Errata for:

Cohomology of Number Fields. Online Edition 2.3, May 2020

by J. Neukirch, A. Schmidt, K. Wingberg

This file lists known mistakes. If you find a mistake not listed below or have a comment, please send me an e-mail: schmidt@mathi.uni-heidelberg.de.
-p. 18, l. 5 The section s must be chosen such that $s(1)=1$. This is possible after a translation.
-p. 18, $\mathbf{1} .13$ remove ' and A is closed in \hat{G} '.
-p. 21, l. -6 (noticed by D. Vogel) replace ' $\$ 8$ ' by ' $\$ 9$ '.
-p. 23, l. -1 (noticed by D. Vogel) replace ' 88 ' by ' $\S 9$ '.
-p. 144, $\mathbf{1} 14$ replace ' $\ell^{m} H_{c t s}^{n}(G, T)$ ' by ' $\ell^{m} H_{c t s}^{n+1}(G, T)$ '.
-p. 219, 1. -4 (noticed by K. Koziol) replace 'a Poincaré group’ by ‘a pro-p Poincaré group’.
-p. 466, Ex. 1 (noticed by C. Lane) The statement of the exercise is false. It becomes correct after replacing ' \mathcal{O}_{S}^{\times}' by ' k_{S}^{\times}'. (However, then it is a special case of (6.3.4).)
-p. 484, bottom (noticed by B. Selander) remove the vertical equality sign on the far right of the diagram (otherwise it doesn't commute).
-p. 487, l. -10 ff (noticed by B. Selander) replace ' $H^{0}\left(k_{\mathfrak{p}}, A^{\prime}\right)$ ' by ' $C^{0}\left(k_{\mathfrak{p}}, A^{\prime}\right.$)' and ' $H^{0}\left(G_{S}, I_{S}(A)\right.$)' by ' $C^{0}\left(G_{S}, I_{S}(A)\right.$)'. In line -7 replace ' 0 -cochain' by ' 0 -cocycle'. After this sentence add the sentence 'Moreover, because the 2 -cochain $z \in$ $C^{2}\left(G_{S}, \mathcal{O}_{S}^{\times}\right)$maps to zero in $C^{2}\left(G_{S}, C_{S}\right)$, the 2-cocycle $\left(y_{\mathfrak{p}}^{\prime} \cup x_{\mathfrak{p}}-z_{\mathfrak{p}}\right) \in Z^{2}\left(G_{S}, I_{S}\right)$ maps to $y^{\prime} \cup x \in Z^{2}\left(G_{S}, C_{S}\right)$. Then remove the commutative diagram and the final phrase of the proof starting with 'because the image'.
-p. 620, l. -9 (noticed by anonymous) replace $C l_{0}$ by $C l_{S}$. Subsequently, the next three lines and the footnote become obsolete.
-p. 782, I. 8 and 10 replace ' $e_{i} C l(k)$ ' by ' $e_{i} C l(k)(p)$ '.
-p. 782, l. 8 replace ' $L\left(1, \omega^{i}\right)$ ' by ' $L\left(0, \omega^{i}\right)$ '.
-p. 782, l. 9 replace ' $L\left(1, \omega^{i}\right)$ ' by ' $L\left(0, \omega^{-i}\right)$ '.

Errata for the printed version (Corrected Second Printing 2013)

-p. X, l. - $\mathbf{1 8}$ and $\mathbf{- 1 6}$ (noticed by T. Wunder) replace ‘ $\S 4$ ’ by ‘ $\S 5$ ' and ‘ $\S 5$ ' by ‘ $\S 6$ '.
-p. 8, l. 18-21 (noticed by Siyan "Daniel" Li) replace 'If $A=A^{U}$ for some open subgroup $U \subseteq G$, then $\operatorname{Hom}(A, B)$ is a discrete G-module. This is the case, for example,' by ' $\operatorname{Hom}(A, B)$ is a discrete G-module'.
-p. 18, l. 5 The section s must be chosen such that $s(1)=1$. This is possible after a translation.
-p. 18, $\mathbf{1 .} 13$ remove ' and A is closed in \hat{G} '.
-p. 23, l. - $\mathbf{1}$ (noticed by D. Vogel) replace ' $\S 8$ ' by ' $\S 9$ '.
-p. 32, footnote (noticed by M. Lüdtke) replace '§7’ by ‘§8'.
-p. 39, I. 4 (noticed by D. Harari) replace ' C ' by ' C '.
-p. 62, I. 3 (noticed by S. Panda) Replace ', which' by '. If H is of finite index in G, it' and remove ' H is of finite index in G and' in line 5.
-p. 73, Exercises 2 and 3 (noticed by M. Lüdtke) In both exercises the subgroup H should be normal.
-p. 89 (noticed by A. Holschbach) add before Lemma (1.9.8): 'For an abelian profinite group A and a prime number p, we denote by $A(p)$ the (unique) p-Sylow subgroup of A.'
-p. 144, $\mathbf{1} 14$ replace ' $\ell^{m} H_{c t s}^{n}(G, T)$ ' by ' $\ell^{m} H_{c t s}^{n+1}(G, T)$ '.
-p. 181, Exercise 5 (noticed by anonymous) replace the assumption ' $c d_{p} G / H \neq 0$ ' by ' $c d_{p} H \neq 0$ '.
-p. 199, l. 9 (misleading argument) replace ' $i: X \rightarrow F$. It satisfies condition (1) of (3.5.14), since A is finite' by ' $i: X \rightarrow F$, which satisfies condition (1) of (3.5.14).'
-p. 210, $\mathbf{1 .} 22$ (noticed by O. Thomas) replace 'for A ' by 'for finite A '.
-p. 218, l. 12-15 (noticed by J. Minac) replace ' H ' by ' U ' (three times).
-p. 219, 1. -4 (noticed by K. Koziol) replace 'a Poincaré group' by 'a pro-p Poincaré group'.
-p. 228, $\mathbf{1 .} 2$ (noticed by A. Holschbach) replace ' $\mathrm{X} \S 8$ ' by ' $\mathrm{X} \S 10$ '.
-p. 228, 1. -14 (noticed by A. Holschbach) replace ' $\operatorname{ker}\left(\left.j\right|_{G}\right)^{\prime}$ by ' $\operatorname{ker}\left(\left.j\right|_{A^{G}}\right)^{\prime}$.
-p. 239, l. 4 replace ' 2 ' ' by ' $2{ }^{f-1}$,
-p. 239, l. 5 replace ' 2 ' by ' 2 '.
-p. 239, l. 17 replace 'alternating' by 'anti-symmetric'.
-p. 266, l. 12 (noticed by anonymous) replace 'of $G_{t} \subseteq$ ' by 'of $G_{t} \times G_{t} \subseteq$ '.
-p. 271, l. 12 (noticed by anonymous) replace ' $1, \ldots, n$ ' by ' $1, \ldots, h$ '.
-p. 290, $\mathbf{l} \mathbf{1 3}$ (noticed by L. Sauer) replace ' $\operatorname{deg}(\bar{v})=0$ ' by 'the constant term of v is a unit in \mathcal{O} '.
-p. 310, l. -11 ff (noticed by O. Thomas) replace 'for $D_{r-1}\left(M^{\vee}\right)$. Therefore $D_{r-1}\left(M^{\vee}\right) \otimes \mathbb{Q} / \mathbb{Z}=0$ and' by 'for $D_{r-1}\left(M^{\vee}\right)$ and $D_{r}\left(M^{\vee}\right)$. Therefore $D_{r}\left(M^{\vee}\right) \otimes \mathbb{Q} / \mathbb{Z}=0$ and'.
-p. 340, l. -7 (noticed by Siyan "Daniel" Li) the explicit formula for the map is wrong and has to be replaced by

$$
\left(a_{0}, \ldots, a_{n-1}\right) \longmapsto \tilde{a}_{0}^{p^{n-1}}+\tilde{a}_{1}^{p^{n-2}} p+\cdots+\tilde{a}_{n-1} p^{n-1} \quad \bmod p^{n}
$$

where \tilde{a}_{i} is some lift of a_{i} to \mathbb{Z}.
-p. 393, (7.3.3) Lemma. The lemma is correct but not sufficient for the application in the proof of (7.3.2). It should be replaced by

(7.3.3) Lemma.

(i) Let A be a finite G-module. Then

$$
[\ell A]=\left[A_{\ell}\right] .
$$

(ii) Let V be a G-module such that V_{ℓ} and ${ }_{\ell} V$ are finite. If $W \subseteq V$ is a submodule of finite index, then

$$
\left[V_{\ell}\right]-\left[{ }_{\ell} V\right]=\left[W_{\ell}\right]-[\ell W]
$$

Proof: We prove (ii) first. Using a Jordan-Hölder series, we may assume that V / W is a finite simple G-module. In particular, $\ell(V / W) \cong(V / W)_{\ell}$. Consider the diagram

The snake lemma gives the exact sequence

$$
0 \rightarrow{ }_{\ell} W \rightarrow_{\ell} V \rightarrow_{\ell}(V / W) \rightarrow W_{\ell} \rightarrow V_{\ell} \rightarrow(V / W)_{\ell} \rightarrow 0
$$

and hence the result. Assertion (i) follows by applying (ii) to $V=A, W=0$.
-p. 450, 1. - 11 (noticed by M. Leonhardt) Replace ' $H^{0}\left(G, D_{K}\right)=D_{k}$ ' by ' $H^{0}\left(G, D_{K}\right) \cong D_{k} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{m}$,
-p. 450, I.-10 and I.-7 (noticed by M. Leonhardt) Replace ' $S_{\mathbb{C}}$ ' by ' $S_{\mathbb{C}}(K)$ '.
-p. 451, 1. -9 (noticed by M. Leonhardt) Replace the last paragraph of the proof of (8.2.6) by: Finally note that $N_{K \mid k} D_{K}=D_{k}$ by (8.2.1)(iv) and that D_{k} is divisible by (8.2.1)(vi). Hence the calculation of $H^{0}\left(G, D_{K}\right)$ follows from that of $\hat{H}^{0}\left(G, D_{K}\right)$.
-p. 460, 1.6 (noticed by A. Holschbach) replace 'onto' by 'into'.
-p. 466, Ex. 1 (noticed by C. Lane) The statement of the exercise is false. It becomes correct after replacing ' \mathcal{O}_{S}^{\times}' by ' k_{S}^{\times}'. (However, then it is a special case of (6.3.4).)
-p. 484, bottom (noticed by B. Selander) remove the vertical equality sign on the far right of the diagram (otherwise it doesn't commute).
-p. 487, l. -10 ff (noticed by B. Selander) replace ' $H^{0}\left(k_{\mathfrak{p}}, A^{\prime}\right)$ ' by ' $C^{0}\left(k_{\mathfrak{p}}, A^{\prime}\right)$ ' and ' $H^{0}\left(G_{S}, I_{S}(A)\right.$)' by ' $C^{0}\left(G_{S}, I_{S}(A)\right.$). In line -7 replace ' 0 -cochain' by ' 0 -cocycle'. After this sentence add the sentence 'Moreover, because the 2 -cochain $z \in$ $C^{2}\left(G_{S}, \mathcal{O}_{S}^{\times}\right)$maps to zero in $C^{2}\left(G_{S}, C_{S}\right)$, the 2 -cocycle $\left(y_{\mathfrak{p}}^{\prime} \cup x_{\mathfrak{p}}-z_{\mathfrak{p}}\right) \in Z^{2}\left(G_{S}, I_{S}\right)$ maps to $y^{\prime} \cup x \in Z^{2}\left(G_{S}, C_{S}\right)$. Then remove the commutative diagram and the final phrase of the proof starting with 'because the image ...'.
-p. 498, l. $\mathbf{- 1}$ replace 'im $\lambda_{T}^{\prime}=\pi_{T}\left(\mathrm{im} \lambda_{S}^{\prime}\right)$ ' by 'im $\lambda_{T}^{\prime}=\pi_{T}\left(\operatorname{im}\left(\lambda_{S}^{\prime} \circ\right.\right.$ inf $)$).
-p. 507, 1. -2 (noticed by A. Holschbach) replace 'finite subextension' by 'finite, totally imaginary subextension'
-p. 532, 1.5 (noticed by A. Holschbach) replace ' (k, S, m) ' by ' (k, m, S) '.
-p. 554, 1.17 (noticed by A. Holschbach) The word 'realize' might be misleading. To be more precise, one should replace the first sentence of the proof of (9.4.3) by the following: 'We have to show that for every finite Galois extension $K_{\mathfrak{p}} \mid k_{\mathfrak{p}}$ with $G\left(K_{\mathfrak{p}} \mid k_{\mathfrak{p}}\right) \in \mathfrak{c}$ there exists a global Galois extension $L \mid k$ unramified outside S with $G(L \mid k) \in \mathfrak{c}$ such that $K_{\mathfrak{p}} \subset L_{\mathfrak{p}}$.'
-p. 569, 1. -7 (noticed by M. Jarden) For $i \geq 2, A_{i}$ is not a Γ-module. However, A_{i} is a G / H_{i-1}-module and, after refining the filtration, we may assume without loss of generality that it is simple.
-p. 600, l. -15 (noticed by T. Wunder) replace ' 1 ' by ' 2 '.
-p. 620, 1. -9 (noticed by anonymous) replace $C l_{0}$ by $C l_{S}$. Subsequently, the next three lines and the footnote become obsolete.
-p. 621, l. -12 (noticed by T. Wunder) replace ' k ' by ' K ' (twice).
-p. 622, 1.15 (noticed by T. Wunder) replace ' G_{T} ' by ' $G_{T}(\mathfrak{c})$ '.
-p. 623, l. -8 (noticed by T. Wunder) replace 'chapter XII' by '§11'.
-p. 630, l. 7 (noticed by D. Neugber) replace 'For S ' by 'For finite S '.
-p. 637, $\mathbf{1 .} 7$ (noticed by T. Wunder) replace ' G ' by ' G_{K} '.
-p. 649, l. 10ff (noticed by D. Neugber) replace 'Comparing two copies of the upper sequence of (10.3.13) (for T and S) we therefore obtain the commutative exact diagram (writing $E_{k^{\prime}}$ for $\mathcal{O}_{k^{\prime}}^{\times}$and G_{T} for $G_{T}\left(k^{\prime}\right)$)' by 'Passing to the inverse limit over the upper exact sequences of (10.3.13) for $T=\varnothing$ and all finite subsets of $S\left(k^{\prime}\right)$ containing $S_{p} \cup S_{\infty}$, and doing the same for T instead of S, we obtain the commutative exact diagram (writing $E_{k^{\prime}}$ for $\mathcal{O}_{k^{\prime}}^{\times}, G_{S}$ for $G_{S}\left(k^{\prime}\right)$ and G_{T} for $G_{T}\left(k^{\prime}\right)$)'.
-p. 650 (10.5.5) Corollary. (noticed by M. Witte) replace 'is an isomorphism' by 'is surjective'. In the proof replace ' $E_{2}^{2,0}=$ $E_{\infty}^{2,0}$ by $E_{2}^{2,0} \rightarrow E_{\infty}^{2,0 ‘}$.
-p. 652 ff. (noticed by O. Thomas) According to our convention in section 10.5, the number field k in (10.5.8)-(10.5.11) should be a finite number field (otherwise we cannot speak about density)
-p. 653, l. -4 (noticed by O. Thomas) replace ' $H^{i}\left(G\left(k_{p}(p) \mid k_{\mathfrak{p}}^{\prime}\right)\right)$ ' by ' $H^{i}\left(G\left(k_{\mathfrak{p}}(p) \mid k_{\mathfrak{p}}^{\prime}\right)\right)$ '.
-p. 679, l. - $\mathbf{1 2}$ (noticed by O. Thomas) replace '(10.5.1)(i)' by '(10.5.1)'.
-p. 683, l. -4 (noticed by O. Thomas) replace ' $I_{S}(k)$ ' by ' $I_{S}(k) / p$ '.
-p. 695, l. 7 (noticed by T. Wunder) replace ' k_{S} / K ' by ' $k_{S} \mid K$ '.
-p. 689, I. -5,-2, p. 6901.1 (noticed by M. Witte) replace ' $\amalg^{2}\left(k_{S}, S_{0},-\right)$ ' by ' $\amalg^{2}\left(k_{S}, S \backslash S_{0},-\right)$ '.
-p. 701, l. -10, (noticed by O. Thomas) replace ' $C l(k)$ ' by ' $C l_{T}(k)$ '.
-p. 781, l. 11, p. 784, l. 16 (noticed by H. Johnston) replace '[61]' by '[64]'.
-p. 782, l. 8 and 10 replace ' $e_{i} C l(k)$ ' by ' $e_{i} C l(k)(p)$ '.
-p. 782, l. 8 replace ' $L\left(1, \omega^{i}\right)$ ' by ' $L\left(0, \omega^{i}\right)$ '.
-p. 782, 1. 9 replace ' $L\left(1, \omega^{i}\right)$ ' by ' $L\left(0, \omega^{-i}\right)$ '.
-p. 789, l. 16 (noticed by M. van Frankenhuijsen) replace ' $q=$ ' by ' $q-1=$ '.
-p. 796, $\mathbf{1 .} 16$ remove '(i.e. p splits completely in $k_{2} \mid \mathbb{Q}$),'
-p. 815, [181] (noticed by T. Keller) replace 'construction' by 'corestriction'.

