
Anabelian geometry with étale homotopy types

ALEXANDER SCHMIDT AND JAKOB STIX

Abstract — Anabelian geometry with étale homotopy types generalizes in a natural way clas-
sical anabelian geometry with étale fundamental groups. We show that, both in the classical
and the generalized sense, any point of a smooth variety over a field k which is finitely gener-
ated over Q has a fundamental system of (affine) anabelian Zariski-neighbourhoods. This was
predicted by Grothendieck in his letter to Faltings [Gr83].

1. Introduction

1.1. Higher anabelian geometry. Grothendieck’s anabelian philosophy [Gr83] predicts the existence
of a class of anabelian varieties X that are reconstructible from their étale fundamental group πet

1 (X, x̄).
All examples of anabelian varieties known so far are of type K(π, 1), i.e., their higher étale homotopy
groups vanish.

For general varieties X, the homotopy theoretic viewpoint suggests to ask the modified question,
whether they are reconstructible from their étale homotopy type Xet instead of only πet

1 (X, x̄). For
varieties X of type K(π, 1) this makes no difference since then Xet is weakly equivalent to the classifying
space Bπet

1 (X, x̄).
Recall that the étale topological type Xet of a scheme X is an object in pro-ss, the pro-category of

simplicial sets. Any geometric point x̄ of X defines a point x̄et on Xet. If X is locally noetherian,
the fundamental group π1(Xet, x̄et) is the usual (in the sense of [SGA3] X §6) étale fundamental group
πet

1 (X, x̄) and the higher homotopy groups ofXet are the higher étale homotopy groups ofX by definition,
cf. [AM69], [Fr82]. Isaksen [Is01] defined a model structure on pro-ss and we denote the associated
homotopy category by Ho(pro-ss). When considered as an object of Ho(pro-ss), we refer to Xet as the
étale homotopy type of X. For a pro-simplicial set B, we denote the category of morphisms to B in
Ho(pro-ss) by Ho(pro-ss) ↓ B.

In the language of étale homotopy theory, the isomorphism form of Mochizuki’s theorem on anabelian
geometry of hyperbolic curves [Mo99] can be reformulated as follows (see Theorem 3.2 below for a more
general version). Recall that a sub-p-adic field is a subfield of a finitely generated extension of Qp.

Theorem 1.1. Let p be a prime number, k a sub-p-adic field and X and Y smooth hyperbolic curves
over k. Then the natural map

Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket(Xet, Yet)

is bijective.

1.2. Main results. The aim of this paper is to prove Theorem 1.2 below, which constitutes a first step
towards a generalisation of Theorem 1.1 to higher dimensional varieties.

Theorem 1.2. Let k be a finitely generated field extension of Q, and let X and Y be smooth, geomet-
rically connected varieties over k which can be embedded as locally closed subschemes into a product of
hyperbolic curves over k. Then the natural map

(∗) Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket(Xet, Yet)

is a split injection with a functorial retraction

r : IsomHo(pro-ss)↓ket(Xet, Yet) −→ Isomk(X,Y ).

Theorem 1.2 will be proven in its refined version Theorem 4.7, which makes a more precise statement
and, in particular, uniquely characterizes a retraction r. It will be this retraction r that we discuss in
Theorem 1.9 below. Furthermore, Theorem 7.2 provides a version of Theorem 1.2 without the assumption
of (geometrically) connectedness.
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We stress the following weakly anabelian statement obtained as a trivial corollary.

Corollary 1.3. Let k be a finitely generated field extension of Q and let X and Y be smooth, geomet-
rically connected varieties over k which can be embedded as locally closed subschemes into a product of
hyperbolic curves over k.

If Xet ∼= Yet in Ho(pro-ss) ↓ ket, then X and Y are isomorphic as k-varieties.

Remarks 1.4. (i) The reason that Theorem 1.2 is formulated for varieties over a finitely generated
extension field of Q lies in the method of our proof, which uses techniques of Tamagawa [Ta97]
that we could not generalise to the more general context of sub-p-adic fields.

(ii) By [Is04b], the functor X 7→ Xet from smooth k-schemes to Ho(pro-ss) ↓ ket factors through the
A1-homotopy category of Morel and Voevodsky [MV99]. In particular, it is not faithful. However,
this does not affect Theorem 1.2 since the schemes occurring there are A1-local.

For strongly hyperbolic Artin neighbourhoods (see 6.1 for the definition), we can show that (∗)
is a bijection.

Theorem 1.5. Let X and Y be strongly hyperbolic Artin neighbourhoods over a finitely generated field
extension k of Q. Then the natural map

Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket(Xet, Yet)

is bijective.

We denote by Gk = π1(ket, k̄et) the absolute Galois group of the field k with respect to a fixed separable
algebraic closure k̄. For a connected variety X over k equipped with a geometric base point x̄ over k̄/k,
there is a natural augmentation map πet

1 (X, x̄) → Gk. We denote by HomGk

(
πet

1 (X, x̄), πet
1 (Y, ȳ)

)
the

set of those homomorphisms that are compatible with the augmentation. Further, σ ∈ πet
1 (Yk̄, ȳ) acts by

composition with the inner automorphism of πet
1 (Y, ȳ) given by σ, and

Homout
Gk

(
πet

1 (X, x̄), πet
1 (Y, ȳ)

)
:= HomGk

(
πet

1 (X, x̄), πet
1 (Y, ȳ)

)
πet

1 (Yk̄,ȳ)

denotes the set of orbits. For geometrically connected and geometrically unibranch varieties, this set
does not depend on the chosen base points (cf. section 2.2), and we omit them from the notation. Then
there is a natural map

Homk(X,Y )→ Homout
Gk

(
πet

1 (X), πet
1 (Y )

)
,

which factors through HomHo(pro-ss)↓ket(Xet, Yet), see Corollary 2.5. Since strongly hyperbolic Artin
neighbourhoods are of type K(π, 1), Theorem 1.5 can be restated in terms of fundamental groups:

Corollary 1.6. Let X and Y be strongly hyperbolic Artin neighbourhoods over a finitely generated field
extension k of Q. Then the natural map

Isomk(X,Y ) −→ Isomout
Gk

(
πet

1 (X), πet
1 (Y )

)
is bijective.

We remark that by different techniques Hoshi proves in [Ho14] §3 a statement similar to Corollary 1.6
but restricted to dimension ≤ 4. Corollary 1.6 implies the following statement predicted by Grothendieck
in his letter to Faltings [Gr83]:

Corollary 1.7. Let X be a smooth, geometrically connected variety over a finitely generated field ex-
tension k of Q. Then every point of X has a basis of Zariski-neighbourhoods consisting of anabelian
varieties, in the sense that k-isomorphisms between any two of these are in bijection with outer Gk-
isomorphisms of their respective étale fundamental groups.

The proof of Theorem 1.5, Corollary 1.6 and Corollary 1.7 will be completed in section 6. Finally, in
Theorem 7.1 we obtain the following absolute version of Theorem 1.2.

Theorem 1.8. Let k and ` be finitely generated extension fields of Q, and let X/k and Y/` be smooth
geometrically connected varieties which can be embedded as locally closed subschemes into a product of
hyperbolic curves over k and `, respectively.

Then the natural map

IsomSchemes(X,Y ) −→ IsomHo(pro-ss)(Xet, Yet)

is a split injection with a functorial retraction. If X and Y are strongly hyperbolic Artin neighbourhoods,
it is a bijection.
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1.3. On the kernel. For generalX, we have only partial information about the kernel of the retraction r
of Theorem 1.2. In order to state our result in the general case, we need the following notation and
terminology:

Let 1 → H → G → Γ → 1 be an exact sequence of groups. We say that ϕ ∈ AutΓ(G) is class-
preserving by elements of H if for every g ∈ G there is an h ∈ H such that ϕ(g) = hgh−1. For a
smooth, geometrically connected k-variety X, the question whether some element ϕ ∈ Autout

Gk
(πet

1 (X)) is
class preserving by elements of πet

1 (Xk̄) does not depend on the chosen base point or representative in
AutGk

(πet
1 (X, x̄)).

Theorem 1.9. Let k be a finitely generated field extension of Q and let X be a smooth, geometrically
connected variety over k which can be embedded as a locally closed subscheme into a product of hyperbolic
curves over k. Let γ be in the kernel of the retraction map of Theorem 1.2:

r : AutHo(pro-ss)↓ket(Xet) −→ Autk(X).

Then the induced automorphism π1(γ) ∈ Autout
Gk

(πet
1 (X)) is class-preserving by elements of πet

1 (Xk̄).

Theorem 1.9 will be proven in the course of section 5.

1.4. Outline. Our first goal is to reformulate the results on anabelian geometry of hyperbolic curves
proven by Mochizuki and Tamagawa in terms of the homotopy category. This change of perspective has
a big technical advantage: to formulate the result in terms of fundamental groups one has to choose base
points, and then divide out the ambiguity introduced by this choice. The formulation in the homotopy
category is intrinsically base point free and more natural.

To reach this goal, we have to overcome quite a number of technical difficulties. In particular, the
relation between pointed and unpointed homotopy classes of maps, which is well understood for spaces,
becomes quite subtle for maps between pro-spaces. For example, there are connected pro-spaces whose
fundamental group depends on the chosen base point. We have to show that such pathologies do not occur
for étale homotopy types. Further technical problems are related to the behaviour of étale homotopy
types under base change and to the existence of classifying spaces for pro-groups. We deal with these
problems in section 2, developing the necessary theory of pro-spaces in the appendix. Then we prove
Theorem 1.1 in section 3.

In section 4 we prove Theorem 1.2, an anabelian principle for varieties which can be embedded
into a product of hyperbolic curves. Here Mochizuki’s theorem in its homotopy theoretic formulation
Theorem 1.1 constitutes the first important step. We obtain a scheme morphism, however only to the
ambient product space. In order to show that the morphism factors through the embedded subvariety,
we use reductions over finite fields of the given varieties in a systematic way. It is here where we have to
strengthen the assumption on the base field from sub-p-adic to finitely generated over Q.

Unfortunately, Theorem 1.2 does not provide a bijection, only an injection with functorial retraction.
In section 5 we investigate the kernel of this retraction. Of course, we hope that it is trivial. What we
can show is that elements of the kernel induce class preserving automorphisms of the fundamental group.
For strongly hyperbolic Artin neighbourhoods, this suffices to show triviality. Since these are of type
K(π, 1), we conclude an anabelian isomorphism result for strongly hyperbolic Artin neighbourhoods in
terms of fundamental groups in the classical style of formulation.

The final section 7 provides an absolute version of Theorem 1.2, merging our new result with the
birational anabelian geometry of the base field.

Notation and conventions. The set of orbits for a group G acting on a set M is denoted by MG.
All schemes considered are separated and locally noetherian. For an S-schemeX, a base changeX×ST

is denoted by XT . An immersion of schemes is the composite of an open and a closed immersion, i.e., an
embedding as a locally closed subscheme. By the phrase étale covering we mean finite étale morphism,
i.e., revêtement étale in the sense of [SGA1].

We use the term variety (over k) for a scheme of finite type over the field k. A hyperbolic curve
over a field k is a geometrically connected curve C over k with geometrically negative étale `-adic Euler
characteristic χ(Ck̄,Q`) < 0 for ` ∈ k×. Here k̄ is an algebraic closure of k.

A pro-object in a category C is a contravariant functor Iop → C from some small filtering category
I to C . One often writes a pro-object X in the form X = (Xi)i∈I . The pro-objects in C form a category
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pro-C by setting
Hompro-C (X,Y ) = lim

j
colim
i

HomC (Xi, Yj).

We denote the category of simplicial sets by ss, and by pro-ss its pro-category. Similarly, we use the
notation ss∗ and pro-ss∗ for the category of pointed simplicial sets and its pro-category. We consider the
closed model structure on pro-ss defined by Isaksen [Is01] and its pointed variant. We use the word space
synonymous for simplicial set. For a pointed pro-space (X,x), we have the homotopy groups πn(X,x),
which are pro-groups.

For a given pro-simplicial set B, we denote by Ho(pro-ss) ↓ B the category of morphisms to B in
Ho(pro-ss). For a model category C we sometimes denote morphisms in Ho(C ) by

HomHo(C )(X,Y ) = [X,Y ]C .

The étale topological type Xet of a locally noetherian scheme X is the pro-space obtained by applying the
functor “connected component” to the filtered system of rigid étale hypercovers of X, see [Fr82]. When
considered as an object of the homotopy category Ho(pro-ss), we refer to Xet as the étale homotopy type
of X. A geometric point x̄ : Spec(K̄) → X defines a point x̄et on Xet. The étale homotopy groups of
(X, x̄) are defined by

πet
n (X, x̄) = πn(Xet, x̄et).

These pro-groups are pro-finite groups if X is noetherian and geometrically unibranch, see [AM69]
Thm. 11.1. For a field k and a separably closed extension field K/k (given, e.g., by a geometric point of
a k-variety), we write

Gk = G(k̄/k) = πet
1 (k,K) = π1(ket,Ket),

where k̄ is the separable algebraic closure of k in K.

2. Basic properties of étale homotopy types

In this section we collect basic properties of étale homotopy types used in this paper.

2.1. Étale base change.

Lemma 2.1. Assume that p : W ′ →W is a finite étale morphism of schemes. Then pet : W ′et →Wet is
a finite covering in pro-ss (cf. section A.1). For any morphism X →W , the natural map

(X ×W W ′)et −→ Xet ×Wet W
′
et

is an isomorphism in pro-ss.

Proof. Since the functor étale topological type respects connected components, we can assume that W
and W ′ are connected and that p is surjective of degree, say d. Since an étale covering of a strictly
henselian scheme splits completely, the pull-back to W ′ of a sufficiently small étale neighbourhood of a
geometric point w̄ of W has d connected components. Furthermore, the rigid covers of W ′ obtained by
rigid pull-back from rigid covers of W are cofinal among all rigid covers of W ′. By recursion, the same
is true for rigid hypercovers. Moreover, among the rigid hypercovers U• of W those with the property
that for all n and every connected component Vn of Un, the base change Vn ×W W ′ has d connected
components are cofinal. For those U• the map π0(U• ×W W ′) → π0(U•) has the lifting property of the
definition of a covering in ss (cf. section A.1). This shows the first statement.

In order to show the second statement, let W ′′ →W be a connected étale Galois covering with group
G = G(W ′′/W ) dominating W ′ → W and let U ⊂ G be the subgroup associated with W ′. Then W ′′
is an étale G-torsor on W and, in the obvious sense, W ′′et is a G-torsor on Wet. We conclude that the
natural map

(X ×W W ′′)et −→ Xet ×Wet W
′′
et

is a map of G-torsors on Xet, hence an isomorphism. The statement for W ′ instead of W ′′ is obtained
by forming the orbits of the U -action on both sides. �

We will frequently use the fact that isomorphisms in Ho(pro-ss) between étale homotopy types can be
base changed along finite étale morphisms. The precise statement is the following lemma. Note that no
uniqueness assertion is made on the isomorphism γ′ below.
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Lemma 2.2. Let W , X, Y be schemes and let f : X → W , g : Y → W be morphisms. Assume that
there exists γ ∈ IsomHo(pro-ss)(Xet, Yet) such that getγ = fet in Ho(pro-ss). Let W ′ → W be finite étale.
Then there exists γ′ ∈ IsomHo(pro-ss)

(
(X ×W W ′)et, (Y ×W W ′)et

)
such that the diagram

Xet (X ×W W ′)et W ′et

Yet (Y ×W W ′)et W ′et

γ γ′

commutes in Ho(pro-ss).

Proof. By Lemma 2.1, a finite étale morphism W ′ → W induces a finite covering W ′et → Wet of pro-
spaces, and the natural map (X ×W W ′)et → Xet ×Wet W

′
et is an isomorphism. The same argument

applies to Y and therefore the assertion follows from Proposition A.6. �

Varieties whose étale homotopy types are isomorphic in Ho(pro-ss) have isomorphic étale cohomology
groups. A subtle point (due to the non-canonicity of the map γ′ in Lemma 2.2) is the question whether
we obtain Gk-module isomorphisms between the étale cohomology groups of the base changes to k̄. The
next proposition gives a positive answer.

Proposition 2.3. Let X and Y be varieties over a field k and let k̄ be a separable closure of k. Assume
there exists an isomorphism Xet ∼= Yet in Ho(pro-ss) ↓ ket. Then there exist Gk-isomorphisms

Hi
et(Xk̄, A) ∼= Hi

et(Yk̄, A)

for all i ≥ 0 and every abelian group A, which are moreover functorial in A.

Proof. Let k′ run through the finite subextensions of k in k̄. The projections X ×k k̄ → X ×k k′ induce
maps in pro-ss

(X ×k k̄)et
α−→
(
(X ×k k′)et

)
k′⊂k̄

β−→
(
Xet ×ket k′et

)
k′⊂k̄

γ−→ Xet ×ket
(
k′et
)
k′⊂k̄ .

Because X is of finite type over k, π0(X ×k k̄) → π0(X ×k k′) is bijective for any sufficiently large
finite extension k′ of k in k̄. Hence the map α induces a bijection on π0. Because X is quasi-compact,
any étale open cover of X ×k k̄ has a finite refinement which is defined over some finite extension k′

of k. Hence, for any group G, any G-torsor over X ×k k̄ comes by base change from a G-torsor defined
over some finite extension k′ of k. Moreover, this torsor is essentially unique modulo passage to some
finite extension k′′ of k′. Therefore, for any choice of base point of X ×k k̄, the homomorphism on π1

induced by α is an isomorphism. Compatibility of étale cohomology with inverse limits (for systems
of quasi-compact schemes with affine transition maps) shows that α also yields an isomorphism on the
cohomology with values in local systems. Hence α is a weak equivalence by the cohomological criterion
for weak equivalences [Is01] Prop. 18.4.

The map β is an isomorphism by Lemma 2.1. Finally, the map γ is an isomorphism for trivial reasons.
Therefore we obtain Gk-isomorphisms

Hi(Xet ×ket
(
k′et
)
k′⊂k̄, A) ∼= Hi

et(X ×k k̄, A)

for all i and every abelian group A, which moreover are functorial in A. The same argument applies
to Y and hence the statement of the proposition follows from Proposition A.6 applied to the covering
(k′et)k′⊂k̄/ket. �

2.2. Pointed versus unpointed. We usually consider étale homotopy types of k-varieties as objects in
the category of morphisms to ket in the homotopy category of pro-spaces. A subtle point is the relation
between morphisms in the pointed and unpointed setting. We deduce from the results of Appendix A.2
that under suitable assumptions on the varieties this relation is essentially the same as in the classical
topological situation – at least if the base field k has a strongly center-free absolute Galois group.

Recall that a pro-finite group is called strongly center-free if every open subgroup has a trivial
center. Important for our application is that sub-p-adic fields have strongly center-free absolute Galois
groups by [Mo99] Lemma 15.8.
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Proposition 2.4. Let X and Y be connected varieties over a field k, and assume that Y is geomet-
rically unibranch and geometrically connected. Let K/k be a separably closed extension field and let
x̄ : Spec(K)→ X and ȳ : Spec(K)→ Y be geometric points (over k). Let k̄ denote the separable closure
of k in K.
(a) The map induced by forgetting the base points yields a surjection

HomHo(pro-ss∗)↓(ket,k̄et)
(
(Xet, x̄et), (Yet, ȳet)

)
� HomHo(pro-ss)↓ket(Xet, Yet). (1)

In particular, if Xet and Yet are isomorphic in Ho(pro-ss) ↓ ket, then (Xet, x̄et) and (Yet, ȳet) are
isomorphic in Ho(pro-ss∗) ↓ (ket, k̄et).

(b) The map (1) factors through the orbit space for the action of πet
1 (Yk̄, ȳ) as defined in sections A.2.3

and A.2.4 inducing a surjection(
HomHo(pro-ss∗)↓(ket,k̄et)

(
(Xet, x̄et), (Yet, ȳet)

))
πet

1 (Yk̄,ȳ)
� HomHo(pro-ss)↓ket(Xet, Yet). (2)

(c) If Gk is strongly center-free, then the map (2) is a bijection.

Proof. By Theorem A.8, Yet and ket are path-connected and their topological fundamental groups are
the underlying abstract groups of their pro-finite étale fundamental groups. Since Y is geometrically
connected, πet

1 (Y, ȳ) → πet
1 (k,K) is surjective. Hence the assumptions of Theorem A.13 hold with

(B, b) = (ket,Ket). Let ∆X,Y be the group defined in Theorem A.13 (a). Since

πet
1 (Yk̄, ȳ) = ker(πet

1 (Y, ȳ)→ πet
1 (k,K))

is a subgroup of ∆X,Y , the assertions (a) and (b) follow from Theorem A.13. Moreover, in order to prove
(c), it remains to show that πet

1 (Yk̄, ȳ) = ∆X,Y .
Let SX ⊂ Gk = πtop

1 (ket,Ket) be the stabilizer of the map (Xet, x̄et) → (ket,Ket) in Ho(pro-ss∗)
with respect to the Gk-action as defined in section A.2.3. Since by Lemma A.12 the induced action on
πtop

1 (ket,Ket) = Gk is by conjugation, it follows that any g ∈ SX centralizes the image U of πet
1 (X, x̄)→

Gk. But U is open and thus g lies in the center of the open subgroup 〈U, g〉. Because Gk is strongly
center-free we conclude g = 1, and thus SX = 1.

Since by definition ∆X,Y is the preimage of SX , the claim πet
1 (Yk̄, ȳ) = ∆X,Y follows. �

We keep the assumptions of Proposition 2.4, in particular, πet
1 (Y, ȳ) is pro-finite. Therefore, any

homomorphism ϕ : πet
1 (X, x̄) → πet

1 (Y, ȳ) factors through the pro-finite completion πet
1 (X, x̄)∧ of the

pro-group πet
1 (X, x̄). The pro-finite completion πet

1 (X, x̄)∧ is the étale fundamental group of X in x̄ in
the sense of [SGA1], the dependence of the base point of which is well understood. Hence

Homout
Gk

(
πet

1 (X, x̄), πet
1 (Y, ȳ)

)
:= HomGk

(
πet

1 (X, x̄), πet
1 (Y, ȳ)

)
πet

1 (Yk̄,ȳ)

is independent of the chosen base points (which we will omit from the notation). There is a natural map

Homk(X,Y ) −→ Homout
Gk

(πet
1 (X), πet

1 (Y )).

If Gk is strongly center-free, this map factors through the unpointed homotopy category:

Corollary 2.5. Let k be a field such that Gk is strongly center-free. Then, under the assumptions of
Proposition 2.4, the natural map

HomHo(pro-ss∗)↓(ket,k̄et)((Xet, x̄et), (Yet, ȳet)) −→ HomGk
(πet

1 (X, x̄), πet
1 (Y, ȳ))

induces a map
HomHo(pro-ss)↓ket(Xet, Yet) −→ Homout

Gk
(πet

1 (X), πet
1 (Y )).

Proof. We form orbits for the natural πet
1 (Yk̄, ȳ)-action on both sides and use Lemma A.12. �

Keeping the assumptions, we denote by

Homπ1-open
Ho(pro-ss)↓ket(Xet, Yet)

the subset of those γ such that π1(γ) ∈ Homout
Gk

(πet
1 (X), πet

1 (Y )) has open image. We use a similar
notation in the pointed case. The bijection of Proposition 2.4 respects π1-open maps, hence we deduce
the following.
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Corollary 2.6. Let k be a field such that Gk is strongly center-free. Then, under the assumptions of
Proposition 2.4, we obtain a bijection(

Homπ1-open
Ho(pro-ss∗)↓(ket,Ket)

((Xet, x̄et), (Yet, ȳet))
)
πet

1 (Yk̄,ȳ)

∼−→ Homπ1-open
Ho(pro-ss)↓ket(Xet, Yet).

2.3. Varieties of type K(π, 1). We say that a geometrically pointed, connected locally noetherian
scheme (X, x̄) is of type K(π, 1) if πet

n (X, x̄) vanishes for all n ≥ 2. This is equivalent to the statement
that the classifying morphism

(Xet, x̄et) −→ Bπ1(Xet, x̄et)

is an isomorphism in Ho(pro-ss∗), cf. Appendix A.3. If X is geometrically unibranch, then the question
whether X is of type K(π, 1) does not depend on the chosen base point by Corollary A.11.

The following lemma provides basic examples of varieties of type K(π, 1).

Lemma 2.7.
(a) Let k be a field and let C be a connected smooth curve over k. If C is affine or if C has genus

g(C) > 0, then C is of type K(π, 1).
(b) Assume that k has characteristic zero and let Xi, i = 1, . . . , n, be geometrically connected and

geometrically unibranch varieties over k. If all Xi are of type K(π, 1), then so is their product.

Proof. For statement (a) see [Sc96] Prop. 15. For the second statement, let X be a connected and
geometrically unibranch variety over k. Then the cohomological criterion for weak equivalences ([AM69],
Thm. 4.3) shows that X is of type K(π, 1) if and only if the following holds for any finite abelian group
A and any integer i ≥ 2:

For every étale covering X ′ → X and every α ∈ Hi
et(X

′, A) there exists an étale covering
X ′′ → X ′ such that the restriction of α to X ′′ vanishes.

In particular, X is of type K(π, 1) if and only if X ×k k̄ is, where k̄ is an algebraic closure of k.
Hence we may assume that k is algebraically closed (and of characteristic zero). The stated fact that
X1 ×k · · · ×k Xn is of type K(π, 1), if all Xi are, now easily follows from the fact that (k algebraically
closed and characteristic zero)

πet
1 (X1 ×k · · · ×k Xn) ∼= πet

1 (X1)× · · · × πet
1 (Xn)

(see [SGA1], Exp. XIII, Prop. 4.6) and from the Künneth-formula for étale cohomology ([SGA4 1
2 ] (Th.

finitude), Cor. 1.11). �

In characteristic zero, the K(π, 1)-property is preserved in elementary fibrations. Recall that an
elementary fibration X → Y is the complement in a smooth proper curve X̄ → Y with geometrically
connected fibres of a divisor D ⊂ X̄ which is finite and étale over Y , and such that the fibres of X → Y
are affine curves.

Proposition 2.8. Let f : X → Y be an elementary fibration of smooth varieties over a field k of
characteristic zero. If Y is of type K(π, 1), then so is X.

Proof. Choose geometric points x̄ and ȳ of X and Y with ȳ = f(x̄). By assumption, the schemes X and
Y and Xȳ are smooth, in particular, geometrically unibranch. Therefore, by [AM69], Thm. 11.1, their
étale homotopy types are pro-finite. Let Y = (Y (i))i∈I be the inverse system of the pointed (finite) étale
Galois coverings Y (i)→ (Y, ȳ) and let X =

(
(X, x̄)×(Y,ȳ) Y (i)

)
i∈I be its pull-back to (X, x̄). Then, by

[Fr82], Thm. 11.5 (with L the set of all prime numbers), we have a long exact sequence

· · · → πet
n (Xȳ, x̄)→ πet

n (X )→ πet
n (Y )→ πet

n−1(Xȳ, x̄)→ · · · .
By Lemma 2.1, the natural maps

πet
n (X )→ πet

n (X, x̄), πet
n (Y )→ πet

n (Y, ȳ)

are isomorphisms for n ≥ 2. For n = 1 we have πet
1 (Y ) = 1 and the short exact sequence

1→ πet
1 (X )→ πet

1 (X, x̄)→ πet
1 (Y, ȳ)→ 1.

We therefore obtain the long exact homotopy sequence

· · · → πet
n (Xȳ, x̄)→ πet

n (X, x̄)→ πet
n (Y, ȳ)→ πet

n−1(Xȳ, x̄)→ · · · ,
showing the statement of the proposition in view of Lemma 2.7 (a). �
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The following lemma shows that morphisms in the homotopy category to products of varieties of type
K(π, 1) can be given component-wise. We will use this fact in an essential way in the case of morphisms
to products of hyperbolic curves.

Lemma 2.9. Let k be a field of characteristic zero such that Gk is strongly center-free. Let X be a variety
over k and let Y1, Y2 be geometrically connected, geometrically unibranch varieties of type K(π, 1) over k.
Then the natural map

HomHo(pro-ss)↓ket(Xet, (Y1 ×k Y2)et)→ HomHo(pro-ss)↓ket(Xet, Y1,et)×HomHo(pro-ss)↓ket(Xet, Y2,et)

is bijective.

Proof. We may assume that X is connected. Let k̄/k be an algebraic closure and choose geometric points
of x̄ ∈ X, ȳi ∈ Yi over k̄/k and set ȳ = (ȳ1, ȳ2) ∈ Y = Y1 ×k Y2. Since k has characteristic zero, we have
πet

1 (Yk̄, ȳ) ∼= πet
1 (Y1,k̄, ȳ1)× πet

1 (Y2,k̄, ȳ2), see [SGA1] Exp. XIII Prop. 4.6, hence

πet
1 (Y, ȳ) ∼= πet

1 (Y1, ȳ1)×Gk
πet

1 (Y2, ȳ2).

We conclude that for every pro-group π with augmentation π → Gk the natural map

HomGk

(
π, πet

1 (Y, ȳ)
)
−→ HomGk

(
π, πet

1 (Y1, ȳ1)
)
×HomGk

(
π, πet

1 (Y2, ȳ2)
)

is bijective. Hence, because Y is also of type K(π, 1) by Lemma 2.7 (b), Proposition A.16 implies that

HomHo(pro-ss∗)↓(ket,k̄et)
(
(Xet, x̄et), (Yet, ȳet)

)
−→

HomHo(pro-ss∗)↓(ket,k̄et)
(
(Xet, x̄et), (Y1,et, ȳ1,et)

)
×HomHo(pro-ss∗)↓(ket,k̄et)

(
(Xet, x̄et), (Y2,et, ȳ2,et)

)
is bijective. Considering sets of orbits for the πet

1 (Yk̄, ȳ) ∼= πet
1 (Y1,k̄, ȳ1) × πet

1 (Y2,k̄, ȳ2)-action on both
sides, we obtain the result by Proposition 2.4. �

3. Homotopy theoretic formulation of Mochizuki’s theorem

For smooth, connected k-varieties X and Y let

Homdom
k (X,Y )

denote the set of dominant k-morphisms from X to Y . Every dominant morphism X → Y defines a
morphism Xet → Yet that is π1-open. Similarly, for Gk-augmented pro-finite groups Γ and ∆ we let

Homopen
Gk

(Γ,∆)

denote the set of continuous Gk-homomorphisms Γ → ∆ with open image. Mochizuki proved the
following:

Theorem 3.1 ([Mo99] Thm. A). Let p be a prime number, k a sub-p-adic field, X a smooth, connected
k-variety and Y a smooth hyperbolic curve over k. Then, for any choice of geometric base points, the
natural map

Homdom
k (X,Y ) −→ Homopen

Gk
(πet

1 (X, x̄), πet
1 (Y, ȳ))πet

1 (Yk̄,ȳ)

is bijective.

We reformulate Theorem 3.1 in the language of homotopy theory as follows.

Theorem 3.2. Let p be a prime number, k a sub-p-adic field, X a smooth, connected k-variety and Y
a smooth hyperbolic curve over k. Then the natural map

Homdom
k (X,Y ) −→ Homπ1-open

Ho(pro-ss)↓ket(Xet, Yet)

is bijective.

Proof. We choose an algebraic closure k̄ of k, and further choose base points x̄ ∈ X(k̄) and ȳ ∈ Y (k̄)
compatible with the base point k̄et of ket. In the commutative diagram

Homdom
k (X,Y ) Homopen

Gk
(πet

1 (X, x̄), πet
1 (Y, ȳ))πet

1 (Yk̄,ȳ)

Homπ1-open
Ho(pro-ss)↓ket(Xet, Yet) Homπ1-open

Ho(pro-ss∗)↓(ket,k̄et)

(
(Xet, x̄et), (Yet, ȳet)

)
πet

1 (Yk̄,ȳ)

π1(−)
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the bottom arrow is the inverse to the bijection of Proposition 2.4. The arrow marked π1(−) is a bijection
because hyperbolic curves are of type K(π, 1) by Lemma 2.7 (a), hence Proposition A.16 applies. The
restrictions to (π1-)open maps are compatible.

Now the claim of the theorem is equivalent to the bijectivity of the top arrow, which is the statement
of Theorem 3.1. �

4. The retraction

In this section we prove Theorem 1.2.

4.1. Counting points in closed fibres. We consider a normal noetherian scheme S with geometric
generic point η̄ over the generic point η. Let s ∈ S be a closed point with finite residue field Fs = κ(s)
of cardinality N(s) = |Fs|, and let s̄ be a geometric point over s. A choice of an étale path between s̄
and η̄ leads to a homomorphism

Gκ(s) = πet
1 (s, s̄)→ πet

1 (S, s̄) ∼= πet
1 (S, η̄),

by means of which the arithmetic Frobenius ϕs ∈ Gκ(s) acts on πet
1 (S, η̄)-modules.

Proposition 4.1. In the above situation, let ` be a prime number invertible on S. Let f̄ : X̄ → S
be a proper, smooth, equidimensional morphism of relative dimension d, and let X ⊆ X̄ be the open
complement of a strict normal crossing divisor D =

⋃n
α=1Dα ↪→ X̄ relative to S with Dα/S smooth

relative divisors for all α = 1, . . . , n.
Then the Gκ(η)-action on Hi(Xη̄,Q`) factors through πet

1 (S, η̄) for all i ≥ 0, and the resulting action
of ϕs computes the number of Fs-rational points of the fibre Xs by

|Xs(Fs)| = N(s)d ·
2d∑
i=0

(−1)i tr
(
ϕs|Hi

et(Xη̄,Q`)
)
.

Proof. We denote by j : X ↪→ X̄ the open immersion. For a finite subset J ⊆ {1, . . . , n}, we set

f̄J : DJ :=
⋂
α∈J Dα X̄ S

iJ f̄

which is proper and smooth. By [ILO14], Exposé XVI, Cor. 3.1.3, there are isomorphisms for all b ≥ 0

Rbj∗Q` =

b∧(
R1j∗Q`

) ∼= ⊕
|J|=b

iJ,∗Q`(−b).

Therefore all sheaves occurring in the E2-page of the Leray spectral sequence for f = f̄ j : X → S

Eab2 = Raf̄∗
(
Rbj∗Q`

) ∼= ⊕
|J|=b

Raf̄J,∗Q`(−b) =⇒ Ra+bf∗(Q`)

are smooth étale sheaves on S by [SGA4 1
2 ] (Arcata V) Thm. 3.1. Hence also the limit terms Eab∞

and, furthermore, all Rif∗Q` are smooth Q`-sheaves on S. Relative Poincaré duality shows that also
the sheaves Rif!Q` are smooth sheaves on S. Hence proper base change and cospecialisation yield a
Gκ(s) → πet

1 (S, η̄)-equivariant isomorphism

Hi
c(Xs̄,Q`) =

(
Rif!Q`

)
s̄

∼−→
(
Rif!Q`

)
η̄

= Hi
c(Xη̄,Q`).

Poincaré-duality yields a Gκ(s)-equivariant perfect pairing

Hi
et(Xs̄,Q`)×H2d−i

c (Xs̄,Q`) −→ Q`(−d),

and similarly for Xη̄, which leads to Gκ(s)-module isomorphisms

Hi
et(Xs̄,Q`) ∼= Hom

(
H2d−i

c (Xs̄,Q`),Q`(−d)
) ∼= Hom

(
H2d−i

c (Xη̄,Q`),Q`(−d)
) ∼= Hi

et(Xη̄,Q`).

The arithmetic Frobenius ϕs acts by transport of structure on étale cohomology (with compact support)
as the inverse of the action by the geometric Frobenius Frobs. The Lefschetz trace formula for the
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number of rational points on Xs therefore implies

|Xs(Fs)| =
2d∑
i=0

(−1)i tr
(
Frobs|Hi

c(Xs̄,Q`)
)

= N(s)d ·
2d∑
i=0

(−1)i tr
(
ϕs|Hi

et(Xs̄,Q`)
)

= N(s)d ·
2d∑
i=0

(−1)i tr
(
ϕs|Hi

et(Xη̄,Q`)
)
. �

4.2. Factor-dominant embeddings. Let Y be a locally closed subscheme in a product of smooth,
geometrically connected curves Ci over k

ι : Y ↪→W = C1 × · · · × Cn.

We denote the projections by pi : W → Ci.

Definition 4.2. We say that ι is factor-dominant if piι is dominant for all i = 1, . . . , n.

Assume that Y is geometrically connected and geometrically reduced over k. Then the composition
piι : Y → Ci is either dominant or constant. If piι is constant, the image of Y in Ci is a k-rational point.
Hence we can remove all factors Ci with piι constant from W to obtain a factor-dominant immersion.

Proposition 4.3. Let p be a prime number and let k be a sub-p-adic field.
Let ι : Y ↪→ W = C1 × · · · × Cn be a factor-dominant immersion of a geometrically connected and

geometrically unibranch variety Y over k into a product of hyperbolic curves Ci and let X be a smooth
connected variety over k.

Then, for any π1-open morphism γ : Xet → Yet in Ho(pro-ss) ↓ ket there is a unique morphism of
k-varieties f : X →W such that the following diagram commutes in Ho(pro-ss) ↓ ket:

Xet

Yet Wet.

γ fet

ιet

Proof. In the degenerate case n = 0, we have Y = Spec(k) = W and the structure map f : X → Spec(k)
is the required morphism. Otherwise, by Theorem 3.2, there are unique k-morphisms fi : X → Ci, for
i = 1, . . . , n, with

(fi)et = (piι)etγ

in Ho(pro-ss) ↓ ket. These together define a k-morphism f = (fi) : X →W . An inductive application of
Lemma 2.9 shows that fet = ιetγ in Ho(pro-ss) ↓ ket. The uniqueness of such an f is obvious. �

4.3. The key argument. Next we show that the morphism constructed in Proposition 4.3 factors
through the subvariety Y ↪→W if γ is an isomorphism in Ho(pro-ss).

Proposition 4.4. Let k be a finitely generated extension field of Q. Let ι : Y ↪→W = C1 × · · · ×Cn be
a smooth, locally closed subscheme in a product of hyperbolic curves over k, X a smooth variety over k
and f : X →W a k-morphism.

Assume there exists γ ∈ IsomHo(pro-ss)(Xet, Yet) such that the diagram

Xet

Yet Wet

γ fet

ιet

commutes in Ho(pro-ss). Then f factors through ι, i.e., there exists a unique morphism g : X → Y such
that the diagram

X

Y W

g f

ι

commutes.
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Remark 4.5. The first diagram in Proposition 4.4 remains commutative after replacing γ by get, how-
ever, we do not claim that γ = get in Ho(pro-ss).

Proof of Proposition 4.4. The question whether f factors through Y can be checked after base change
to an étale covering of W . Note that the assumption on the existence of γ is preserved by such a base
change due to Lemma 2.2.

Since the Ci are hyperbolic, there are hyperbolic curves C ′i over a common finite separable extension
k′/k with smooth compactification of genus ≥ 2 and étale coverings C ′i → Ci ×k k′ → Ci. With
W ′ = C ′1 ×k′ . . .×k′ C ′n we base change by the natural product covering W ′ → W and replace k by k′.
We therefore may assume that all Ci have compactifications of genus ≥ 2 and then replace the Ci by
their smooth compactifications.

Since k has characteristic 0, we find smooth compactifications X̄ and Ȳ of X and of Y such that the
boundaries are simple normal crossing divisors and f and ι extend to morphisms from X̄ and Ȳ to W .
Now choose a regular connected scheme S of finite type over Z with function field k such that the whole
situation extends over S. Then everything follows from Proposition 4.6 below. �

Proposition 4.6. Let S be a regular connected scheme of finite type over Z with generic point η ∈ S,
and let Ci → S, for i = 1, . . . , n, be proper smooth relative curves with geometrically connected fibres of
genus ≥ 1.

Let ι : Y ↪→ W = C1 ×S . . . ×S Cn be a locally closed subscheme which is smooth as an S-scheme,
and let f : X →W be an S-morphism with X/S smooth. Furthermore, assume that X → S and Y → S
have nice relative compactifications as used in Proposition 4.1, which even map to W .

Assume there exists γ ∈ IsomHo(pro-ss)((Xη)et, (Yη)et) such that (fη)et = (ιη)etγ in Ho(pro-ss). Then
f factors through Y :

X

Y W.

g f

ι

Proof. The assertion is trivial in the degenerate case n = 0, since then Y = W = S. We therefore may
assume n ≥ 1. The morphism f factors through Y if and only if the immersion ιX : Y ×W X ↪→ X is
an isomorphism. Because X is reduced and ιX is an immersion, it suffices to show that ιX is surjective
(on points). Since X is of finite type over Z and therefore Jacobson by [EGA4] Cor. 10.4.6, the map ιX
is surjective if all closed points are in the image.

By [EGA4] Lem. 10.4.11.1, every closed point of X has a finite residue field. We therefore have to
show that for every finite field F (more precisely Spec(F)→ S) and every point x ∈ X(F) we have

f(x) ∈ im
(
ι : Y (F)→W (F)

)
.

Let s ∈ S be the closed point of the base under x. The residue field κ(s) is a subfield of F. Hence there
exists an étale morphism S′ → S with S′ connected and a point s′ ∈ S′ mapping to s and with κ(s′) = F.
The question whether f(x) lies in the image of ι : Y (F)→W (F) can be decided after base change along
S′ → S.

We denote by f ′ : X ′ → W ′ and ι′ : Y ′ ↪→ W ′ the base change of f and ι along S′ → S. Since the
function field k′ of S′ is a finite separable extension of k = κ(η), the existence of γ : (Xη)et

∼→ (Yη)et in
Ho(pro-ss) with (fη)et = (ιη)etγ in Ho(pro-ss) implies the existence of an isomorphism

γ′ : (Xk′)et → (Yk′)et

in Ho(pro-ss) with (f ′η)et = (ι′η)etγ
′ in Ho(pro-ss) by Lemma 2.2. Hence the base change along S′ → S

preserves all assumptions and we may assume that κ(s) = F without loss of generality.
Let f(x) = (w1, . . . , wn), wi ∈ Ci,s(F). Fix a decomposition group Hi of wi in πet

1 (Ci,s) and let w′i be
another rational point of Ci,s. By [Ta97] Cor. 2.10, the decomposition subgroups in πet

1 (Ci,s) of different
rational points of Ci,s are not conjugate. Hence we find an open subgroup Ui(w′i) ⊂ πet

1 (Ci,s) such that
Ui(w

′
i) contains Hi but none of the (conjugate) decomposition groups of w′i. Let Ui be the intersection

of the groups Ui(w′i), where w′i runs through the finitely many rational points of Ci,s different from wi.
Then the connected étale covering of Ci,s corresponding to Ui has a rational point over wi but no rational
point lying over any other rational point of Ci,s. Taking the product of these coverings, we find an étale
covering h : W ′s →Ws such that

h(W ′s(F)) = {f(x)}.
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Hence, if the base change Y ′s = Ys ×Ws W
′
s has an F-rational point, then f(x) ∈ Ys(F).

By [Ar69] Thm. 3.1, we can find a Nisnevich neighbourhood (T, t) → (S, s) and an étale covering
hT : W ′ → WT extending h : W ′s → Ws. Then, by the same arguments as above, the base change along
T → S preserves our assumptions and we may assume that S = T .

Let us denote by X ′ → X (resp. Y ′ → Y ) the induced étale coverings by means of f (resp. ι) from
W ′ → W . We still have an isomorphism γ′ : (X ′η)et → (Y ′η)et in Ho(pro-ss) with (f ′η)et = (ι′η)etγ

′ in
Ho(pro-ss) by Lemma 2.2 and X ′ → S (resp. Y ′ → S) keep having a nice relative compactification,
because the respective étale coverings are induced by an étale covering of the proper scheme W/S. Note
that because of (f ′η)et = (ι′η)etγ

′ the morphism γ′ lies in fact in Ho(pro-ss) ↓ k′et.
Let F have q elements and let dX be the relative dimension of X/S, and dY the relative dimension of

Y/S. Propositions 4.1 and 2.3 show that

|Y ′s (F)| = qdY ·
∞∑
i=0

(−1)i tr
(
ϕs|Hi(Y ′η̄ ,Q`)

)
= qdY ·

∞∑
i=0

(−1)i tr
(
ϕs|Hi(X ′η̄,Q`)

)
= qdY −dX · |X ′s(F)|.

Since X ′s(F) = Xs(F)×Ws(F) W
′
s(F) is non-empty, we obtain Y ′s (F) 6= ∅. �

4.4. Independence, functoriality and retraction. We now complete the proof of Theorem 1.2. We
state a more precise version of it.

Theorem 4.7. Let k be a finitely generated field extension of Q and let X and Y be smooth geometrically
connected varieties over k which can be embedded as locally closed subschemes into a product of hyperbolic
curves over k. Then the natural map

(−)et : Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket(Xet, Yet)

admits a unique functorial retraction

r : IsomHo(pro-ss)↓ket(Xet, Yet) −→ Isomk(X,Y ),

with the following properties:
(a) Retraction: for all k-isomorphisms g : X

∼→ Y we have

r(get) = g.

(b) Functoriality: Let Z be a further geometrically connected variety over k which can be embedded
as a locally closed subscheme into a product of hyperbolic curves over k. Then for isomorphisms
γ1 : Xet

∼→ Yet and γ2 : Yet
∼→ Zet in Ho(pro-ss) ↓ ket we have

r(γ2γ1) = r(γ2)r(γ1).

(c) Maps to hyperbolic curves: If γ : Xet
∼→ Yet is an isomorphism in Ho(pro-ss) ↓ ket and h : Y → C

is a dominant k-morphism to a hyperbolic curve C, then

hetr(γ)et = hetγ

in Ho(pro-ss) ↓ ket.

Proof. Let ι : Y ↪→ W = C1 × . . . × Cn be an embedding into a product of hyperbolic curves. After
removing factors, we can assume that ι is factor-dominant. Starting from an isomorphism

γ : Xet
∼−→ Yet

in Ho(pro-ss) ↓ ket, Proposition 4.3 shows the existence of a unique k-morphism f : X → W such that
fet = ιetγ. By Proposition 4.4, the map f factors as f = ιr(γ) for a unique k-morphism

r(γ) : X → Y.

This constructs the k-morphism r(γ) of which we will later show that it is an isomorphism. Immediately
from the construction we deduce

(ιr(γ))et = fet = ιetγ. (3)
Denoting the projections by pi : W → Ci, we obtain

(piιr(γ))et = (piι)etγ,

hence (piιr(γ))et is π1-open and piιr(γ) : X → Ci is dominant for i = 1, . . . , n.
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We first prove property (a). Let us assume γ = get : Xet → Yet arises from a k-isomorphism g : X
∼→ Y .

By construction, the auxiliary map is f = ιg : X → W , which factors through Y as g : X → Y .
Uniqueness of the auxiliary map and of the factorization shows

r(get) = g.

We secondly show that r(γ) is independent of the immersion ι. Let ι′ : Y ↪→W ′ =
∏
j C
′
j be another

factor-dominant embedding into a product of hyperbolic curves. We obtain from the construction above
a unique map f ′ : X → W ′ and a factorization g′ : X → Y . Applying the construction a third time,
namely to the product (ι, ι′) : Y ↪→ W × W ′, yields the map (f, f ′) : X → W × W ′ and a further
factorization h : X → Y . Projecting to both factors in (f, f ′) we deduce g = h = g′, and r(γ) is indeed
independent of the chosen immersion ι.

We next show property (b). We choose a factor-dominant embedding ιZ : Z ↪→ V = D1 × · · · ×Dm

into a product of hyperbolic curves. It suffices to show that

ιZr(γ2γ1) = ιZr(γ2)r(γ1).

Since V is a product of hyperbolic curves and piιZr(γ2γ1) : X → Di is dominant for all i, Lemma 2.9
and Theorem 3.2 show that it suffices to prove that

(ιZr(γ2γ1))et = (ιZr(γ2)r(γ1))et.

We modify a given factor-dominant immersion ι : Y ↪→W , to

ιY = (ι, ιZr(γ2)) : Y ↪→W × V.

We set pr2 : W × V → V for the second projection. Using (3) we can compute

(ιZr(γ2γ1))et = (ιZ)et(γ2γ1) = ((ιZ)etγ2)γ1 = (ιZr(γ2))etγ1

= (pr2ιY )etγ1 = (pr2)et(ιY )etγ1

= (pr2)et(ιY r(γ1))et = (pr2ιY r(γ1))et = (ιZr(γ2)r(γ1))et

and this shows (a).
The established retract property (a) and functoriality (b) of r(γ) show formally that r(γ) is an iso-

morphism: the inverse γ−1 gives rise to a map r(γ−1) which is the inverse of r(γ).
In order to show property (c), put C1 = C and choose hyperbolic curves C2, . . . , Cn together with

a factor-dominant immersion ι : Y ↪→ W = C1 × · · · × Cn with h = p1ι. Then, by (3) we have
ιetr(γ)et = ιetγ and composing with (p1)et yields the result.

To finish the proof we show the asserted uniqueness of r. Let ι : Y ↪→W = C1× · · · ×Cn be a factor-
dominant immersion into a product of hyperbolic curves, denote the composite with the i-th projection
by fi : Y → Ci, and let γ : Xet → Yet be an isomorphism in Ho(pro-ss) ↓ ket. Clearly r(γ) is uniquely
determined by ιr(γ), and even by fir(γ) for i = 1, . . . , n. This is uniquely determined by Theorem 3.2
by the map

(fir(γ))et = fi,etr(γ)et = fi,etγ

where we used statement (c). This shows uniqueness of r(γ). �

Another functoriality property of the retraction r is the following.

Proposition 4.8. Let X, X ′, Y and Y ′ be smooth geometrically connected varieties over k which can
be embedded as locally closed subschemes into a product of hyperbolic curves. Assume we are given
dominant k-morphisms f : X ′ → X, g : Y ′ → Y and isomorphisms γ′ : X ′et

∼→ Y ′et, γ : Xet
∼→ Yet in

Ho(pro-ss) ↓ ket such that γfet = getγ
′. Then the following diagram commutes:

X ′ Y ′

X Y.

r(γ′)

∼

f g

r(γ)

∼

Proof. Since Y has an embedding into a product of hyperbolic curves, it suffices to show that

hgr(γ′) = hr(γ)f
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for every dominant morphism h : Y → C to a hyperbolic curve. By Theorem 3.2, it suffices to show that

hetgetr(γ
′)et = hetr(γ)etfet.

This follows from Theorem 4.7 (c):

hetgetr(γ
′)et = (hg)etr(γ

′)et = (hg)etγ
′ = hetgetγ

′ = hetγfet = hetr(γ)etfet. �

5. Class preservation

In this section we investigate the kernel of the retraction

r : IsomHo(pro-ss)↓ket(Xet, Yet)→ Isomk(X,Y )

constructed in the proof of Theorem 4.7. Because the retraction is functorial, we may pass by composing
γ with (r(γ)−1)et to the situation where X = Y and r(γ) = idX . Let ϕ = π1(γ) ∈ Autout

Gk
(πet

1 (X)). We
are going to show that ϕ is class preserving by elements of πet

1 (Xk̄).

5.1. Preservation of open normal subgroups. For this we first show that ϕ is a normal automor-
phism, i.e., every open normal subgroup is mapped by ϕ to itself. Note that the property of being normal
is independent of the particular representative of ϕ in AutGk

(
πet

1 (X, x̄)
)
.

Proposition 5.1. Let k be a finitely generated field extension of Q and let X be a smooth geometrically
connected variety over k with a factor dominant embedding as a locally closed subscheme

ι : X ↪→W = C1 × · · · × Cn
of a product of hyperbolic curves over k. We assume that the following holds:

(NR): none of the Ci is rational.
Then, for γ ∈ AutHo(pro-ss)↓ket(Xet) with r(γ) = idX , the induced map ϕ = π1(γ) ∈ Autout

Gk
(π1(X)) is

a normal automorphism.

Proof. Let N ⊂ πet
1 (X) be an open normal subgroup. Then also ϕ(N) is an open normal subgroup and

we want to show that ϕ(N) = N . We denote the connected étale covering of X associated with N by
XN . By Lemma 2.1, (XN )et is the covering pro-space of Xet associated with N .

Since r(γ) = idX , we deduce from Theorem 4.7 (c) and Lemma 2.9 that in Ho(pro-ss)

ιetγ = ιet. (4)

By Proposition A.2, there exists an isomorphism γN : (XN )et → (Xϕ(N))et in Ho(pro-ss) such that

(XN )et Xet Wet

(Xϕ(N))et Xet Wet

γNo

ιet

γo

ιet

(5)

commutes in Ho(pro-ss). In order to show N = ϕ(N), it suffices to find an arrow such that

XN X W

Xϕ(N) X W

ι

ι

commutes: indeed, this implies N ⊂ ϕ(N), hence N = ϕ(N) since both have the same index in πet
1 (X).

Since none of the Ci are rational, we can replace the Ci by their smooth compactifications. After this
replacement, W is the product of smooth proper curves of positive genus.

Now we choose a regular connected scheme S of finite type over Z with function field k such that the
whole situation extends over S, i.e., we obtain the diagram

XN X W

Xϕ(N) X W .

ι

ι

By generalized Čebotarev density [Se65], Thm. 7, the dotted arrow exists if and only if the set of closed
points of X which split completely in XN coincides with the set of closed points of X which split
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completely in Xϕ(N). We thus have to show that for any finite field F and every x ∈X (F) there exists
a point in XN (F) over x if and only if there exists a point in Xϕ(N)(F) over x.

This will be deduced as in Proposition 4.6: Let s ∈ S(F) be the image of x in S. We denote the fibre
of W over s by Ws. As in the proof of Proposition 4.6, we may first assume that k(s) = F, and secondly
we can choose a connected étale covering h : W ′s → Ws of ι(x) ∈ Ws such that h(W ′s(F)) = {ι(x)}.
After replacing S by a Nisnevich neighbourhood of s ∈ S, we can lift h : W ′s → Ws to an étale covering
W ′ → W .

Denote the fibre products by

X ′ = X ×W W ′, X ′
N = XN ×W W ′, X ′

ϕ(N) = Xϕ(N) ×W W ′.

Applying Lemma 2.2 to the commutative diagram (5), we conclude that the étale homotopy types of the
generic fibres X ′N and X ′ϕ(N) of X ′

N and X ′
ϕ(N) are isomorphic in Ho(pro-ss) ↓ ket. As in the proof of

Proposition 4.6 we deduce that
X ′
N (F) 6= ∅ ⇔X ′

ϕ(N)(F) 6= ∅.
By the choice of W ′, any point of X ′

N (F) and of X ′
ϕ(N)(F) maps to x ∈X (F). Summing up, we deduce

that the following statements are equivalent:
(a) there is a point in XN (F) over x,
(b) there is a point in X ′

N (F) over x,
(c) X ′

N (F) 6= ∅,
(d) X ′

ϕ(N)(F) 6= ∅,
(e) there is a point in X ′

ϕ(N)(F) over x,
(f) there is a point in Xϕ(N)(F) over x. �

5.2. Preservation of decomposition groups in finite quotients. In order to talk about open sub-
groups (and not only about open subgroups up to conjugation), we now rigidify the situation. Let k̄ be
an algebraic closure of k, and let x̄ : Spec(k̄)→ X be a geometric point of X. Let γ0 be a preimage of γ
under the surjection of Proposition 2.4

AutHo(pro-ss∗)↓(ket,k̄et)(Xet, x̄et) AutHo(pro-ss)↓ket(Xet),

i.e., γ0 is determined by γ up to the natural πet
1 (Xk̄, x̄)-action. Let ϕ = π1(γ0) ∈ AutGk

(πet
1 (X, x̄)). Then

ϕ is determined by γ up to an inner automorphism of πet
1 (X, x̄) given by an element of its subgroup

πet
1 (Xk̄, x̄).

Lemma 5.2. Under the assumptions of Proposition 5.1, the automorphism ϕ : πet
1 (X, x̄) → πet

1 (X, x̄)
sends every element g ∈ π1(X, x̄) to a conjugate element raised to a power:

ϕ(g) = hgg
m(g)h−1

g

with hg ∈ πet
1 (X, x̄) and m(g) ∈ Ẑ×.

Proof. Let again N ⊂ πet
1 (X, x̄) be an open normal subgroup. We have shown that ϕ(N) = N , hence

ϕ induces an automorphism ϕ̄ of G = πet
1 (X, x̄)/N . Again we choose a regular connected scheme S of

finite type over Z with function field k such that the whole situation extends over S, i.e., we obtain a
Galois covering

XN →X

with Galois group G.
Let g ∈ G be an arbitrary element. Our next goal is to show that ϕ̄(g) is some power of some conjugate

of g. For this consider the subgroup H = 〈g〉 ⊂ G. By Čebotarev density, we can find a closed point
P ∈X and a closed point P ′ ∈XN above P such that g is the Frobenius of P ′ in G = Aut(XN/X ).

Let PH be the image of P ′ in the subextension XH associated with H. Then PH has the same residue
field as P : k(PH) = k(P ). The same argument as above shows that there is some point QH ∈ Xϕ̄(H)

above P with k(QH) = k(P ). Hence ϕ̄(H) contains the decomposition group GQ′(XN/X ) of some
(any) point Q′ ∈XN over QH . Since both groups have the same order, they agree.

The group GQ′(XN/X ) is generated by another Frobenius over P , i.e., for some h ∈ G by the
conjugate hgh−1 of g. We obtain

〈ϕ̄(g)〉 = ϕ̄(H) = 〈hgh−1〉,



16 ALEXANDER SCHMIDT AND JAKOB STIX

hence
ϕ̄(g) = hgmh−1

for some m ∈ Ẑ×.
Now the assertion follows from the usual compactness argument as follows. Let g ∈ π1(X, x̄) be

an arbitrary element. For an open normal subgroup N ⊂ π1(X, x̄) we denote the image of g in G =
π1(X, x̄)/N by gN . The automorphism of G induced by ϕ will be denoted by ϕN . The closed subset

MN = {(h,m) ∈ π1(X, x̄)× Ẑ× | ϕN (gN ) = hN (gN )mh−1
N } ⊂ π1(X, x̄)× Ẑ×

is non-empty by the Čebotarev density argument above. If N1 ⊂ N2 are two open normal subgroups,
then MN1

⊂MN2
. By compactness also the intersection of all MN is non-empty. Any

(hg,m(g)) ∈
⋂
N

MN ⊂ π1(X, x̄)× Ẑ×

serves as hg and m(g) as in the lemma. �

Since ϕ is a Gk-automorphism, we can show that the exponent m(g) is always 1:

Proposition 5.3. Under the assumptions of Proposition 5.1, the automorphism ϕ : πet
1 (X, x̄) →

πet
1 (X, x̄) is class preserving: every element is mapped to a conjugate element.

Proof. The cyclic cyclotomic extension of k induces a surjection

πet
1 (X, x̄)→ Gk → Ẑ

that is preserved by ϕ. Therefore m(g) = 1 holds for elements whose images in Ẑ generate an open
subgroup. This is a dense set of elements in πet

1 (X, x̄) because it contains the preimage of Z.
This means that in every finite quotient we may choose the exponent equal to 1. Applying the

compactness argument again, we conclude the statement. �

5.3. Rational hyperbolic factors. We now want to drop the hypothesis (NR) (one of the assumptions
of Proposition 5.1) from Proposition 5.3.

We introduce the following notation: let k be a field, X a connected variety over k and ` a prime
number. We say a connected pointed étale covering h : (X ′, x̄′)→ (X, x̄) is `-geometric if the action of
πet

1 (Xk̄, x̄) on the geometric fibre h−1(x̄) factors through a finite `-group.
If H = πet

1 (X ′, x̄′) ⊂ π1(X, x̄) is the corresponding open subgroup, H̄ = H ∩ πet
1 (Xk̄, x̄) and N̄ is

the maximal normal subgroup of πet
1 (Xk̄, x̄) contained in H̄, then being `-geometric is equivalent to

πet
1 (Xk̄, x̄)/N̄ being an `-group.

Lemma 5.4. Let k be a field, ` a prime number 6= char(k), and let (C, c̄) be a geometrically pointed
hyperbolic curve over k. Then

πet
1 (C, c̄) =

⋃
H,

where H runs through the open subgroups of πet
1 (C, c̄) such that the associated covering CH → C is

`-geometric and CH has a smooth compactification of genus ≥ 1.

Proof. Let σ ∈ πet
1 (C, c̄) be arbitrary. We have to find an open subgroup H ⊂ πet

1 (C, c̄) with σ ∈ H such
that CH is not rational and CH → C is `-geometric. For this we may assume that k is perfect (replace k
by its perfect hull). Furthermore, we can replace k by an algebraic extension field such that 〈σ〉 surjects
onto Gk. Then, for any H containing σ, the curve CH is geometrically connected over k.

For any open subgroup H ⊂ πet
1 (C, c̄) we denote the boundary of a smooth compactification of CH

by SH ; for simplicity, we write S = Sπet
1 (C,c̄).

We denote the genus (of a smooth compactification of) C by g(C). If g(C) > 0 we are done, so
assume that C is rational. By the hyperbolicity assumption, we have n := #S(k̄) ≥ 3, where k̄ denotes
an algebraic closure of k.

We set N = πet
1 (Ck̄, c̄). The group

G = N/[N,N ]N `
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is the Galois group of the maximal elementary abelian `-covering of Ck̄. Since Ck̄ is isomorphic to the
complement of n closed points in P1

k̄
, this group is an (n−1)-dimensional F`-vector space and the inertia

groups in G of the points in S(k̄) are pairwise distinct. Now we consider

H = 〈[N,N ]N `, σ〉,

which is an open subgroup of πet
1 (C, c̄). The curve CH is geometrically connected over k and CH,k̄ → Ck̄

is the elementary abelian `-covering associated to the quotient G� G/(〈σ〉∩N). In particular, CH → C
is `-geometric.

Let nH = #SH(k̄), and let d be the degree of CH,k̄ → Ck̄, so d ≥ `n−1/` ≥ `. The structure of inertia
groups in G implies, because 〈σ〉∩N is cyclic, that all but at most one of the points in S(k̄) are ramified
in CH,k̄ → Ck̄. This shows

nH ≤
d

`
(n− 1) + d. (6)

By the Riemann–Hurwitz formula, the Euler–Poincaré characteristic is multiplicative in étale coverings
which are at most tamely ramified along the boundary of a smooth compactification. Hence we obtain

2g(CH) + nH − 2 = d · (2g(C) + n− 2) = d · (n− 2). (7)

If g(CH) > 0 we are done. Otherwise, (7) shows nH ≥ d(n − 2) + 2 ≥ ` + 2 ≥ 4. Replacing C by CH ,
we thus can assume that n ≥ 4. Repeating this step, we either obtain g(CH) > 0, or g(CH) = 0, and
nH ≥ d(n− 2) + 2 ≥ 2`+ 2 ≥ 6. We may therefore assume n ≥ 6, and in this case (6) and (7) imply

2g(CH)− 2 = d(n− 2)− nH ≥ d(n− 2)− d

`
(n− 1)− d =

d

`
·
(
(`− 1)(n− 3)− 2

)
≥ 1,

showing that CH is not rational. �

Proposition 5.5. Let k be a finitely generated field extension of Q and let X be a smooth geometrically
connected variety over k which can be embedded as a locally closed subscheme of a product of hyperbolic
curves over k.

Then, for γ ∈ AutHo(pro-ss)↓ket(Xet) with r(γ) = idX , the induced map ϕ = π1(γ) ∈ Autout
Gk

(π1(X)) is
class preserving.

Proof. Let ι : X ↪→W = C1 ×k · · · ×k Cn be a factor-dominant embedding into a product of hyperbolic
curves over k. We choose a geometric point x̄ of X, and put w̄ = ι(x̄). Let σ ∈ π1(X, x̄) be arbitrary.

If none of the Ci is rational, everything follows from Proposition 5.3. Assume that one of the Ci, say
C1, is rational. Put c̄1 = p1(w̄) and let N be the maximal normal subgroup of πet

1 (C1, c̄1) contained in
the image of πet

1 (X, x̄) (which is open by assumption). We choose a prime number ` > (πet
1 (C1, c̄1) : N).

Lemma 5.4 provides an `-geometric connected étale covering (C ′1, c̄
′
1)→ (C1, c̄1) such that πet

1 (p1ι)(σ) ∈
πet

1 (C ′1, c̄
′
1) and C ′1 has positive genus. Let k′ be the constant field of C ′1. Then

X ′ = X ×C1 C
′
1 = Xk′ ×C1,k′ C

′
1 = Xk′ ×(C1,k′×k′ ···×k′Cn,k′ )

(C ′1 ×k′ C2,k′ ×k′ · · · ×k′ Cn,k′)

is geometrically connected over k′. Proceeding recursively, we find a finite connected étale covering
(W ′, w̄′)→ (W, w̄) such that
(a) W ′ = C ′1×k′ · · ·×k′C ′n, where k′ is a finite extension field of k, and the C ′i are smooth geometrically

connected curves over k′ with compactifications of genus ≥ 1,
(b) X ′ = X ×W W ′ is geometrically connected over k′,
(c) σ ∈ πet

1 (X ′, x̄′), where x̄′ := (x̄, w̄′).
Let ι′ : X ′ ↪→ W ′ be the immersion induced by ι. By Lemma 2.2, there exists γ′ ∈ AutHo(pro-ss)(X

′
et)

such that the diagram

Xet X ′et W ′et

Xet X ′et W ′et

γ γ′

ι′et

ι′et

commutes in Ho(pro-ss). By Theorem A.10, we can lift γ to γ0 ∈ AutHo(pro-ss∗)(Xet, x̄et) and γ′ to
γ′0 ∈ AutHo(pro-ss∗)(X

′
et, x̄

′
et), and there exists an element τ ∈ πet

1 (X, x̄) with

πet
1 (γ0)(σ) = τπet

1 (γ′0)(σ)τ−1.
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Furthermore, by Proposition 5.3, there exists τ ′ ∈ πet
1 (X ′, x̄′) with πet

1 (γ′0)(σ) = τ ′στ ′
−1. Hence

πet
1 (γ0)(σ) is a conjugate of σ. This completes the proof. �

In order to complete the proof of Theorem 1.9, it remains to show that ϕ is class preserving by
elements of πet

1 (Xk̄). Since for every finite extension k′ of k in k̄, the arguments above also apply to the
automorphism ϕ′ of πet

1 (Xk′) induced by ϕ, this follows from the next lemma.

Lemma 5.6. Let
1 −→ Ḡ −→ G

p−→ Γ −→ 1

be an exact sequence of pro-finite groups and let ϕ ∈ AutΓ(G). Assume that for every open subgroup
Γ′ ⊂ Γ the induced automorphism ϕ′ ∈ AutΓ′(p

−1(Γ′)) is class preserving. Then ϕ is class preserving by
elements of Ḡ.

Proof. Let x ∈ G be arbitrary. We consider the closed subgroup H = Hx ⊂ G generated by x and Ḡ.
Since Ḡ is normal, the image of H in Γ is the cyclic group generated by the image of x.

For every open subgroup U ⊂ G with H ⊂ U the set

CU,x = {u ∈ U | ϕ(x) = uxu−1}
is nonempty and compact. Hence also the set

CH,x = {h ∈ H | ϕ(x) = hxh−1} =
⋂
H⊂U

CU,x

is nonempty and therefore ϕ(x) = hxh−1 for some h ∈ H. The element h ∈ H can be written as h = ḡxm

with ḡ ∈ Ḡ and m ∈ Ẑ. We obtain

ϕ(x) = (ḡxm)x(ḡxm)−1 = ḡxḡ−1. �

6. Strongly hyperbolic Artin neighbourhoods

In this section we prove Theorem 1.5.

Definition 6.1. A strongly hyperbolic Artin neighbourhood is a smooth variety X over k such that
there exists a sequence of morphisms

X = Xn → Xn−1 → · · · → X1 → X0 = Spec(k)

such that for all i
(i) the morphism Xi → Xi−1 is an elementary fibration into hyperbolic curves, and
(ii) Xi admits an embedding Xi ↪→Wi into a product of hyperbolic curves.

Prominent examples of strongly hyperbolic Artin neighbourhoods are the moduli spaces M0,n of curves
of genus 0 with n marked points for n ≥ 4. The tower of elementary fibrations is the one by forgetting
one marked point after the other, and the embedding into a product of hyperbolic curves comes from
forgetting all marked points except for 4 in all possible ways.

A recursive application of Proposition 2.8 shows that strongly hyperbolic Artin neighbourhoods over
fields of characteristic zero are of type K(π, 1).

Theorem 6.2. Let k be a finitely generated field extension of Q and let X be a strongly hyperbolic Artin
neighbourhood over k.

Let γ ∈ AutHo(pro-ss)↓ket(Xet) be an automorphism with r(γ) = idX . Then γ = idXet .

Proof. We choose a geometric point x̄ of X lying over the generic point. By Proposition 2.4, there is a lift
γ0 ∈ AutHo(pro-ss∗)↓(ket,k̄et)(Xet, x̄et) of γ. Let ϕ0 = π1(γ0). Since Xet is of type K(π, 1), it suffices to show
that ϕ0 is an inner automorphism of πet

1 (X, x̄) induced by an element of πet
1 (Xk̄, x̄). By Theorem 1.9,

ϕ0 is class-preserving by elements of πet
1 (Xk̄, x̄).

We prove the theorem by induction on the dimension of X. The case dimX = 0 is trivial, hence we
may assume dimX ≥ 1. Let f : X → Y be the final fibration step, i.e., an elementary fibration into
hyperbolic curves with Y again a strongly hyperbolic Artin neighbourhood. By induction, the theorem
holds for Y . Let ȳ = f(x̄). Since the higher homotopy groups of Y vanish, the long exact homotopy
sequence [Fr82] Thm. 11.5, provides the exact sequence

1→ πet
1 (Xȳ, x̄)→ πet

1 (X, x̄)→ πet
1 (Y, ȳ)→ 1.
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Because ϕ0 is class preserving, it preserves the normal subgroup ∆ = πet
1 (Xȳ, x̄) and induces a Gk-

automorphism
ψ0 : πet

1 (Y, ȳ)→ πet
1 (Y, ȳ).

Since Y is of type K(π, 1), there is an element δ0 ∈ AutHo(pro-ss∗)↓(ket,k̄et)(Yet, ȳet) corresponding to ψ0.
We denote by δ ∈ AutHo(pro-ss)↓ket(Yet) the underlying morphism of δ0 and by ϕ = πet

1 (γ) the outer group
homomorphism lying under ϕ0.

We have δfet = fetγ, and by Proposition 4.8, we obtain

fr(δ) = r(γ)f = f.

Hence r(δ) = idY and, by induction, δ = idYet . Therefore ψ0 = π1(δ0) is an inner automorphism of
πet

1 (Y, ȳ) given by an element of π1(Yk̄, ȳ). After composing ϕ0 with a suitable inner automorphism given
by an element of πet

1 (Xk̄, x̄), we may assume that ψ0 = id .
Let η ∈ Y be the generic point with residue field K = κ(η), the function field of Y . The base change

XK = X ×Y η is a hyperbolic curve over K and we obtain the following diagram with exact rows

1 ∆ πet
1 (XK , x̄) GK 1

1 ∆ πet
1 (X, x̄) πet

1 (Y, ȳ) 1.

In particular, the right square is a fibre square. Since we have arranged that the automorphism ϕ0

induces the identity on πet
1 (Y, ȳ), we may lift it as

ϕη,0 = (ϕ0, id) : πet
1 (XK , x̄)→ πet

1 (XK , x̄).

Now we use anabelian geometry of hyperbolic curves [Mo99], Thm. A. Since with k also K is finitely gen-
erated over Q, the outer isomorphism ϕη underlying ϕη,0 comes from geometry: there is aK-isomorphism

gη : XK → XK

with ϕη = πet
1 (gη). Since X → Y is an elementary fibration in hyperbolic curves, the Isom-scheme

Isom(X/Y,X/Y )→ Y

is finite and unramified by [DM69] Thm. 1.11. Therefore the point

gη ∈ Isom(X/Y,X/Y )(K)

extends uniquely to a point
g ∈ Isom(X/Y,X/Y )(Y ),

in other words a Y -isomorphism g : X → X. Since πet
1 (XK , x̄) → πet

1 (X, x̄) is surjective, it follows that
πet

1 (g) = ϕ, hence
get = γ

in Ho(pro-ss) ↓ ket. This implies g = r(get) = r(γ) = idX , and therefore γ = get = idXet . �

Proof of Theorem 1.5 and Corollary 1.6. LetX and Y be strongly hyperbolic Artin neighbourhoods over
a finitely generated field extension k of Q. In order to prove Theorem 1.5, it suffices to show that the
retraction r of Theorem 1.2 is an inverse to the map f 7→ fet

Isomk(X,Y )→ IsomHo(pro-ss)↓ket(Xet, Yet).

For that it suffices to show that r is injective. Let α, β ∈ IsomHo(pro-ss)↓ket(Xet, Yet) with r(α) = r(β).
Then r(γ) = idX for γ = β−1 ◦ α, which implies γ = idXet by Theorem 6.2, hence α = β. This proves
Theorem 1.5.

Next we choose any geometric base points x̄ of X and ȳ of Y . Since (Yet, ȳet) and (ket, k̄et) are of type
K(π, 1), Proposition A.16 shows that the map

HomHo(pro-ss∗)↓(ket,k̄et)
(
(Xet, x̄et), (Yet, ȳet)

) ∼−→ HomGk
(πet

1 (X, x̄), πet
1 (Y, ȳ)).

is bijective. This map is equivariant with respect to the action by πet
1 (Yk̄, ȳ) ∼= πtop

1 (Yk̄,et, ȳet) on the left
hand side and composition by conjugation on the right hand side, see Lemma A.12. By Proposition 2.4,
the induced map on orbits restricted to isomorphisms is the bijection

IsomHo(pro-ss)↓ket(Xet, Yet)
∼−→ Isomout

Gk

(
πet

1 (X), πet
1 (Y )

)
.
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We conclude that Corollary 1.6 is equivalent to Theorem 1.5. �

Finally, Corollary 1.7 follows from the next lemma.

Lemma 6.3. Every point of a smooth, geometrically connected variety over an infinite perfect field k
has a fundamental system of Zariski-open strongly hyperbolic Artin neighbourhoods.

Proof. Since the assumptions of Lemma 6.3 carry over to open subschemes, it suffices to show that every
point has a strongly hyperbolic Artin neighbourhood. We proceed by induction on the dimension of X.
Let a ∈ X be a point, which we may assume to be closed. We shrink X to an affine open neighbourhood
of a so that X becomes quasi-projective, say X ↪→ Pn is an immersion. Let x0, . . . , xn be homogeneous
linear coordinates on Pn. Since k is infinite, we can move X via PGLn+1(k) such that a does not meet
the union H of all the hyperplanes xi = 0, and xi = x0 for all i 6= 0. So X rH can be embedded into a
product of hyperbolic curves

X \H ↪→ Pn \H = (P1 \ {0, 1,∞})n.
We may replace X by X \H to simplify notation.

We now argue along the lines of [SGA4] XI 3.3, which is formulated over an algebraically closed field
and applies without changes to an infinite perfect field and a rational point a ∈ X. As in loc. cit., we
choose a projective compactification X ⊆ X̄ ⊆ P(V ) such that X̄ is normal (hence geometrically normal,
since k is perfect), V is a vector space of dimension n+ 1, and the restriction O(1)|X̄ is the r-th multiple
of an ample line bundle on X̄ for some r ≥ 2.

Let d be the dimension of X. We consider for every linear subspace W ⊆ V of dimension d the linear
projection P(V ) 99K P(W ), which is defined outside the linear subspace

∆W = {x ∈ P(V ) ; x(w) = 0 for all w ∈W}
of codimension d. Blowing-up ∆W as σW : PW → P(V ), we obtain a morphism πW : PW → P(W ).

Now we vary W in the Grassmannian Grassd(V ) of d-dimensional subspaces of V : Let

W ⊆ V ×Grassd(V )

be the universal subspace. We obtain the projection πW : PW → P(W ), where P(W ) is the projective
space relative Grassd(V ). Let ŪW be the closure of

UW := X ×Grassd(V ) \∆W

in PW , so that we obtain the diagram

UW ŪW

P(W ).

fW
f̄W

As is shown in [SGA4] XI 3.3, there is a non-empty Zariski-open SW ⊆ P(W ) such that the base change
of this diagram to SW is an elementary fibration. Since X embeds into the product of hyperbolic curves,
it is moreover an elementary fibration into hyperbolic curves. For every closed point W ∈ Grassd(V ), let
SW ⊂ P(W ) be the preimage of P(W ) under the projection SW → P(W ). Note that SW is non-empty
and open in P(W ) for W in an open and non-empty subscheme of Grassd(V ), namely the image of SW

under the open map P(W ) → Grassd(V ). For those W , the base change to SW yields an elementary
fibration

UW ŪW

SW .
fW

f̄W

It therefore remains to show that every closed point a of X is contained in UW ⊂ X for some W defined
over k. Indeed, by induction we find a strongly hyperbolic Artin neighbourhood Un−1 of fW (a) in SW .
Replacing UW by Un = f−1

W (Un−1), we are done.
The condition that a ∈ UW is an open condition on W ∈ Grassd(V ). Choosing a geometric point ā

above a ∈ X, we deduce from [SGA4] XI 3.3 that there is aW0 ∈ Grassd(V )(k̄) defined over the algebraic
closure k̄ of k, such that ā ∈ UW0 . Hence there is an open Hā ⊂ Grassd(V ) ×k k̄ where ā ∈ UW for all
W ∈ Hā. Since Grassd(V ) is irreducible, the intersection of all Galois conjugates of Hā is a non-empty
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open H ⊂ Grassd(V ) defined over k. Since k is infinite and Grassd(V ) is a rational variety, we find a
k-rational point W ∈ H. For this particular choice we have Wk̄ ∈ Hk̄ ⊂ Hā, hence ā ∈ UWk̄

. But since
Wk̄ is defined over k, we finally have UW ⊂ X an open that contains ā. But then also a ∈ UW , and by
the above that concludes the induction step of the proof by induction on the dimension. �

7. An absolute version of the main result

Using the main theorem of birational anabelian geometry proven by F. Pop [Pop94], [Pop97], we can
derive the following absolute version of Theorem 1.2.

Theorem 7.1. Let k and ` be finitely generated extension fields of Q, and let X/k and Y/` be smooth
geometrically connected varieties which can be embedded as locally closed subschemes into a product of
hyperbolic curves over k and `, respectively.

Then the natural map

IsomSchemes(X,Y ) −→ IsomHo(pro-ss)(Xet, Yet)

is a split injection with a functorial retraction r. If X and Y are strongly hyperbolic Artin neighbourhoods,
it is a bijection.

Proof. For the geometrically connected variety X/k, the field k is uniquely determined as the maximal
subfield of H0(X,OX), see [Ta97] Lem. 4.2. In particular, every isomorphism of schemes f : X → Y
restricts to an isomorphism fc : Spec(k)→ Spec(`). The assignment f 7→ fc defines a functorial map

IsomSchemes(X,Y )→ IsomSchemes(Spec(k),Spec(`)).

Let γ : Xet → Yet be an isomorphism. We choose separable closures k̄/k, ¯̀/`, a geometric k-point
x̄ : Spec(k̄) → X and a geometric `-point ȳ : Spec(¯̀) → Y . By Theorem A.10, we conclude that γ lifts
to an isomorphism

γ0 : (Xet, x̄et) −→ (Yet, ȳet)

in Ho(pro-ss∗) unique up to monodromy action by πtop
1 (Yet, ȳet) = πet

1 (Y, ȳ). In particular, we obtain an
isomorphism

π1(γ0) : πet
1 (X, x̄)

∼−→ πet
1 (Y, ȳ).

Because k is Hilbertian, Gk has no nontrivial finitely generated closed normal subgroups by [FJ08]
Prop. 16.11.6. Since

πet
1 (Xk̄, x̄) = ker

(
πet

1 (X, x̄) −→ Gk
)

is finitely generated by [SGA7] Exp. II Thm. 2.3.1, Gk is the quotient of πet
1 (X, x̄) by its maximal finitely

generated normal subgroup. The same is true for G` as a quotient πet
1 (Y, ȳ)→ G`. Hence π1(γ0) induces

an isomorphism ϕc : Gk → G` such that the following diagram commutes:

πet
1 (X, x̄) πet

1 (Y, ȳ)

Gk G`.

π1(γ0)

∼

ϕc

∼

The assignment γ 7→ ϕc induces a functorial map

IsomHo(pro-ss)(Xet, Yet) −→ Isomout(Gk, G`) ∼= IsomHo(pro-ss)(ket, `et),

where the right hand isomorphism follows from Proposition A.16 and Theorem A.10, and determines an
isomorphism γc : ket → `et in Ho(pro-ss) with ϕc = π1(γc) as outer isomorphisms.

These two constructions are compatible and yield the commutative diagram (independent of the
choices involved)

IsomSchemes(X,Y ) IsomHo(pro-ss)(Xet, Yet)

IsomSchemes(Spec(k),Spec(`)) IsomHo(pro-ss)(ket, `et),

(−)et

(−)et
∼

Moreover, by the main theorem of birational anabelian geometry [Pop94],[Pop97], the bottom arrow is
a bijection.
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In order to prove the theorem, we may therefore fix an isomorphism g : Spec(`)→ Spec(k) and restrict
to isomorphisms f and γ which induce fc = g and γc = get. We denote these sets of isomorphisms by
Isomg(X,Y ) and Isomget(Xet, Yet). We set

Y ′ = Y ×gSpec(`) Spec(k).

Then the statement of the theorem follows by applying Theorem 1.2 and Theorem 1.5 to the bottom
arrow of the commutative diagram

Isomg(X,Y ) Isomget(Xet, Yet)

Isomk(X,Y ′) IsomHo(pro-ss)↓ket(Xet, Y
′
et).

(−)et

(−)et

�

We are now able to relax the geometric connectivity assumptions in Theorem 1.2.

Theorem 7.2. Let k be a finitely generated extension field of Q, and let X and Y be smooth varieties
over k such that each connected component can be embedded as a locally closed subscheme into a product
of hyperbolic curves over the respective field of constants.

Then the natural map
Isomk(X,Y ) −→ IsomHo(pro-ss)↓ket(Xet, Yet)

is a split injection with a functorial retraction r. If the connected components of X and Y are strongly
hyperbolic Artin neighbourhoods over their respective fields of constants, it is a bijection.

Proof. Since isomorphisms in Ho(pro-ss) respect connected components, we can assume that X and Y
are connected. Let K and L be the fields of constants of X and Y , respectively.

For γ ∈ IsomHo(pro-ss)↓ket(Xet, Yet), Theorem 7.1 yields an isomorphism f = r(γ) : X → Y . Let as
above fc : Spec(K)→ Spec(L) be the induced isomorphism. It remains to show that fc is k-linear.

The proof of Theorem 7.1 first constructs an isomorphism γc : Ket → Let in Ho(pro-ss) compatible with
γ, and such that γc = fc,et. We choose an algebraic closure k̄ of k and a geometric point x̄ : Spec(k̄)→ X.
Let ȳ = f(x̄) and denote the induced geometric points of x̄∗ : K → k̄ and ȳ∗ : L→ k̄ by x̄ and ȳ as well.
We denote the given inclusions by iK : k ↪→ K and iL : k ↪→ L. Because any two algebraic closures of k are
k-isomorphic, we can further choose an isomorphism ψ that makes the following diagram commutative:

k L k̄

k K k̄.

iL ȳ∗

ψ

iK x̄∗

Let δ : (Spec(k), x̄) → (Spec(k), ȳ) be the pointed scheme morphism induced by ψ. Furthermore,
by Theorem A.10 we may choose an isomorphism γ0 ∈ IsomHo(pro-ss∗)

(
(Xet, x̄et), (Yet, ȳet)

)
lifting γ.

Consider the diagram of pro-finite groups

πet
1 (X, x̄) πet

1 (Y, ȳ)

π1(Ket, x̄et) π1(Let, ȳet)

π1(ket, x̄et) π1(ket, ȳet).

π1(γ0)

πet
1 (fc)

πet
1 (δ)=ψ∗

Note that fc,et considered as a pointed map (Ket, x̄) → (Let, ȳ) lifts γc. Therefore the top square
commutes up to conjugation, and after replacing γ0 by another lift γ′0 of γ, it commutes.

Since γ : Xet → Yet commutes with the projections to ket in Ho(pro-ss), the big square commutes up
to conjugation by an element g ∈ π1(ket, ȳet). After replacing ψ by ψg, it commutes. Since the upper
vertical maps are surjections, then also the lower square commutes.
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The induced commutative diagram on Galois cohomology with coefficients in µn is by Kummer theory

k×/n H1(k, µn) H1(L, µn) L×/n

k×/n H1(k, µn) H1(K,µn) K×/n.

id δ∗ f∗c f∗c

We obtain the congruences
f∗c (α) ≡ α mod (K×)n

for every α ∈ k× and any natural number n. Since finitely generated extension fields of Q do not contain
nontrivial divisible elements, we conclude that f∗c restricts to the identity on k as claimed. �

Appendix: Geometry in pro-spaces

This appendix deals with various aspects of pro-spaces, in particular, the existence of classifying
spaces of pro-groups, the relation between pointed and unpointed homotopy equivalences and the theory
of covering spaces. The authors thank J. Schmidt for helpful discussions on the subject.

We will make frequent use of the fact (see [EH76], 2.1.6) that, by re-indexing, every object in a pro-
category pro-C is isomorphic to a pro-object whose index category I is a cofinite directed set (cofinite
means that for any i ∈ I there are only finitely many j ∈ I with j < i).

We refer to [Is01] for the definition of the simplicial model structure on the category pro-ss of pro-
spaces. The simplicial function complex is given by

Map(X,Y )n = Hompro-ss(X ×∆[n], Y ).

All objects X of pro-ss are cofibrant. If Y is fibrant, then (cf. [Hi03] Prop. 9.5.24) HomHo(pro-ss)(X,Y ) is
given as the set of equivalence classes of elements of Hompro-ss(X,Y ) modulo strict simplicial homotopy,
i.e., deformations along the (constant) 1-simplex ∆[1].

A.1. Coverings of pro-spaces. Recall (cf. [GZ67]) that a morphism of simplicial sets p : Y → X is
called a covering if any commutative diagram

∆[0] Y

∆[n] X

u

i p

v

s

of solid arrows u, v, i, p can be completed by a unique dotted arrow s. Coverings have the unique lifting
property with respect to all horns ∆[n, k] → ∆[n], hence for all trivial cofibrations. In particular, they
are fibrations in ss. A covering Y → X with Y and X connected is called Galois covering with group
G(Y/X) = AutX(Y ) if the natural map from the quotient of Y by the action of AutX(Y ) to X is an
isomorphism.

If (X,x) is a pointed, connected simplicial set, then there exists the universal covering simplicial set
(X̃, x̃)→ (X,x). Its geometric realization is the universal covering space of the geometric realization of
(X,x); see [GZ67], Appendix I, §3.

Definition A.1. A morphism Y → X in pro-ss is a covering if it is isomorphic to a level-wise covering.
If Y and X are connected, Y → X is called a Galois covering if it is isomorphic to a level-wise Galois
covering.

Let (X,x) be a pointed, connected pro-simplicial set. The inverse system of the pointed universal
coverings of the different levels defines the pointed universal covering (X̃, x̃) of (X,x). The covering
X̃ → X is Galois and the fundamental group π1(X,x) is naturally isomorphic to the group G(X̃/X).

We denote the full subcategory of Ho(pro-ss) containing all connected pro-spaces by

Ho(pro-ss∗)c.

For a connected pointed pro-space (X,x) and a sub pro-group U ⊂ π1(X,x), the pointed pro-covering
of (X,x) associated with U

(X,x)U → (X,x)
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is well defined up to natural isomorphism in Ho(pro-ss∗)c. This follows from the following proposition
which is proved in an analogous way as [AM69], §2, (2.7), (2.8).

Proposition A.2. Let (X,x) ∈ Ho(pro-ss∗)c and let U ↪→ π1(X,x) be a monomorphism of pro-groups.
Then there is an (X,x)U in Ho(pro-ss∗)c together with a morphism h : (X,x)U → (X,x) characterized
by the property that for each connected (W,w) we have a bijection

[(W,w), (X,x)U ]pro-ss∗
∼−→ {f ∈ [(W,w), (X,x)]pro-ss∗ ; π1(f) factors through U}

sending f ′ : (W,w)→ (X,x)U to f = hf ′.

In the unpointed case, the situation is more involved. We start with the following observations.

Lemma A.3. If f : Y → X is a weak equivalence of connected pro-spaces, then the pull-back

(X ′ → X) 7→ (X ′ ×X Y → Y )

induces an equivalence between the categories of connected coverings of X and of Y .

Proof. This follows straightforward from the definition of weak equivalences in pro-ss and standard cov-
ering theory in ss. �

By definition, coverings in pro-ss have the unique lifting property with respect to level-maps which
are level-wise trivial cofibrations.

Lemma A.4. Coverings are fibrations in pro-ss.

Proof. Let I be a cofinite directed index set and (Yi)I → (Xi)I a level-wise covering. For any t ∈ I, the
uniqueness in the defining lifting property of a covering shows that

Yt → Xt ×lims<tXs
lim
s<t

Ys

is a covering, hence a fibration and a co-1-equivalence (in the sense of [Is01] Def. 3.1) in ss. We conclude
that Y → X is a strong fibration in the sense of [Is01] Def. 6.5, hence a fibration by [Is01] Prop. 14.5. �

Since the model structure on pro-ss is proper (see [Is01] Prop. 17.1 and the correction [Is04a] Rmk. 4.14),
[Hi03] Lemma 13.3.2 yields the following.

Lemma A.5. Let W ′ →W be a fibration in pro-ss. Assume that f : X →W and g : Y →W are maps
in pro-ss and h : Y → X is a weak equivalence with g = fh. Then the natural map

h× id : Y ×W W ′ → X ×W W ′

is a weak equivalence.

We will frequently use the fact that homotopy equivalences between pro-spaces over a common base
can be base-changed along coverings of the base:

Proposition A.6. Let W , X, Y be pro-spaces and let f : X → W , g : Y → W be maps of pro-spaces.
Assume that there exists γ ∈ IsomHo(pro-ss)(X,Y ) such that gγ = f in Ho(pro-ss). Let p : W ′ → W be a
covering.

Then there exists γ′ ∈ IsomHo(pro-ss)(X ×W W ′, Y ×W W ′) such that the diagram

X X ×W W ′ W ′

Y Y ×W W ′ W ′

γ γ′

commutes in Ho(pro-ss). The construction can be made functorial in W ′ with respect to morphisms of
coverings of W in pro-ss. In particular, if W ′ →W is a Galois covering of connected pro-spaces, then,
for all i ≥ 0 and every abelian group A, the induced isomorphisms

Hi(Y ×W W ′, A)
(γ′)∗−→ Hi(X ×W W ′, A)

are G(W ′/W )-equivariant.
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Proof. By Lemmas A.3 and A.5, we can replace W and then X and Y by fibrant approximations. Hence
we may assume that γ : X → Y is a weak equivalence in pro-ss such that gγ = f in Ho(pro-ss), and that
p : W ′ →W is a level-wise covering.

We choose a homotopy F : X × ∆[1] → W between f and gγ and denote the vertices of ∆[1] by 0
and 1. The outer square in the following diagram commutes because F restricts to f on X × {0}.(

X ×fW W ′
)
× {0} W ′

(
X ×fW W ′

)
×∆[1] W.

prW ′

p
F ′

FprX×∆[1]

The unique lifting property of a covering induces a unique map F ′. Hence the assignment

(x,w′) 7→ (x, F ′(x,w′, 1))

defines a map
ϕ : X ×fW W ′ −→ X ×gγW W ′

which commutes in Ho(pro-ss) with the respective projections toW ′ and is an isomorphism in pro-ss (the
inverse homotopy to F gives the inverse to ϕ). Another application of Lemma A.5 shows that

γ × id : X ×gγW W ′ −→ Y ×gW W ′

is a weak equivalence. We obtain the required weak equivalence as the composite γ′ = (γ× id)ϕ. Indeed,
γ′ is compatible with γ, and prW ′γ

′ = prW ′ in Ho(pro-ss) holds, because F ′ provides a homotopy.
The construction is obviously functorial in W ′ and all other assertions follow immediately. �

A.2. Pointed versus unpointed. In this section we consider the question under which conditions
two connected pointed pro-spaces which are isomorphic in the unpointed homotopy category are also
isomorphic in the pointed homotopy category. In general, this is not true: there are examples of connected
pro-spaces whose fundamental group depends on the base point. However we will show that the problem
disappears under some finiteness assumptions.

A.2.1. Some homological algebra of limits. For an abelian pro-group G, we have the derived inverse limit
groups limiG, i ≥ 0. If G is non-abelian, we have the limit group limG = lim0G, and, following [BK72],
XI, 6.5, the first derived inverse limit lim1G, which is a pointed set. If G is abelian, the Bousfield-Kan
lim1G carries the structure of an abelian group in a natural way and coincides with the usual lim1G.

For a pointed pro-space (X,x) and 0 ≤ i ≤ j we thus can consider

limi πj(X,x),

which is a pointed set for i = j = 0 and i = j = 1, a group for i = 0, j = 1 and an abelian group in all
other cases. We could not find the reference for the following.

Lemma A.7. Let G = (Gi)i∈I be a pro-finite (resp. a pro-finite abelian) group. Then

limsG = ∗

for s = 1 (resp. for all s ≥ 1).

Proof. We may assume that the index category I is a cofinite directed set. We have a natural injection
G ↪→ G∗, where G∗ = (G∗i )i∈I is the pro-group defined by

G∗i =
∏
j≤i

Gj

with the projection maps as transition maps. The cokernel G∗/G is a pointed pro-finite set. We obtain
an exact sequence of pointed sets, cf. [BK72] XI 6.5:

∗ → limG→ limG∗ → limG∗/G→ lim1G→ lim1G∗.

The pro-group G∗ is strongly Mittag-Leffler in the sense of [EH76] (4.8.3), because the natural maps

G∗i =
∏
j≤i

Gj −→
∏
j<i

Gj = lim
k<i

G∗k
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are surjective. Therefore we have lim1G∗ = ∗ by [EH76] (4.8.5). Since G is pro-finite, the usual
compactness argument shows that limG∗ → limG∗/G is surjective. We conclude that lim1G = ∗.

If G is abelian, then so is G∗ and again by [EH76] (4.8.5), we have limsG∗ = ∗ for all s ≥ 1. We
obtain limsG = lims−1G∗/G for s ≥ 2 and the result follows by induction. �

A.2.2. Topological homotopy groups. Let (Sn, sn) be the pointed constant pro-space given by the sim-
plicial n-sphere. For a pointed pro-space (X,x) = (Xi, xi)i∈I , we put

πtop
n (X,x) := πn(holim(X,x)) = HomHo(pro-ss∗)((S

n, sn), (X,x))

(see [Is01] Prop. 8.2 for the second equality), and call these the topological homotopy groups of
(X,x). We call (X,x) path-connected if πtop

0 (X,x) = ∗. The projections (X,x) → (Xi, xi) induce a
natural homomorphism

πtop
n (X,x)→ πn(X,x)

from the constant group πtop
n (X,x) to the pro-group πn(X,x) for all n.

Theorem A.8. Let (X,x) be a pointed pro-space such that π0(X,x) = ∗ and πn(X,x) is pro-finite for
all n ≥ 1. Then the natural homomorphism

πtop
n (X,x) −→ limπn(X,x)

is an isomorphism for all n ≥ 0.

Proof. We drop the base point x from the notation. By [BK72] XI, 5.2, holimX is the total space of
some cosimplicial space Π∗X, i.e.

holimX = lim
n

Totn Π∗X,

where
Totn Π∗X =

∏
u∈In

Xi0 , u = (Xin
αn→ · · · α1→ Xi0),

and the differentials Totn Π∗X → Totn−1 Π∗X are defined in the usual manner. Associated with the
tower of fibrations Totn Π∗X we have the Bousfield-Kan spectral sequence

Eij2 = πiπjΠ
∗X ⇒ πj−i holimX (0 ≤ i ≤ j)

(πi are the cohomotopy groups, see [BK72] X, §7.2 for the description of the E2-terms). By [BK72] XI,
§7.1, we have

πiπjΠ
∗X = limiπjX (0 ≤ i ≤ j).

Lemma A.7 implies Eij2 = 0 for 1 ≤ i ≤ j, hence the inverse systems (Eijr )r are constant and

lim
r

1Eijr = 0 (0 ≤ i ≤ j).

By [BK72] IX, 5.1 (connectivity lemma), we conclude that holimX is connected and [BK72] IX, §5.4
(complete convergence lemma) implies that limπn(X) ∼= πn holimX for all n ≥ 1. �

A.2.3. Monodromy action on pointed homotopy classes of maps. Let {0,1} be the constant pro-simplicial
set consisting of two points. We consider the under category {0, 1}↓ pro-ss of pro-simplicial sets with two
distinguished points together with its induced model structure, cf. [DS95], Rmk. 3.10. Let

I = (∆[1], 0, 1)

be the simplicial unit interval considered as a constant pro-simplicial set with the two distinguished
points 0 and 1. For (Y, y0, y1) ∈ {0, 1}↓ pro-ss we define the set

πtop
1 (Y, y0, y1) = HomHo({0,1}↓ pro-ss)((∆[1], 0, 1), (Y, y0, y1)).

For (X,x0, x1) in {0, 1}↓ pro-ss, consider the object (X,x0, x1) ∧ I of {0, 1}↓ pro-ss obtained from the
product X × I by collapsing {x0} × I and {x1} × I to distinguished points. Then X ∧ I is a cylinder
object for X such that i0, i1 : X → X ∧ I are cofibrations and the projection X ∧ I → X is a trivial
fibration. Hence, if Y is fibrant, then πtop

1 (Y, y0, y1) is the set of maps u : I → Y with u(0) = y0,
u(1) = y1, modulo start and endpoint preserving homotopies.

For another point y2 of Y , composition of paths induces a natural map

πtop
1 (Y, y1, y2)× πtop

1 (Y, y0, y1) −→ πtop
1 (Y, y0, y2).
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The simplicial 1-sphere S1 is obtained by identifying the vertices of ∆[1]. Therefore the special case
y0 = y1 is consistent with the definition of the topological fundamental group:

πtop
1 (Y, y, y) = πtop

1 (Y, y).

Let (X,x) be a pointed pro-space and (Y, y0, y1) ∈ {0, 1}↓ pro-ss. Let ε : Y → Z be a fibrant
approximation and zi = ε(yi), i = 1, 2. For a path u : I → Z from z0 to z1 and a map f : (X,x)→ (Z, z0)
we define a map u(f) : (X,x0)→ (Z, z1) by

u(f)(x) = F (x, 1)

where F : X × I → Z is an extension

(X,x) ∨ (I, 0) Z

X × I ∗

u∨f

F

which exists since Z is fibrant. Formally in the same way as in the classical case of well-pointed topological
spaces (cf. [Wh78], Chapter III, §1) one shows

Lemma A.9. The above constructions yields a well-defined composition

πtop
1 (Y, y0, y1)× [(X,x), (Y, y0)]pro-ss∗ −→ [(X,x), (Y, y1)]pro-ss∗ .

For another point y2 of Y , the composition

πtop
1 (Y, y1, y2)× πtop

1 (Y, y0, y1)× [(X,x), (Y, y0)]pro-ss∗ −→ [(X,x), (Y, y2)]pro-ss∗

is associative. In the special case y0 = y1, we obtain a natural πtop
1 (Y, y)-action on [(X,x), (Y, y)]pro-ss∗ .

Again, formally in the same way as in the classical case of well-pointed topological spaces (cf. [Wh78]
Chap. III, §1) one obtains the following:

Theorem A.10. Let (X,x) and (Y, y) be pointed pro-spaces and assume that Y is path-connected. Then
the map induced by forgetting the base points induces a natural bijection of the orbit space(

[(X,x), (Y, y)]pro-ss∗
)
πtop

1 (Y,y)

∼−→ [X,Y ]pro-ss

with the set of morphisms of X to Y in the unpointed homotopy category Ho(pro-ss).

Corollary A.11. Let (X,x) and (Y, y) be pointed connected pro-spaces, Assume that
(a) X and Y are isomorphic in Ho(pro-ss),
(b) πi(Y, y) is pro-finite for all i ≥ 1.
Then (X,x) and (Y, y) are isomorphic in the pointed homotopy category Ho(pro-ss∗).

Proof. Let f : X → Y be an isomorphism in Ho(pro-ss). Theorem A.8 implies that πtop
0 (Y, y) is trivial,

i.e., Y is path-connected. Hence, by Theorem A.10 there exists a morphism f∗ : (X,x) → (Y, y) in
Ho(pro-ss∗) over f . By the definition of the model structure on pro-ss∗, f∗ is a isomorphism. �

For f ∈ [(X,x), (Y, y)]pro-ss∗ and α ∈ πtop
1 (Y, y), the definition of the πtop

1 (Y, y)-action implies that

α(f) = α(idY ) ◦ f. (8)

By Lemma A.9, the map

πtop
1 (Y, y)→ AutHo(pro-ss∗)

(
(Y, y)

)
, α 7→ α(idY ),

is a group homomorphism. Hence, for any functor F on Ho(pro-ss∗), there is an induced πtop
1 (Y, y)-

action on F((Y, y)). In particular, πtop
1 (Y, y) acts on the set of group homomorphisms ϕ : πtop

1 (X,x)→
πtop

1 (Y, y) by α(ϕ) = πtop
1 (α(idY )) ◦ ϕ.

Lemma A.12. Let (X,x) and (Y, y) be pointed connected pro-spaces. Then the πtop
1 (Y, y)-action on

Hom
(
πtop

1 (X,x), πtop
1 (Y, y)

)
is by composition with conjugation: for α ∈ πtop

1 (Y, y) and ϕ : πtop
1 (X,x)→

πtop
1 (Y, y) we have

α(ϕ)(γ) = αϕ(γ)α−1.
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In particular, the set of πtop
1 (Y, y)-orbits is the set of outer homomorphisms:(

Hom
(
πtop

1 (X,x), πtop
1 (Y, y)

))
πtop

1 (Y,y)
= Homout

(
πtop

1 (X,x), πtop
1 (Y, y)

)
.

Proof. By functoriality, we may assume that ϕ = id . We may assume that Y is fibrant and that γ is
represented by g : I → Y , g(0) = y = g(1) and α is represented by a : I → Y , a(0) = y = a(1). Then
a(g) represents α(id)(γ) by (8).

The definition of a(g) uses a map G : I × I → Y whose restriction to the boundaries is as follows:

g

a(g)

a a

.

Hence the map G provides a homotopy between a(g) and aga−1. �

A.2.4. Pointed versus unpointed in the relative case. In Theorem A.10 we analysed the effect of forgetting
the base point in Ho(pro-ss∗). Now we turn our attention to the same problem in Ho(pro-ss∗) ↓ (B, b).

Theorem A.13. Let (B, b) be a pointed pro-space, and let (X,x) and (Y, y) be pointed pro-spaces over
(B, b). Assume that Y and B are path-connected and that πtop

1 (Y, y)→ πtop
1 (B, b) is surjective.

(a) The map induced by forgetting the base points yields a surjection

HomHo(pro-ss∗)↓(B,b)((X,x), (Y, y))� HomHo(pro-ss)↓B(X,Y ).

In particular, if X and Y are isomorphic in Ho(pro-ss) ↓ B, then (X,x) and (Y, y) are isomorphic
in Ho(pro-ss∗) ↓ (B, b).

(b) Let SX ⊆ πtop
1 (B, b) be the stabilizer of the structure map (X,x)→ (B, b) in Ho(pro-ss∗) and

∆X,Y ⊂ πtop
1 (Y, y)

the preimage of SX under πtop
1 (Y, y)→ πtop

1 (B, b).
Then ∆X,Y acts on HomHo(pro-ss∗)↓(B,b)((X,x), (Y, y)) and the map forgetting the base points

induces a natural bijection(
HomHo(pro-ss∗)↓(B,b)((X,x), (Y, y))

)
∆X,Y

∼−→ HomHo(pro-ss)↓B(X,Y ).

Proof. We show (a) and (b) simultaneously. Let pX and pY be the given maps from (X,x) and (Y, y)
to (B, b). For the moment, we consider (X,x) as an absolute object, forgetting about pX . There is a
disjoint union decomposition

[(X,x), (Y, y)]pro-ss∗ =
∐

p∈[(X,x),(B,b)]pro-ss∗

HomHo(pro-ss∗)(B,b)((X,x, p), (Y, y, pY )), (9)

where a morphism f0 : (X,x)→ (Y, y) in Ho(pro-ss∗) maps to itself, considered as a morphism over (B, b)
in the p = pY f0-component on the right hand side. We have a similar decomposition in the unpointed
case

[X,Y ]pro-ss =
∐

p∈[X,B]pro-ss

HomHo(pro-ss)((X, p), (Y, pY )). (10)

By Theorem A.10, we have a natural πtop
1 (Y, y)-action on the left hand side of (9) whose orbits identify

with the left hand side of (10).
We first show surjectivity. Let f ∈ HomHo(pro-ss)↓B(X,Y ) be given, i.e., f lies in the pX -component of

(10). Let f0 ∈ [(X,x), (Y, y)]pro-ss∗ be a pre-image of f . By definition, f0 lies in the pY f0-component of
(9). Since pY f0 and pX agree as morphisms in Ho(pro-ss), Theorem A.10 provides a σ ∈ πtop

1 (B, b) with
σ(pY f0) = pX in HomHo(pro-ss∗)((X,x), (B, b)). Let τ ∈ πtop

1 (Y, y) be a pre-image of σ. Then τ(f0) lies
in the pX -component of (9). This shows surjectivity of

HomHo(pro-ss∗)↓(B,b)((X,x), (Y, y)) −→ HomHo(pro-ss)↓B(X,Y ).

To finish the proof, note that f0 and f ′0 have the same image if and only if f ′0 = τ(f0) for some
τ ∈ πtop

1 (Y, x), which moreover must map to SX ⊂ πtop
1 (B, b).
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Note that in (a), if f : X → Y is an isomorphism in Ho(pro-ss) ↓ B that lifts to a morphism
f∗ : (X,x) → (Y, y) in Ho(pro-ss∗) ↓ (B, b), then by definition of the model structure on pro-ss∗, the
morphism f∗ is also an isomorphism. �

A.3. Eilenberg MacLane spaces in degree 1. In this part of the appendix, our main goal is Propo-
sition A.16 which shows the existence of classifying spaces of pro-groups in Ho(pro-ss∗).

A.3.1. Pro-classifying spaces. For a (discrete) group G we consider the category with one object and
automorphism group G and we denote the nerve of this category by BG. The space BG is connected
and pointed by its unique 0-cell. As is well-known, we have

πn(BG) =

{
G, for n = 1,
0, for n ≥ 2,

(11)

hence, BG is a functorial model for a K(G, 1)-space. If f : G′ → G is a surjective group homomorphism,
then the induced map B(f) : BG′ → BG is a fibration in ss∗, in particular, BG is fibrant for every
group G.

By functoriality, this construction extends to the pro-category: for a pro-group G, we obtain the con-
nected pointed pro-space BG for which (11) holds in pro-groups. In contrast to the case of discrete groups
however, the pro-space BG is not a fibrant object in pro-ss∗ in general. Nonetheless, Proposition A.16
below shows that BG represents the functor Hompro-groups(π1(−), G) on the pointed homotopy category.
In particular, any connected pointed pro-space (X,x) with π1(X,x) = G and πn(X,x) = 0 for n ≥ 2, is
canonically isomorphic to BG in Ho(pro-ss∗).

A.3.2. A fibrant model. Our first goal is to construct a good fibrant replacement of BG. Let, for the
moment G be discrete. Consider the category with one object for every element g ∈ G and all objects
uniquely isomorphic. We denote its nerve by EG. It comes along with a free right G-action by g ∈ G
permuting the objects h ; hg. The functor that maps the isomorphism h → gh to the automorphism
g induces a G-covering map EG → BG. The space EG comes along with a natural pointing by the
0-cell attached to the neutral element of G. Moreover, EG is contractible. Again, all constructions are
functorial so that we obtain a contractible pointed pro-space EG associated to every pro-group G. For
every i ∈ I the projection EGi → BGi is a Gi-covering map.

In the following we assume without loss of generality that all occurring index categories are cofinite
directed sets. For a pro-group G consider the pro-group G∗ = (G∗i )i∈I given by

G∗i =
∏
j≤i

Gj

with the obvious transition maps. We have a natural injection G ↪→ G∗ and consider the pointed
pro-space

B∗G := EG∗/G.

Lemma A.14. B∗G is fibrant in pro-ss∗, and the natural map BG→ B∗G is a weak equivalence.

Proof. For all i, the map BGi = EGi/Gi → B∗Gi = EG∗i /Gi is a weak equivalence in ss∗, hence
BG→ B∗G is a level-wise weak equivalence, in particular, a weak equivalence in pro-ss∗. The pro-group
G∗ has the property that ∏

j≤i

Gj = G∗i −→
∏
j<i

Gj = lim
j<i

G∗j

is surjective, hence λi : EG∗i → E(limj<iG
∗
j ) = limj<iEG

∗
j is a fibration. In the commutative diagram

EG∗i lim
j<i

EG∗j

(B∗G)i EG∗i /Gi lim
j<i

EG∗j/Gj limj<i(B
∗G)j

λi

µi

the vertical maps are surjective coverings, in particular fibrations. Hence also µi is a fibration.
Furthermore, the spaces (B∗G)i and limj<i(B

∗G)j , admitting contractible coverings, have trivial
homotopy groups in degrees greater or equal to two. Therefore B∗G is strongly fibrant in the sense of
[Is01] Def. 6.5, hence fibrant in pro-ss by [Is01] Prop. 14.5, and in particular also fibrant in pro-ss∗. �
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A.3.3. Morphisms to pro-classifying spaces. For a pro-group G, we are going to show that the functor

Ho(pro-ss∗) −→ (sets), (X,x) 7−→ Hompro-groups(π1(X,x), G)

is represented by BG. The space BG has exactly one 0-cell on every level and the natural map

G = BG1 −→ π1(BG) = G (12)

is the identity of G. This identification is used to define the bottom map in diagram (13) below.

Lemma A.15. For pro-groups G and G′, all maps in the commutative diagram

Hompro-groups(G
′, G) Hompro-ss∗(BG

′, BG)

Hompro-groups(G
′, G) HomHo(pro-ss∗)(BG

′, BG).

B(−)

π1(−)

(13)

are isomorphisms.

Proof. The diagram in the lemma commutes by its definition based on (12), in particular

Hompro-ss∗(BG
′, BG)→ Hompro-groups(G

′, G) (14)

is surjective. By induction on n and using the face maps ∂0, ∂n : BGn → BGn−1, we see that an n-
simplex in BG is uniquely determined by its edges, i.e., its faces of dimension 1 in BG1 = G. Therefore
a map ϕ : BG′ → BG is uniquely determined by ϕ1 : BG′1 → BG1 and hence the commutative diagram

BG′1 = G′ BG1 = G

π1(BG′) π1(BG)

o

ϕ1

o

π1(ϕ)

shows that (14) is also injective. It therefore remains to show that

Hompro-ss∗(BG
′, BG)→ HomHo(pro-ss∗)(BG

′, BG)

is surjective. This is obvious if BG is fibrant. Hence,

π1(−) : HomHo(pro-ss∗)(BG
′, BG)→ Hompro-groups(G

′, G)

is always split surjective and, moreover, an isomorphism if BG is fibrant. It remains to show that π1(−)
is injective for arbitrary G.

We again assume without loss of generality that all occurring index categories are cofinite directed
sets. The map

BG −→ B∗G

of Lemma A.14 is a natural fibrant replacement. The same argument as for B∗G in Lemma A.14 shows
that BG∗ is fibrant in pro-ss∗. Since B∗G→ BG∗ is a level-wise covering map, the induced map

Hompro-ss∗(BG
′, B∗G) −→ Hompro-ss∗(BG

′, BG∗)

is injective. Hence the left vertical map π1(−) in the commutative diagram

Hompro-ss∗(BG
′, B∗G) Hompro-ss∗(BG

′, BG∗)

HomHo(pro-ss∗)(BG
′, B∗G) HomHo(pro-ss∗)(BG

′, BG∗)

HomHo(pro-ss∗)(BG
′, BG) HomHo(pro-ss∗)(BG

′, BG∗)

Hompro-groups(G
′, G) Hompro-groups(G

′, G∗).

o

o

π1(−) π1(−)o

is injective. This completes the proof. �



Anabelian geometry with étale homotopy types 31

Proposition A.16. For a connected pointed pro-space (X,x) and a pro-group G, we have a functorial
isomorphism

π1(−) : HomHo(pro-ss∗)((X,x), BG)
∼−→ Hompro-groups(π1(X,x), G).

Proof. For an unpointed simplicial set X we denote by BΠX the nerve of its fundamental groupoid ΠX.
If x is a point of X, the category with one object and automorphism group π1(X,x) is naturally a full
subcategory of ΠX. Hence we have an induced map of nerves Bπ1(X,x)→ BΠX. Moreover, there is a
natural map X → BΠX.

The construction is functorial and thus we can speak about BΠX for a pro-simplicial set X. If x is a
point of X, we obtain the natural map

iX,x : Bπ1(X,x) −→ (BΠX,x).

If X is connected, the map iX,x is a weak equivalence in pro-ss∗. Composing (X,x) → (BΠX,x) with
the inverse of iX,x defines a natural morphism

p1,X : (X,x) −→ Bπ1(X,x)

in Ho(pro-ss∗). In the special case of X = BG there is only one point. Then

BG = Bπ1(BG, ∗) ∼−→ (BΠBG, ∗)

is an isomorphism, and p1,BG : BG→ BG is the identity.
Let f : (X,x)→ BG be a morphism in Ho(pro-ss∗), and consider the induced map

Bπ1(f) : Bπ1(X,x) −→ B(π1(BG)) = BG.

Since the morphism p1,X is natural, the diagram

(X,x) BG

Bπ1(X,x) BG

f

p1,X p1,BG

Bπ1(f)

commutes, hence f = Bπ1(f) ◦ p1,X and precomposition with p1,X yields a surjection

p∗1,X : HomHo(pro-ss∗)(Bπ1(X,x), BG) −→ HomHo(pro-ss∗)((X,x), BG).

Next we consider the commutative diagram

HomHo(pro-ss∗)(Bπ1(X,x), BG) Hompro-groups(π1(X,x), G)

HomHo(pro-ss∗)((X,x), BG) Hompro-groups(π1(X,x), G).

π1(−)

p∗1,X

π1(−)

Since the map π1(−) in the top row is a bijection by Lemma A.15, the surjectivity of p∗1,X shows that
all maps in the diagram are bijective. �

Definition A.17. Let (X,x) be a pointed connected pro-space. We call the morphism

(X,x)→ Bπ1(X,x)

in Ho(pro-ss∗) associated via Proposition A.16 with the identity of π1(X,x) the classifying morphism
of (X,x).

We say that (X,x) is of type K(π, 1) if πi(X,x) = 0 for all i ≥ 2.

Corollary A.18. A pointed connected pro-space (X,x) is of type K(π, 1) if and only if its classifying
morphism is an isomorphism in Ho(pro-ss∗).

Proof. By [Is01] Cor. 7.5, the classifying morphism (X,x) → Bπ1(X,x) is an isomorphism if and only
if it induces isomorphisms on πn for all n ≥ 1. By definition, the induced map on π1 is the identity of
π1(X,x). Since the higher homotopy groups of Bπ1(X,x) vanish, the result follows. �



32 ALEXANDER SCHMIDT AND JAKOB STIX

References

[Ar69] M. Artin, Algebraic approximation of structures over complete local rings. Publ. math. IHES 36 (1969), 23–58.
[AM69] M. Artin, B. Mazur, Etale Homotopy. Lecture Notes in Mathematics 100, Springer 1969.
[BK72] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations. Lecture Notes in Mathematics

304, Springer-Verlag, Berlin-New York, 1972.
[DM69] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ.

Math. No. 36, 1969, 75–109.
[DS95] W. G. Dwyer, J. Spalinski, Homotopy theories and model categories. Handbook of algebraic topology, 73–126,

North-Holland, Amsterdam, 1995.
[EGA4] A. Grothendieck, J. Dieudonné, Étude locale des Schémas et des Morphismes de Schémas. Inst. Hautes Études

Sci. Publ. Math. No. 20 (1964), 24 (1965), 28 (1966), 32 (1967).
[EH76] D. A. Edwards, H. M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology.

Lecture Notes in Mathematics, Vol. 542, Springer-Verlag, Berlin-New York, 1976.
[FJ08] M. D. Fried, M. Jarden, Field arithmetic. Third edition. Revised by Jarden. Ergebnisse der Mathematik und

ihrer Grenzgebiete. 3. Folge, Vol. 11, Springer-Verlag, Berlin, 2008, xxiv+792 pp.
[Fr82] E. M. Friedlander, Etale homotopy of simplicial schemes. Annals of Mathematics Studies 104, Princeton Uni-

versity Press, University of Tokyo Press, 1982, vii+190 pp.
[GZ67] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenz-

gebiete, Band 35, Springer-Verlag New York, 1967.
[Gr83] A. Grothendieck, Brief an Faltings (27/06/1983). in: Geometric Galois Action 1 (ed. L. Schneps, P. Lochak),

LMS Lecture Notes 242, Cambridge, 1997, 49–58.
[Hi03] P. S. Hirschhorn Model categories and their localizations, Mathematical Surveys and Monongraphs 99, AMS

2003.
[Ho14] Y. Hoshi, The Grothendieck conjecture for hyperbolic polycurves of lower dimension. J. Math. Sci. Univ. Tokyo

21 (2014), no. 2, 153–219.
[ILO14] L. Illusie, Y. Laszlo, F. Orgogozo, Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des

schémas quasi-excellents. (Séminaire à l’École polytechnique 2006–2008, avec la collaboration de F. Déglise,
A. Moreau, V. Pilloni, M. Raynaud, J. Riou, B. Stroh, M. Temkin et W. Zheng. Astérisque 363-364 (2014),
xxiv+619 pages.

[Is01] D. C. Isaksen, A model structure on the category of pro-simplicial sets. Trans. Amer. Math. Soc. 353 (2001),
no. 7, 2805–2841.

[Is04a] D. C. Isaksen, Strict model structures for pro-categories. Categorical decomposition techniques in algebraic
topology (Isle of Skye, 2001), 179–198, Progr. Math. 215, Birkhäuser, Basel, 2004.

[Is04b] D. C. Isaksen, Etale realization on the A1-homotopy theory of schemes. Adv. in Math. 184 (2004), 37–63.
[Mo99] S. Mochizuki, The local pro-p anabelian geometry of curves. Invent. Math. 138 (1999), no. 2, 319–423.
[MV99] F. Morel, V. Voevodsky, A1-homotopy theory of schemes. Publ. Math., Inst. Hautes Étud. Sci. 90 (1999), 45–143.
[Pop94] F. Pop, On Grothendieck’s conjecture of birational anabelian geometry. Ann. of Math. (2) 139 (1994), no. 1,

145–182.
[Pop97] F. Pop, Alterations and birational anabelian geometry. Resolution of singularities (Obergurgl, 1997), 519–532,

Progr. Math. 181, Birkhäuser, Basel, 2000.
[SGA1] A. Grothendieck, Revêtements étales et groupe fondamental, Lecture Notes in Mathematics 224, Springer-Verlag,

Berlin, 1971. Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par A. Grothendieck.
Augmenté de deux exposés de M. Raynaud.

[SGA3] M. Demazure, A. Grothendieck, Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas
en groupes généraux. Lecture Notes in Mathematics 152, Springer-Verlag, Berlin-New York, 1970, ix+654 pp.
Séminaire de Géométrie Algébrique du Bois Marie 1962–64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck.

[SGA4] M. Artin,; A. Grothendieck and J. L. Verdier,Théorie des topos et cohomologie étale des schémas (SGA 4).
Lecture Notes in Mathematics 269, 270 and 305, 1972/3.

[SGA4 1
2
] P. Deligne, Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1

2
. Avec la collaboration

de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. Lecture Notes in Mathematics, Vol. 569. Springer-
Verlag, Berlin-New York, 1977.

[SGA7] Groupes de monodromie en géométrie algébrique. I. Séminaire de Géométrie Algébrique du Bois-Marie 1967–
1969 (SGA 7 I). Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. Lecture Notes
in Mathematics 288, Springer-Verlag, Berlin-New York, 1972.

[Sc96] A. Schmidt, Extensions with restricted ramification and duality for arithmetic schemes. Compos. Math. 100
(1996), 233–245.

[Se65] J.-P. Serre, Zeta and L functions. Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) pp. 82–92,
Harper & Row, New York 1965.

[Ta97] A. Tamagawa, The Grothendieck conjecture for affine curves. Compos. Math. 109 (1997), no. 2, 135–194.
[Wh78] G. W. Whitehead, Elements of homotopy theory. Graduate Texts in Mathematics 61, Springer-Verlag, New

York-Berlin, 1978.



Anabelian geometry with étale homotopy types 33

Alexander Schmidt, Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 205, 69120
Heidelberg, Germany

E-mail address: schmidt@mathi.uni-heidelberg.de

Jakob Stix, Institut für Mathematik, Goethe–Universität Frankfurt, Robert-Mayer-Straße 6–8, 60325
Frankfurt am Main, Germany

E-mail address: stix@math.uni-frankfurt.de


	1. Introduction
	1.1. Higher anabelian geometry
	1.2. Main results
	1.3. On the kernel
	1.4. Outline
	Notation and conventions

	2. Basic properties of étale homotopy types
	2.1. Étale base change
	2.2. Pointed versus unpointed
	2.3. Varieties of type K(π,1)

	3. Homotopy theoretic formulation of Mochizuki's theorem
	4. The retraction
	4.1. Counting points in closed fibres
	4.2. Factor-dominant embeddings
	4.3. The key argument
	4.4. Independence, functoriality and retraction

	5. Class preservation
	5.1. Preservation of open normal subgroups
	5.2. Preservation of decomposition groups in finite quotients
	5.3. Rational hyperbolic factors

	6. Strongly hyperbolic Artin neighbourhoods
	7. An absolute version of the main result
	Appendix: Geometry in pro-spaces
	A.1. Coverings of pro-spaces
	A.2. Pointed versus unpointed
	A.3. Eilenberg MacLane spaces in degree 1

	References

