
Errata and complementary remarks for:
Cohomology of Number Fields second ed. (2008) (by J. Neukirch, A. Schmidt, K. Wingberg)

This file lists a number of mistakes in the second edition and gives some remarks on the text which either did not find their way
into the book, or refer to results which were proven after the book was written.

This file is not maintained anymore. If you find a mistake not listed below or have a comment, please have a look at the free
online edition and its errata-file, available on my homepage.

-p. 36, l. 13 (noticed by L. Wan) replace ‘exercise 4’ by ‘exercise 3’.
-p. 42, l.2 (noticed by J. Gärtner) replace ‘homomorphisms’ by ‘bilinear maps’.
-p. 42, l.-2, p. 43, l.8 and l. 14 (noticed by J. Gärtner) replace ‘×’ by ‘⊗’.
-p. 61, l.5 (noticed by Z. Chen) replace ‘open’ by ‘closed’.
-p. 90, l. 17 (noticed by L. Wan) change A to A′ in the last term.

-p. 94, l. -1 (noticed by L. Wan) replace ‘ δ→ Ĥ0(G,A) → Ĥ0(G,B) → Ĥ0(G,C)’ by ‘ δ→ Ĥ0(G,A′) → Ĥ0(G,A) →
Ĥ0(G,A′′)’.
-p. 100, l. 10 remove the second ‘if’ (to avoid logical confusion).
-p. 101, l. 17 (noticed by T. Wunder) replace ‘fn+1 ◦ dn = dn+1 ◦ fn’ by ‘fn+1 ◦ dn = dn ◦ fn’.
-p. 106, l. 4 (noticed by L. Wan) replace ‘below’ by ‘above’.
-p. 107, l. 17 (noticed by L. Wan) replace ‘An−1’ by ‘0’.
-p. 109, l. 7 (noticed by L. Wan) replace ‘A2p+q+1’ by ‘Ap+q+1’.
-p. 113, l. -3 (noticed by L. Wan) replace ‘x1,σ − b1,σ(σ)’ by ‘x1,σ + b1,σ(σ)’.

-p. 117, l. 3 (noticed by L. Wan) replace ‘d0,1
2 (z)’ by d0,1

2 (ε)’.
-p. 157, l. -4 (noticed by T. Wunder): missing comma: replace ‘ lim←−

U def

’ by ‘ lim←−
U, def

’.

-p. 165, l. -4 (noticed by A. Leesch) replace ‘0’ by ‘1’.
-p. 178, l. -9 (noticed by J. Stix) replace ‘Xn+1’ by ‘Xn−1’.
-p. 180, l. -11 (noticed by P. Barth) replace ‘open neighbourhoods of the identity element’ by ‘open subgroups’.
-p. 181, l. 11 (noticed by P. Barth) replace ‘cd G = n’ by ‘cd G ≤ n’.
-p. 181, l. 16 (noticed by P. Barth) add the assumption cdp G/H <∞ in exercise 4.
-p. 187 proof of (3.4.7) (noticed by J. Stix) replace the exponent n (resp. n+ 1 and n− 1) of p by m (resp. m+ 1 and m− 1).
-p. 191, l. -6 (noticed by P. Barth) replace ‘an’ by ‘a’.
-p. 197, l. 5 (noticed by L. Wan) replace ‘ψ′(σ)ψ−1(σ)’ by ‘ψ′(σ)ψ(σ)−1’.
-p. 204, l. -11 (noticed by L. Wan) replace ‘#U/V = pn−1’ by ‘#U/W = pn−1’.
-p. 205, l. 1–3. (noticed by L. Wan) replace the text following ‘otherwise’ by ‘1 = pn−1uU/V = pn−2i(uU/W ) by (3.6.1). As i
is injective, this implies pn−2uU/W = 1, contradicting the induction hypothesis.
-p. 210, l. -1 (noticed by L. Wan) replace ‘scd ’ by ‘scdp’ (twice).
-p. 210, l. 10 replace ‘II §1’ by ‘II §5’.
-p. 213, l. 10 see Theorem 1 of our paper Extensions of profinite duality groups for the most general version of Theorem 3.7.4
known to us.
-p. 213, l. -12 replace ‘Eij2 (h,A)’ by ‘Eij2 (g, h,A)’.
-p. 213, l. -8 replace ‘see II §1, ex.4’ by ‘see II §4, ex.3’.
-p. 214, l. 4 replace ‘lim−→

g

lim−→
h′

’ by ‘lim−→
h′

lim−→
g/h

’.

-p. 224 ff. (noticed by P. Barth) There is sloppy notation in the whole section III, §9. A generator system is not a subset S ⊆ G,
but a family S = (gi)i∈I of elements of G. Otherwise several statements of this section become incorrect as they stand.
-p. 224 l. -3 Replace ‘generators’ by ‘generator’.
-p. 226, l. -7 (noticed by Z. Chen) replace ‘In this case’ by ‘If R is finite and minimal’.
-p. 227, l. 12 replace ‘open neighbourhoods of the identity element’ by ‘open subgroups’.
-p. 229, l. -4 (noticed by P. Barth) replace ‘Equivalently’ by ‘It follows that’.
-p. 235, l. 15 (noticed by J. Gärtner) replace ‘χ1 ∪ χ2’ by ‘χk ∪ χl’.
-p. 248, l. 15 (noticed by P. Barth) correct this line to

0→ AG(c)→ A(c)→
⊕
i∈I

(A/AGi)(c)
δ→ H1(G,A)

res→
⊕
i∈I

H1(Gi, A)→ 0.
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-p. 264, l. -7 (noticed by P. Barth) correct this line to

0→ AG(c)→ A(c)→
⊕
t∈T

′
(A/AGt)(c)

δ→ H1(G,A)
res→
⊕
t∈T

′
H1(Gt, A)→ 0.

-p. 277, l. 7 (noticed by P. Barth) replace ‘and’ by ‘which’.
-p. 284, l. 11 (noticed by M. Witte) It is not true in a general (noncommutative) ring that any nilpotent element is contained in
the radical. Hence here is a gap in the argument which can be filled as follows. We start with the following observation: let K be
a field of characteristic p > 0 and let P be a finite p-group. Then (same argument as in the proof 1.6.13), K with trivial P -action
is the only simple left K[P ]-module. Hence the augmentation ideal in K[P ] is the only left maximal ideal and thus equal to the
radical. Since the radical of an artinian ring is nilpotent, we find a natural number n such that

∏n
i=1(xi− 1) = 0 in K[P ] for any

elements x1, . . . , xn ∈ P .
Now we return to the proof of 5.2.16 c)⇒a). Using the identity g(u − 1)g′(u′ − 1) = gg′((g′)−1ug′ − 1)(u′ − 1) and the

observation above, we conclude that the image of a(u − 1) in O/m[G/V ] is nilpotent for any a ∈ O[[G]], u ∈ U . Hence the
image of 1− a(u− 1) is unit for any a, and so u− 1 is contained in the radical of O/m[G/V ].
-p. 298, l. 5 (noticed by A. Leesch) one should not use T as the variable of the characteristic polynomial of the endomorphism T :
replace ‘Tλ’ by ‘Xλ’.
-p. 337, l.-8 (noticed by Z. Chen) ‘(1.6.2)(c)’ is a more precise reference than ‘(1.6.1)’.
-p. 341, l.2ff (noticed by N. Naumann) The map ℘ := F − id is not given explicitly as written here (addition in Wn is not
component-wise). Furthermore, one needs the assumption that R is an integral domain in order to conclude that Wn(Fp) ∼=
Z/pnZ is the kernel of ℘ : Wn(R)→Wn(R).
-p. 341, l.13 (noticed by N. Naumann) The surjectivity of ℘ : Wn(K̄)→Wn(K̄) in the sequence (∗) is obvious only in the case
n = 1. For n > 1 one can argue by induction using the exact diagram

0 // Wn(K̄)
V //

℘
����

Wn+1(K̄) //

℘

��

W1(K̄) //

℘
����

0

0 // Wn(K̄)
V // Wn+1(K̄) // W1(K̄) // 0.

-p. 358, l.8 ‘replace ‘Xn’ by ‘XN ’.
-p. 358, l.16,17 (noticed by Z. Chen) add the subscript ‘Fi’ to ‘(1− ai, ai)’ and ‘(1− ai, aNi )’.
-p. 358, l. -8 The Bloch-Kato conjecture has been proven in the meantime, see [Vo].
-p. 359, l.17 (noticed by Z. Chen) replace ‘K’ by ‘F ’.
-p. 367, l. 12 (noticed by L. Wan) replace ‘algebraic’ by ‘separable’.
-p. 369, l. 7 (noticed by J.-L. Colliot-Thélène) In fact, this is known: Qp is not Ci for any i, see [AK] (see also the review of D.
Coray in mathscinet). In contrast, notice that the fields Fp((X)) are C2, see [60], Cor. 4.9.
-p. 369, l.12 (we forgot to update this sentence) A proof of the Milnor conjecture has been published by Voevodsky in [242],
[243] (cf. (6.4.4)(ii))
-p. 371, l. -9 (noticed by A. Leesch) replace ‘0’ by ‘1’.
-p. 376, l. 4 (noticed by T. Keller) replace ‘III §1 ex. 5’ by ‘III §1 ex. 4’
-p. 377, l. 3–5 (noticed by T. Keller) replace these lines by
‘together with cdpΓ = 1 yields by (2.1.4)

Hi+1(k,A) ∼= Hi(Γ,H1(k̃, A)) = 0 for i ≥ 2,
hence cdp(k) ≤ 2.’
Furthermore, it would be quicker to refer to (3.3.8) in order to conclude that cdp(k) ≤ 2.
-p. 393, l. 12ff (noticed by J. Stix) The proof of (i) is incorrect (A is not an F`[G]-module). Replace the proof by the following:
Proof: We prove (ii) first. Using a filtration of V/W by Z`[G]-modules such that the subquotients are F`[G]-modules, we may
assume that V/W is an F`[G]-module. Consider the diagram

0 // W //

`

��

V //

`

��

V/W //

`

��

0

0 // W // V // V/W // 0.

The snake lemma gives the exact sequence
0 −→ `W −→ `V −→ V/W −→W` −→ V` −→ V/W −→ 0,

and hence the result. Assertion (i) follows by applying (ii) to V = A, W = 0.
-p. 395, proof of (7.3.4) (noticed by L. Yongqi) Delete the sentence starting in line -13 and then argue as follows: Let H =
H(`′) × H` be a cyclic subgroup of G where H` is the `-Sylow subgroup of H . Let M be a simple F`[H]-module. By
(1.6.13), MH` 6= 0. Since MH` is also an H-module, we obtain M = MH` , hence an isomorphism of F`[H]-modules
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IndH
(`′)

H ResH
H(`′)M ∼= M ⊗Z F`[H`]. Therefore the class of IndH

(`′)

H ResH
H(`′)M in K ′0(F`[H]) is n[M ], where #H` = `n, and

so the images of K ′0(F`[H])⊗Q and K ′0(F`[H(`′)])⊗Q under Ind⊗Q in K ′0(F`[G])⊗Q are the same.
-p. 398, l. -8 ff (noticed by T. Keller) In (7.3.8) replace ‘Zp’ by ‘Z`’ (4 times). In the proof replace all ‘p’ by ‘`’.
-p. 400, l. -3 (noticed by L. Wan) Remove the twist in the exact sequence (or add two further twists).
-p. 427, l. 15,16 (noticed by L. Wan) Replace ‘`[F`(µ2r )∩k:F`]·r ≡ −1 mod 2r for some r ∈ N’ by ‘`[F`(µ2r )∩k:F`]·n ≡ −1 mod
2r for some n ∈ N’ (double use of ‘r’).
-p. 433, l. 7 (noticed by L. Wan) In the middle term replace ‘corKk (c)’ by ‘corKk (c)p’.
-p. 436, l. 10 ff (noticed by D. Harari and G. Kings) The last argument of the proof uses the fact that (a,K|k) = 1 for a ∈ k×, a
result which we do not have at hand at this moment. To avoid a ‘flavour of circularity’, the last paragraph should be replaced by
the following:

“It remains to show that inv is trivial on the image of H2(G,K×). We prove this without the assumption of K|k being
cyclic. So let α ∈ Br(k) be arbitrary. If k is a function field, then, by (8.1.14) and the following remark, we may assume that
α ∈ Br(K|k), where K = k(ζn) for some n prime to char(k). If k is number field, let K be a finite extension of k which is
Galois over Q and such that α ∈ Br(K|k). Then invk(α) = invK|k(α) = invK|Q(corkQα). Hence we may assume that k = Q
and, by the same argument as in the function field case, α ∈ Br(K|Q) for a cyclic subextension K of Q(ζn)|Q for some n. In
both cases, let G = G(K|k) and let χ be a generator of H1(G,Q/Z). Then δχ is a generator of H2(G,Z), and the cup-product

δχ∪ : Ĥ0(G,K×) −→ H2(G,K×)

is the periodicity isomorphism (see (1.7.1)). Hence every element ofH2(G,K×) is of the form ā∪δχ with a ∈ k×. By (8.1.11),
we have

invK|k(ā ∪ δχ) = χ((a,K|k)).

It therefore remains to show that (a,K|k) = 1 for a ∈ k×. Hence it suffices to show that (a, k(ζn)|k)ζn = ζn, where k is
a function field and (n, char(k)) = 1 or k = Q and n arbitrary. Let k be a function field. Then, for any place p of k, we

have (a, kp)ζn = ζ
#k(p)vp(a)

n . The ‘product formula’ yields
∏

p #k(p)vp(a) = 1, hence (a, k)ζn = ζ
∏

p #k(p)vp(a)

n = ζn. The
argument in the case k = Q is similar, but the computation of the local norm residue symbols at the primes p | n is much more
involved, see, e.g., [160], VI, (5.3). This proves the proposition.”
-p. 452, l. 12 (noticed by L. Wan) d(α) is not always −1 as asserted, but ±1. Put f = Xp −X − a. We have d(α) = disc(f) =

(−1)p(p−1)/2Res(f, f ′) =

{
−1 if p ≡ 1 mod 4
+1 else.

-p. 456, l. 12 (noticed by M. Sigl) replace ‘is 1 or 2’ by ‘is of order 1 or 2’.
-p. 457, l. 8 replace ‘µp∞’ by ‘µp∞ ’.
-p. 464, l. 12 (noticed by M. Sigl) replace ‘O×S (k)’ by ‘O×k,S’ (twice).
-p. 482, l. -2 (noticed by M. Sigl) replace ‘three’ by ‘two’.
-p. 487, (8.6.9) If S is the set of all places, then (8.6.9) holds for an arbitrary finitely generated Gk-module A. This fact
together with the proof below was told us by J.-L. Colliot-Thélène. One uses the following fact: there exists an exact sequence
0→ C → B → A→ 0 with B torsionfree and C ∼=

⊕n
i=1 IndUi

Gk
Z, where Ui ⊂ Gk are open subgroups; see [CS], Lemma 0.6.

As the groups H1(k,C), H1(k,C ′), X2(k,C) and X2(k,C ′) vanish, we obtain isomorphisms X1(k,B) ∼= X1(k,A) and
X2(k,B′) ∼= X2(k,A′), and so the statement for general A follows from that in the torsionfree case. This argument extends to
the case when S has Dirichlet density 1.
-p. 488, l. 5 replace ‘H’ by ‘X’ (twice)
-p. 491, l. 1 (noticed by L. Wan) The diagram is erroneous and the argument should be replaced by the following: Consider the
canonical injections ⊕

p∈S\T (k)

H1(kp, A)/H1
nr(kp, A) ↪→

⊕
p∈S\T (k)

H1(Tp, A)
diag
↪→

∏
P∈S\T (kT )

H1(TP, A),

where Tp denotes the inertia group of the local group G(k̄p|kp) for a prime p. We obtain the commutative and exact diagram

H1(G(kS |kT ), A)
∏

P∈S\T (kT )

H1(TP, A)

H1(GS , A) P 1(GS , A)

H1(GT , A) P 1(GT , A)×
∏

p∈S\T (k)

H1
nr(kp, A) = PT .

Since A is a trivial G(kS |kT )-module and since the images of the inertia groups TP, P ∈ S r T (kT ), generate G(kS |kT ) as a
normal subgroup, the upper horizontal map is injective. Thus . . .
-p. 501, l. 5 (noticed by L. Wan) replace ‘H2(GS , T )∨’ by ‘H1(GS , T )∨’.
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-p. 523, l. 3 (noticed by J. Stix) replace ‘its’ by ‘it is’.
-p. 523, l. 8 (noticed by T. Keller) replace ‘K’ by ‘k’.
-p. 524, l. -2 (noticed by O. Thomas) replace ‘cs(Ω|k))’ by ‘cs(Ω|k)’.
-p. 525, l. 9 (noticed by O. Thomas) replace ‘s · vp(r)’ by ‘s+ vp(r)’.
-p. 525, l. 11 (noticed by O. Thomas) replace ‘im(U1)’ by ‘im(U1 → (Z/pmZ)×)’.
-p. 525, l. 12 (noticed by O. Thomas) replace ‘(i)’ by ‘the first statement’.
-p. 526, l. -10 replace ‘char(k)’ by ‘char(k)’ (false fonts).
-p. 527, l. -5 (noticed by F. Klössinger) replace ‘by’ by ‘be’.
-p. 529, l. 5 (noticed by O. Thomas) replace ‘cs(Ω|k))’ by ‘cs(Ω|k)’.
-p. 533, l. -5 (noticed by J. Stix) replace ‘this trivially’ by ‘this is trivially’.
-p. 534, l. -1 (noticed by F. Klössinger) replace ‘Tat’ by ‘Tate’.
-p. 535, ex. 1 we forgot to modify this exercise after changing terminology in the second edition. Make the following changes:
T should not be finite, but the complement of a finite set of primes (this can be weakened to δ(T ) > 1/2) and replace 3) by

{p | p divides 2 and − 1, 2 + ηs,−(2 + ηs) are not squares in kp} ∩ T = ∅.

-p. 539, l. -2 (noticed by C. D. Gonzalez-Aviles) Remove the zeroes on the left hand side of the diagram.
-p. 553, l. -2 (noticed by P. Barth) replace ‘ki+1|k’ by ‘ki+1|ki’.
-p. 602, l. -6 (noticed by M. Witte) replace ‘

∏
` 6=p

(Q`/Z`)2g ⊕ (Qp/Zp)h’ by ‘
⊕
` 6=p

(Q`/Z`)2g ⊕ (Qp/Zp)h’.

-p. 604 l.16 (noticed by T. Keller) replace ‘chap.IV, §4’ by ‘chap.IV, §2’.
-p. 607 l.17 (noticed by T. Keller) replace ‘i ∈ Z’ by ‘i > 0’.
-p. 615 l.-10 (noticed by T. Keller) replace ‘G∅(Kk̄)’ by ‘G∅(Kk̄)(p)’ (twice).
-p. 634, l. -4 (noticed by P. Barth) replace ‘r1(K) + r2(K)’ by ‘r1(k) + r2(k)’.
-p. 635, l. 1 (noticed by P. Barth) add ‘be algebraic over Q’ after ‘α1, . . . , αn ∈ C×p .
-p. 643 l. 9 (noticed by J. Bartels) replace ‘i ≥ 1’ by ‘i ≥ 2’.
-p. 644 l. 7 replace ‘finite field’ by ‘finite number field’.
-p. 649, l. 1 (noticed by P. Barth) replace ‘(10.4.2)’ by ‘(10.4.4)’.
-p. 650 l. 11 replace ‘G’ by ‘G(kS |k∞)’.
-p. 651, l. 1 (noticed by P. Barth) replace ‘H1’ by ‘dimFp

H1’.

-p. 674 l. -7 (noticed by A. Matar) replace ‘
2∑
i=1

’ by ‘
2∑
i=0

’.

-p. 675 l.5 (noticed by O. Thomas) replace ‘char ’ by ‘char’ (false font).
-p. 676, l. -13 (noticed by P. Barth) unfortunately, the definition of Smin has not given yet, but can be found at the beginning of
X §10 on page 698.
-p. 676 l. -2 (noticed by J. Gärtner) replace ‘if∞ ∈ S or ` ∈ S’ by ‘if 2 ∈ S,∞ ∈ S or ` ∈ S’. Furthermore, the α in line -7 is
redundant (because it is zero).
-p. 686 (10.8.5) (noticed by A. Ivanov) The correct statement of Chenevier’s theorem is the injectivity of Gkp → GS`∪{p,p̄}.
A newer and sharper result of Chenevier/Clozel [CC] states that, even without assuming that p0 splits, the map Gk+p0

→
GS`∪{p0}(k

+) is injective.
-p. 688, l. 8 (noticed by P. Barth) replace ‘(7.1.8)(i)’ by ‘(7.2.5)’.
-p. 697 l.12 replace ‘K+

p ’ by ‘k+
p ’ and ‘K+’ by ‘k+’.

-p. 697 l.14 replace ‘§6’ by ‘§8’.
-p. 697 l.15 unfortunately, the definition of Smin has not given yet, but can be found at the beginning of X §10 on page 698.
Furthermore, replace ‘all these primes locally contain a p-th root of unity’ by ‘kp contains a primitive p-th root of unity for all
primes p ∈ S(k)’.
-p. 700 l.17 (noticed by O. Thomas) replace ‘U×P ’ by ‘UP’.
-p. 792, l. -2,-1 (noticed by Martin Sigl) replace ‘group’ by ‘set’ (twice).
-p. 800, l. -11 (noticed by T. Keller) remove the blank before ‘?’.

Remarks on the bibliography

[25] has appeared in Comp. Math. 143 (2007) 1359–1373
[38] the correct title is ‘The group of the maximal p-extension of a local field’ (in Russian)
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[45] add blanks before KOCHLOUKOVA and ZALESSKII (noticed by T. Keller)
[60] replace ‘of’ by ‘on’
[76] replace ‘SZAMUELI’ by ‘SZAMUELY’
[99] replace ‘71–78’ by ‘71–98’ (noticed by T. Keller)
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