Übungen zur Algebra II

Sommersemester 2019

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. P. Sechin

Blatt 12 Abgabetermin: Donnerstag, 11.07.2019, 9.15 Uhr

Aufgabe 1. (Nilpotenz und artinsche Ringe) Sei A ein noetherscher Ring, in dem jedes Element entweder eine Einheit oder nilpotent ist. Zeigen Sie, dass A ein artinscher lokaler Ring ist.

Aufgabe 2. (Universelle Eigenschaften)

- (a) Zeigen Sie, dass das kartesische Produkt topologischer Räume zusammen mit der in der Vorlesung definierten Topologie die Universaleigenschaft für das Produkt in der Kategorie der topologischen Räume erfüllt.
- (b) Sei I eine gerichtete halbgeordnete Indexmenge und $(T_i)_{i\in I}$ ein projektives System topologischer Räume (die Übergangsabbildungen sind als stetig vorausgesetzt). Zeigen Sie: Die Menge $\varprojlim T_i$ versehen mit der Unterraumtopologie in $\prod T_i$ erfüllt die Universaleigenschaft von \varprojlim in topologischen Räumen.

Eine topologische Gruppe ist eine Gruppe G zusammen mit einer Topologie, so dass die Abbildungen $G \times G \to G$, $(g,h) \longmapsto gh$ und $G \to G$, $g \longmapsto g^{-1}$, stetig sind.

Aufgabe 3. (Abschluss von Untergruppen) Es sei G eine topologische Gruppe. Zeigen Sie: Ist H eine Untergruppe von G, dann ist auch ihr Abschluss \overline{H} eine Untergruppe von G. Ist H ein Normalteiler von G.

Die folgende Aufgabe ist Teil einer Serie von Aufgaben über das Spektrum eines Ringes.

Aufgabe 4. (Trennungseigenschaften der Zariski-Topologie) Sei A ein kommutativer Ring mit 1 und X = Spec A. Zeigen Sie:

- (a) X erfüllt T_0 .
- (b) Sei überdies A noethersch. Dann sind äquivalent:
 - (i) X erfüllt T_2 .
 - (ii) X erfüllt T_1 .
 - (iii) A ist artinsch.
 - (iv) X ist endlich und diskret.

bitte wenden!

Ein topologischer T Raum heißt quasi-kompakt, wenn er die folgende Eigenschaft hat:

Gilt $T=\bigcup_{i\in I}U_i$ mit $U_i\subset T$ offen für alle $i\in I$, so existiert eine endliche Teilmenge $J\subset I$ mit $T=\bigcup_{j\in J}U_j$.

Ein topologischer Raum T heißt kompakt, wenn er quasi-kompakt und hausdorffsch ist.

Zusatzaufgabe 5. (Proendliche Gruppen)

Sei G eine kompakte topologische Gruppe. Zeigen Sie:

- (a) Jede offene Untergruppe U ist von endlichem Index in G und enthält einen offenen Normalteiler von G.
- (b) Angenommen, jede offene Teilmenge M von G mit $1 \in M$ enthält einen offenen Normalteiler (eine solche Gruppe nennt man proendlich). Dann ist jede abgeschlossene Untergruppe H von G der Durchschnitt aller sie enthaltenden offenen Untergruppen von G:

$$\overline{H} = \bigcap_{\substack{U \subset G \text{ offen} \\ H \subset U}} U .$$