈ S
be a prime and let S′ = Sr {p}. Assume that VS′ = 0. Then (kS)p = kp(p).

Remark: If V∅ = 0, then the given criterion applies to any set S and each
p ∈ S. This was used in [S1] for k = Q and in [Vo] for imaginary quadratic
number fields. If the unit rank of k is non-zero, then V∅ 6= 0 and the criterion
applies only to sufficiently large sets S.

8 Enlarging the set of primes

Next we consider the problem of enlarging the set S.

Proposition 8.1. Let S ⊂ S′ be finite sets of primes of norm congruent to 1
modulo p. Assume that X rS is a K(π, 1) and that GS 6= 1. Further assume
that each q ∈ S′rS does not split completely in kS . Then the following holds.

(i) X rS′ is a K(π, 1).

(ii) (kS′)q = kq(p) for all q ∈ S′rS.
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Furthermore, Hi(Gal(kS′ |kS)) = 0 for i ≥ 2. For i = 1 we have a natural
isomorphism

H1(Gal(kS′ |kS)) ∼=
⊕′

p∈S′ rS(kS))

H1(Tp(kS′ |kS)),

In particular, Gal(kS′ |kS) is a free pro-p-group.

Proof. Let q ∈ S′rS. Since q does not split completely in kS and since
cd GS = 2, the decomposition group of q in kS |k is a non-trivial and torsion-
free quotient of Zp ∼= G(knrq (p)|kq). Therefore (kS)q is the maximal unramified
p-extension of kq. We denote the normalization of an integral normal scheme
Y in an algebraic extension L of its function field by YL. Then (X rS)kS

is
the universal pro-p covering of X rS. We consider the étale excision sequence
for the pair ((X rS)kS

, (X rS′)kS
). By assumption, X rS is a K(π, 1), hence

Hi
et((X rS)kS

) = 0 for i ≥ 1 by condition (iii) of Proposition 2.1. This implies
isomorphisms

Hi
et

(
(X rS′)kS

) ∼→ ⊕′

p∈S′ rS(kS)

Hi+1
p

(
((X rS)kS

)p

)
for i ≥ 1. As kS realizes the maximal unramified p-extension of kq for all
q ∈ S′rS, the schemes ((X rS)kS

)p, p ∈ S′rS(kS) have trivial cohomology
with values in Z/pZ and we obtain isomorphisms

Hi((kS)p) ∼→ Hi+1
p

(
((X rS)kS

)p

)
for i ≥ 1. These groups vanish for i ≥ 2. This implies

Hi
et((X rS′)kS

) = 0

for i ≥ 2. The scheme (X rS′)kS′ is the universal pro-p covering of (X rS′)kS
.

The Hochschild-Serre spectral sequence yields an inclusion

H2(Gal(kS′ |kS)) ↪→ H2
et((X rS′)kS

) = 0.

Hence Gal(kS′ |kS) is a free pro-p-group and

H1(Gal(kS′ |kS)) ∼→ H1
et((X rS′)kS

) ∼=
⊕′

p∈S′ rS(kS)

H1((kS)p).

This shows that each p ∈ S′rS(kS) ramifies in kS′ |kS , and since the Galois
group is free, kS′ realizes the maximal p-extension of (kS)p. In particular,

H1(Tp(kS′ |kS)) ∼= H1((kS)p)

for all p ∈ S′rS(kS). Using that Gal(kS′ |kS) is free, the Hochschild-Serre
spectral sequence induces an isomorphism

0 = H2
et((X rS′)kS

) ∼−→ H2
et((X rS′)kS′ )

Gal(kS′ |kS).

Hence H2
et((X rS′)kS′ ) = 0, since Gal(kS′ |kS) is a pro-p-group. Condition (iii)

of Proposition 2.1 implies that X rS′ is a K(π, 1).
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Corollary 8.2. Assume that X rS is a K(π, 1), and let S ⊂ S′ be a finite
set of primes of norm ≡ 1 mod p. Assume that each q ∈ S′rS does not split
completely in kS . Then the arithmetic form of Riemann’s existence theorem
holds, i.e. the natural homomorphism

∗
p∈S′\S(kS)

Tp(kS′ |kS) −→ Gal(kS′ |kS)

is an isomorphism. Here Tp is the inertia group and ∗ denotes the free pro-p-
product of a bundle of pro-p-groups, cf. [NSW], Ch. IV, §3.

Proof. By Proposition 8.1 and by the calculation of the cohomology of a free
product ([NSW], 4.3.10 and 4.1.4), φ is a homomorphism between free pro-p-
groups which induces an isomorphism on mod p cohomology. Therefore φ is an
isomorphism.

9 Proof of Theorems 3 and 5

Theorem 9.1. Assume that X rS is a K(π, 1) and GS 6= 1. Then kS realizes
the maximal p-extension kp(p) of the local field kp for all p ∈ S.

Proof. The decomposition groups of primes in S have infinite index by Corol-
lary 7.3. By Corollary 2.2, we may replace k by a finite subextension in kS , and
therefore assume that #S ≥ 2.

By Proposition 7.6, it suffices to show that each p ∈ S ramifies in kS . Let
p ∈ S be a prime which does not ramify in kS and put S′ = Sr {p}. By
Lemma 7.7, the natural injection φ : VS ↪→ VS′ is not an isomorphism. By
Proposition 3.3, the cokernel of φ is one-dimensional. By Theorem 3.4, we
obtain

h2(X rS′) = h2(X rS).

As GS = GS′ , we have cdGS′ = 2 and

h2(GS) = h2(GS′) ≤ h2(X rS′) = h2(X rS).

As X rS is a K(π, 1), equality holds. Therefore the injection H2(GS′) ↪→
H2

et(X rS′) is an isomorphism. By Corollary 3.5, X rS′ is a K(π, 1). By
Proposition 7.6, p does not split completely in kS′ = kS . By Proposition 8.1,
kS realizes the maximal p-extension of kp. This yields a contradiction.

Now we are in the position to show Theorem 5.

Proof of Theorem 5. We have H2
et((X rS)kS

) = 0 by condition (iii) of Propo-
sition 2.1. By Theorem 9.1, the local cohomology groups H2

p((XkS
)p) van-

ish for all p ∈ S(kS). Therefore the excision sequence yields H2
et(XkS

) = 0.
By the flat duality theorem of Artin-Mazur ([Mi], III Corollary 3.2) we have
H2

et(XK)∨ ∼= H1
fl (XK , µp) for each finite subextension K of k in kS . Hence

lim←−
K⊂kS

H1
fl (XK , µp) = 0.
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The flat Kummer sequence 0→ µp → Gm
·p→ Gm → 0 implies compatible exact

sequences
0→ O×K/p→ H1

fl (XK , µp)→ pH
1
fl (XK ,Gm)

for all K. We obtain
lim←−
K⊂kS

O×K/p = 0 .

The topological Nakayama-Lemma (see [NSW], Corollary 5.2.8) for the compact
Zp-module lim←−O

×
K ⊗ Zp therefore implies

lim←−
K⊂kS

O×K ⊗ Zp = 0 .

Tensoring the exact sequences (cf. [NSW], Lemma 10.3.11)

0→ O×K → O
×
K,S →

⊕
p∈S(K)

(K×p /Up)→ Cl(K)→ ClS(K)→ 0

by (the flat Z-algebra) Zp, we obtain exact sequences of finitely generated,
hence compact, Zp-modules. The field kS admits no unramified p-extensions.
Therefore class field theory implies lim←−K Cl(K)(p) = 0, where K runs through
all finite subextensions of k in kS . Thus, passing to the projective limit over K,
we obtain the exact sequence

0→ lim←−
K⊂kS

O×K ⊗ Zp → lim←−
K⊂kS

O×K,S ⊗ Zp → lim←−
K⊂kS

⊕
p∈S(K)

(K×p /Up)⊗ Zp → 0.

As kS realizes the maximal unramified p-extension of kp for all p ∈ S, local class
field theory implies the vanishing of the right hand limit. Therefore the result
for the S-units follows from the corresponding result for the units.

We have proven all assertions but the statement on the dualizing module in
Theorem 2. In [S1], Th. 5.2 we showed this statement under the assumption that
kS realizes the maximal p-extension kp(p) of kp for all p ∈ S. This assumption
has been shown above, hence the result follows.
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